29 research outputs found

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    MEMS-Based Endomicroscopes for High Resolution in vivo Imaging

    Full text link
    Intravital microscopy is an emerging methodology for performing real time imaging in live animals. This technology is playing a greater role in the study of cellular and molecular biology because in vitro systems cannot adequately recapitulate the microenvironment of living tissues and systems. Conventional intravital microscopes use large, bulky objectives that require wide surgical exposure to image internal organs and result in terminal experiments. If these instruments can be reduced sufficiently in size, biological phenomena can be observed in a longitudinal fashion without animal sacrifice. The epithelium is a thin layer of tissue in hollow organs, and is the origin of many types of human diseases. In vivo assessment of biomarkers expressed in the epithelium in animal models can provide valuable information of disease development and drug efficacy. The overall goal of this work is to develop miniature imaging instruments capable of visualizing the epithelium in live animals with subcellular resolution. The dissertation is divided into four projects, where each contains an imaging system developed for small animal imaging. These systems are all designed using laser beam scanning technology with tiny mirrors developed with microelectromechanical systems (MEMS) technology. By using these miniature scanners, we are able to develop endomicroscopes small enough for hollow organs in small animals. The performance of these systems has been demonstrated by imaging either excised tissue or colon of live mice. The final version of the instrument can collect horizontal/oblique plane images in the mouse colon in real time (>10 frames/sec) with sub-micron resolution (<1 um), deep tissue penetration (~200 um) and large field of view (700 x 500 um). A novel side-viewing architecture with distal MEMS scanning was developed to create clear and stable image in the mouse colon. With the use of the instrument, it is convenient to pinpoint location of interest and create a map of the colon using image mosaicking. Multispectral fluorescence images can by collected at excitation wavelength ranging from 445 nm to 780 nm. The instruments have been used to 1) validate specific binding of a cancer targeting agent in the mouse colon and 2) study the tumor development in a mouse model with endogenous fluorescence protein expression. We use these studies to show that we have developed an enabling technology which will allow biologist to perform longitudinal imaging in animal models with subcellular resolution.PHDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/136954/2/dxy_1.pd

    Design and development of an endoscopic optical coherence tomography (OCT) imaging system

    Get PDF
    Optical coherence tomography (OCT) has been established as a noninvasive medical optical imaging modality that is capable of generating cross sectional images with a high axial resolution (1-10 μm) and a penetration depth of 2 mm in tissue. OCT imaging can be combined with conventional white-light endoscopes through an imaging probe capable of providing micro structural information of tissue samples based on backscattered light. This allows the study in internal hollow organs including the gastrointestinal (GI) tract. In this thesis a novel swept-source OCT endoscopy using a fibre-cantilever piezotube (PZT) scanner has been developed with a linear field-of-view of 0.5 mm and axial resolution of 10 μm at 1300 nm. The achieved A-scan rate is 200 kHz as defined by the swept source, and a B-scan rate of 1.4 kHz given by the fibre resonance frequency. The tradeoff between faster scanning speed and fewer A-scans/B-scan was compensated by an interleaving algorithm where three consecutive B-scans are acquired and then interleaved, increasing the sampling density hence improving image quality. This process emulates a resonance frequency of 460 Hz without having to add extra-weight to the fibre. The imaging probe can be integrated into the working channel of a commercial endoscope and has a diameter ∅ = 2.5 mm, rigid length of 25 mm and a total length of 2.2 meter to allow mobility for in-vivo imaging. OCT images of ex-vivo rat colon samples and human finger are presented. The main target users of the developed endoscope OCT probe are gastroenterologists since the presented OCT system provides value in cancer tissue analysis for applications where imaging of ex-vivo resected tissue samples is required to provide immediate structural diagnosis and can be made compatible with in-vivo measurement. Finally, this thesis presents a new heterodyne method to characterize akinetic all- semiconductor sampled-grating distributed Bragg reflector lasers that can be the core of a swept source. This method provides opto-electronic characterization in the form of DC and AC tuning maps that represents the current combinations needed to obtain the desired linear tuning profile as needed by swept-source applications

