234 research outputs found

    Distributed Interference-Aware Energy-Efficient Resource Allocation for Device-to-Device Communications Underlaying Cellular Networks

    Full text link
    The introduction of device-to-device (D2D) into cellular networks poses many new challenges in the resource allocation design due to the co-channel interference caused by spectrum reuse and limited battery life of user equipments (UEs). In this paper, we propose a distributed interference-aware energy-efficient resource allocation algorithm to maximize each UE's energy efficiency (EE) subject to its specific quality of service (QoS) and maximum transmission power constraints. We model the resource allocation problem as a noncooperative game, in which each player is self-interested and wants to maximize its own EE. The formulated EE maximization problem is a non-convex problem and is transformed into a convex optimization problem by exploiting the properties of the nonlinear fractional programming. An iterative optimization algorithm is proposed and verified through computer simulations.Comment: 6 pages, 3 figures, IEEE GLOBECOM 201

    A Game-Theoretic Approach to Energy-Efficient Resource Allocation in Device-to-Device Underlay Communications

    Full text link
    Despite the numerous benefits brought by Device-to-Device (D2D) communications, the introduction of D2D into cellular networks poses many new challenges in the resource allocation design due to the co-channel interference caused by spectrum reuse and limited battery life of User Equipments (UEs). Most of the previous studies mainly focus on how to maximize the Spectral Efficiency (SE) and ignore the energy consumption of UEs. In this paper, we study how to maximize each UE's Energy Efficiency (EE) in an interference-limited environment subject to its specific Quality of Service (QoS) and maximum transmission power constraints. We model the resource allocation problem as a noncooperative game, in which each player is self-interested and wants to maximize its own EE. A distributed interference-aware energy-efficient resource allocation algorithm is proposed by exploiting the properties of the nonlinear fractional programming. We prove that the optimum solution obtained by the proposed algorithm is the Nash equilibrium of the noncooperative game. We also analyze the tradeoff between EE and SE and derive closed-form expressions for EE and SE gaps.Comment: submitted to IET Communications. arXiv admin note: substantial text overlap with arXiv:1405.1963, arXiv:1407.155

    Energy Efficiency and Spectral Efficiency Tradeoff in Device-to-Device (D2D) Communications

    Full text link
    In this letter, we investigate the tradeoff between energy efficiency (EE) and spectral efficiency (SE) in device-to-device (D2D) communications underlaying cellular networks with uplink channel reuse. The resource allocation problem is modeled as a noncooperative game, in which each user equipment (UE) is self-interested and wants to maximize its own EE. Given the SE requirement and maximum transmission power constraints, a distributed energy-efficient resource allocation algorithm is proposed by exploiting the properties of the nonlinear fractional programming. The relationships between the EE and SE tradeoff of the proposed algorithm and system parameters are analyzed and verified through computer simulations.Comment: 8 pages, 6 figures, long version paper of IEEE Wireless Communications Letters, accepted for publication. arXiv admin note: text overlap with arXiv:1405.196

    Efficiency Resource Allocation for Device-to-Device Underlay Communication Systems: A Reverse Iterative Combinatorial Auction Based Approach

    Full text link
    Peer-to-peer communication has been recently considered as a popular issue for local area services. An innovative resource allocation scheme is proposed to improve the performance of mobile peer-to-peer, i.e., device-to-device (D2D), communications as an underlay in the downlink (DL) cellular networks. To optimize the system sum rate over the resource sharing of both D2D and cellular modes, we introduce a reverse iterative combinatorial auction as the allocation mechanism. In the auction, all the spectrum resources are considered as a set of resource units, which as bidders compete to obtain business while the packages of the D2D pairs are auctioned off as goods in each auction round. We first formulate the valuation of each resource unit, as a basis of the proposed auction. And then a detailed non-monotonic descending price auction algorithm is explained depending on the utility function that accounts for the channel gain from D2D and the costs for the system. Further, we prove that the proposed auction-based scheme is cheat-proof, and converges in a finite number of iteration rounds. We explain non-monotonicity in the price update process and show lower complexity compared to a traditional combinatorial allocation. The simulation results demonstrate that the algorithm efficiently leads to a good performance on the system sum rate.Comment: 26 pages, 6 fgures; IEEE Journals on Selected Areas in Communications, 201

    Secure Full-Duplex Device-to-Device Communication

    Get PDF
    This paper considers full-duplex (FD) device-to-device (D2D) communications in a downlink MISO cellular system in the presence of multiple eavesdroppers. The D2D pair communicate sharing the same frequency band allocated to the cellular users (CUs). Since the D2D users share the same frequency as the CUs, both the base station (BS) and D2D transmissions interfere each other. In addition, due to limited processing capability, D2D users are susceptible to external attacks. Our aim is to design optimal beamforming and power control mechanism to guarantee secure communication while delivering the required quality-of-service (QoS) for the D2D link. In order to improve security, artificial noise (AN) is transmitted by the BS. We design robust beamforming for secure message as well as the AN in the worst-case sense for minimizing total transmit power with imperfect channel state information (CSI) of all links available at the BS. The problem is strictly non-convex with infinitely many constraints. By discovering the hidden convexity of the problem, we derive a rank-one optimal solution for the power minimization problem.Comment: Accepted in IEEE GLOBECOM 2017, Singapore, 4-8 Dec. 201
    • …
    corecore