4,997 research outputs found

    Interference Minimization in Asymmetric Sensor Networks

    Full text link
    A fundamental problem in wireless sensor networks is to connect a given set of sensors while minimizing the \emph{receiver interference}. This is modeled as follows: each sensor node corresponds to a point in Rd\mathbb{R}^d and each \emph{transmission range} corresponds to a ball. The receiver interference of a sensor node is defined as the number of transmission ranges it lies in. Our goal is to choose transmission radii that minimize the maximum interference while maintaining a strongly connected asymmetric communication graph. For the two-dimensional case, we show that it is NP-complete to decide whether one can achieve a receiver interference of at most 55. In the one-dimensional case, we prove that there are optimal solutions with nontrivial structural properties. These properties can be exploited to obtain an exact algorithm that runs in quasi-polynomial time. This generalizes a result by Tan et al. to the asymmetric case.Comment: 15 pages, 5 figure

    On interference among moving sensors and related problems

    Full text link
    We show that for any set of nn points moving along "simple" trajectories (i.e., each coordinate is described with a polynomial of bounded degree) in d\Re^d and any parameter 2kn2 \le k \le n, one can select a fixed non-empty subset of the points of size O(klogk)O(k \log k), such that the Voronoi diagram of this subset is "balanced" at any given time (i.e., it contains O(n/k)O(n/k) points per cell). We also show that the bound O(klogk)O(k \log k) is near optimal even for the one dimensional case in which points move linearly in time. As applications, we show that one can assign communication radii to the sensors of a network of nn moving sensors so that at any given time their interference is O(nlogn)O(\sqrt{n\log n}). We also show some results in kinetic approximate range counting and kinetic discrepancy. In order to obtain these results, we extend well-known results from ε\varepsilon-net theory to kinetic environments

    ptp++: A Precision Time Protocol Simulation Model for OMNeT++ / INET

    Get PDF
    Precise time synchronization is expected to play a key role in emerging distributed and real-time applications such as the smart grid and Internet of Things (IoT) based applications. The Precision Time Protocol (PTP) is currently viewed as one of the main synchronization solutions over a packet-switched network, which supports microsecond synchronization accuracy. In this paper, we present a PTP simulation model for OMNeT++ INET, which allows to investigate the synchronization accuracy under different network configurations and conditions. To show some illustrative simulation results using the developed module, we investigate on the network load fluctuations and their impacts on the PTP performance by considering a network with class-based quality-of-service (QoS) support. The simulation results show that the network load significantly affects the network delay symmetry, and investigate a new technique called class probing to improve the PTP accuracy and mitigate the load fluctuation effects.Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche (Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich, Switzerland, September 3-4, 201
    corecore