226 research outputs found

    Design and analysis of multi-element antenna systems and agile radiofrequency frontends for automotive applications

    Get PDF
    Vehicular connectivity serves as one of the major enabling technologies for current applications like driver assistance, safety and infotainment as well as upcoming features like highly automated vehicles - all of which having certain quality of service requirements, e. g. datarate or reliability. This work focuses on vehicular integration of multiple-input-multiple-output (MIMO) capable multielement antenna systems and frequency-agile radio frequency (RF) front ends to cover current and upcoming connectivity needs. It is divided in four major parts. For each part, mostly physical layer effects are analyzed (any performance lost on physical layer, cannot be compensated in higher layers), sensitivities are identified and novel concepts are introduced based on the status-quo findings.Fahrzeugvernetzung dient als eine der wesentlichsten BefĂ€higungstechnologien fĂŒr moderne Fahrerassistenzsysteme und zukĂŒnftig auch hochautomatisiertes Fahren. Sowohl die heutigen als auch zukĂŒnftige Anwendungen haben besondere DienstgĂŒteanforderungen, z.B. in Bezug auf die Datenrate oder VerlĂ€sslichkeit. Im Rahmen dieser Arbeit wird die Integration von Mehrantennensystemen fĂŒr MIMO-Funkanwendungen (MIMO: engl. Multiple Input Multiple Output) sowie von frequenzagilen Hochfrequenzfrontends im Fahrzeugumfeld untersucht, um so eine technische Grundlage fĂŒr zukĂŒnftige Anforderungen an die automobile Vernetzung anbieten zu können. Die dabei gewonnenen Erkenntnisse lassen sich in vier Teile gliedern. GrundsĂ€tzlich konzentrieren sich die Untersuchungen vorrangig auf die physikalische Ebene. Auf Basis des aktuellen Status Quo werden SensitivitĂ€ten herausgearbeitet, neue Konzepte hergeleitet und entwickelt

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Packet level measurement over wireless access

    Get PDF
    PhDPerformance Measurement of the IP packet networks mainly comprise of monitoring the network performance in terms of packet losses and delays. If used appropriately, these network parameters (i.e. delay, loss and bandwidth etc) can indicate the performance status of the network and they can be used in fault and performance monitoring, network provisioning, and traffic engineering. Globally, there is a growing need for accurate network measurement to support the commercial use of IP networks. In wireless networks, transmission losses and communication delays strongly affect the performance of the network. Compared to wired networks, wireless networks experience higher levels of data dropouts, and corruption due to issues of channel fading, noise, interference and mobility. Performance monitoring is a vital element in the commercial future of broadband packet networking and the ability to guarantee quality of service in such networks is implicit in Service Level Agreements. Active measurements are performed by injecting probes, and this is widely used to determine the end to end performance. End to end delay in wired networks has been extensively investigated, and in this thesis we report on the accuracy achieved by probing for end to end delay over a wireless scenario. We have compared two probing techniques i.e. Periodic and Poisson probing, and estimated the absolute error for both. The simulations have been performed for single hop and multi- hop wireless networks. In addition to end to end latency, Active measurements have also been performed for packet loss rate. The simulation based analysis has been tried under different traffic scenarios using Poisson Traffic Models. We have sampled the user traffic using Periodic probing at different rates for single hop and multiple hop wireless scenarios. 5 Active probing becomes critical at higher values of load forcing the network to saturation much earlier. We have evaluated the impact of monitoring overheads on the user traffic, and show that even small amount of probing overhead in a wireless medium can cause large degradation in network performance. Although probing at high rate provides a good estimation of delay distribution of user traffic with large variance yet there is a critical tradeoff between the accuracy of measurement and the packet probing overhead. Our results suggest that active probing is highly affected by probe size, rate, pattern, traffic load, and nature of shared medium, available bandwidth and the burstiness of the traffic

    Performance analysis of an integrated CS/PS services CDMA system

    Get PDF
    An analytical model is developed to investigate integrated CS/PS CDMA cellular systems with SIR-based power control. Because packet data are not very sensitive to delay, a defer-first-transmission transmission mode is usually applied to packet data transmission. In the mixed CS/PS environment, link-level congestion control is designed to delay packet data, if necessary, to guarantee real-time delivery quality for CS traffic such as voice and CS data. In interference-limited CDMA cellular systems, because interference (both intracell and intercell) is the limit to spectral efficiency, congestion control is driven by the total received interference level at the BS. With congestion control at link level and SIR-based power control, the intracell and intercell interferences are closely related to each other. A recursive process is developed to evaluate the performance of such a CDMA system. Numerical results such as system capacity and data delay, both with and without power control error considered, are presented.Peer Reviewe

    Routing performance in ad hoc networks.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.An ad hoc network is a multi-hop wireless network in which mobile nodes communicate over a shared wireless channel. The network is formed cooperatively without specific user administration or configuration and is characterised by a distributed network management system and the absence of a wired backbone. Military, law enforcement, and disaster relief operations are often carried out in situations with no pre-existing network infrastructure and can benefit from such networks because base stations, which are single points of failure, are undesirable from a reliability standpoint. The rising popularity of mobile computing has also created a potentially large commercial market for multimedia applications applied over wireless ad hoc networks. This dissertation focuses on the routing aspects of ad hoc networking. The multi-hop routes between nodes constantly change as the mobile nodes migrate. Ad hoc network routing algorithms must therefore adapt to the dynamic and unpredictable topology changes, the random radio propagation conditions and portable power sources. Various routing protocols have been proposed in the literature for ad hoc networks. These protocols together with comparative simulations are discussed and a new protocol based on load balancing and signal quality determination is proposed . and the simulation results are presented. Currently the proposed routing protocols are compared using simulation packages which are often time consuming. This dissertation proposes a mathematical model for evaluating the routing protocols and the resultant end-to-end blocking probabilities. The mathematical model is based on a derivation of the reduced load approximation for analysing networks modelled as loss networks and the evaluation incorporates and adapts models that have been used for the analysis of cellular Code Division Multiple Access (CDMA) systems. While analytical methods of solving blocking probability can potentially generate results orders of magnitude faster than simulation, they are more importantly essential to network sensitivity analysis, design and optimisation
    • 

    corecore