    Minimally invasive diagnostic imaging using high resolution Optical Coherence Tomography

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references.Advances in medical imaging have given researchers unprecedented capabilities to visualize, characterize and understand biological systems. Optical Coherence Tomography (OCT) is a high speed, high resolution imaging technique that utilizes low coherence interferometry to perform cross-sectional tomographic imaging of tissue in real time and in vivo. The design, development, and implementation of ultrahigh resolution OCT systems in both laboratory and clinical experiments has been pursued in this work. Biomedical imaging studies in the areas of arthroscopy, cardiology, and endoscopy have been investigated with ultrahigh resolution capability achieved through the use of broadband femtosecond oscillators such as Ti:Sapphire and Cr:Forsterite light sources. OCT image resolutions of 1-5um in tissue have been realized, an order of magnitude greater than conventional MRI or ultrasound resolutions. In addition, through the use of coherent heterodyne detection techniques, the capability to visualize pathological tissue architecture in vivo for both animal and human experimental trials has been demonstrated. Because OCT can perform such "optical biopsy" with resolutions approaching that of conventional excisional biopsy and histology, it has the potential to become a powerful diagnostic tool in the field of medical imaging. In combination with small fiber-optic catheters, endoscopes, and other imaging devices, minimally invasive OCT imaging was carried out with novel diagnostic devices also developed in this work. The development and implementation of advanced OCT systems for both research and clinical applications will be presented as well as future directions for the technology.by Paul R. Herz.Ph.D

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    New Light Source (NLS) project: conceptual design report

    Get PDF

    Swept source optical coherence microscopy for pathological assessment of cancerous tissues

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references.Optical coherence microscopy (OCM) combines optical coherence tomography (OCT) with confocal microscopy and enables depth resolved visualization of biological specimens with cellular resolution. OCM offers a suitable alternative to confocal imaging by providing enhanced contrast due to the additional coherence gate to the inherent confocal gate, increasing the field of view and imaging depth, and eliminating the need of external contrast agents. In the past, development of OCT systems have been focused on time domain and spectral/Fourier domain methods which offer high axial resolution and imaging speeds. However, recent advances in the OCT technology have pushed the development into the direction of swept source OCT technologies, and development of the OCM technology is likely to follow this path. This thesis describes construction, characterization and preliminary imaging results of a swept source OCM (SS-OCM) system utilizing a novel light source, Vertical Cavity Surface-Emission Laser (VCSEL). This swept source laser can reach sweep rates exceeding 1 MHz and provide wide tuning ranges, which will enable both imaging speeds approaching to time domain OCM (TD-OCM) systems, and axial resolution approaching to spectral/Fourier domain OCM (SD-OCM) systems. Several other advantages of SS-OCM compared to TD-OCM and SD-OCM that make this technology a promising alternative to the latter imaging methods are presented. Furthermore, practical concepts in the system development and signal processing, such as compensation for the scan curvatures, methods for calibration of the spectrums, selection of suitable color maps for display, and other related topics are also discussed in the text. In addition to technical description of the OCM system development, an in depth analysis of several clinical applications that will be likely to benefit from this imaging modality is also presented. Real time intraoperative feedback is required in order to reduce the morbidity and the rate of additional operations for the surgical management of several forms of cancer, where a benchtop OCM system residing in the pathology laboratory can be immensely beneficial. Furthermore, with the novel scanning mechanisms that have been developed in the recent years it is possible to translate this imaging modality to an in vivo setting where an OCM probe can be inserted through the working channel of an endoscope and generate cellular resolution images in real time without the need of external contrast agents. Endoscopic management and clinical challenges for a spectrum of lower gastrointestinal (GI) diseases is discussed where an in vivo OCM imaging probe can play an important role in the diagnosis and evaluation of the extend of the particular disease. A review of alternative imaging modalities, such as chromoendoscopy, narrow band imaging (NBI) and confocal laser endomicroscopy (CLE) is also included which outlines the relative strengths and limitations of these imaging modalities for the clinical management of lower GI diseases.by Osman Oguz Ahsen.S.M

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore