87 research outputs found

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Joint Interference Management in Ultra-Dense Small Cell Networks:A Multi-Domain Coordination Perspective

    Get PDF
    Extensive deployment of heterogeneous small cells in cellular networks results in ultra-dense small cell networks (USNs). USNs have been established as one of the vital networking architectures in the 5G to expand system capacity and augment network coverage. However, intensive deployment of cells results in a complex interference problem. In this paper, we propose a distributed multi-domain interference management scheme among cooperative small cells. The proposed scheme mitigates the interference while optimizing the overall network utility. Additionally, we jointly investigate OFDMA scheduling, TDMA scheduling, interference alignment (IA), and power control. We model small cells’ coordination behavior as an overlapping coalition formation game (OCFG). In this game, each base station can make an autonomous decision and participate in more than one coalition to perform IA and suppress intra-coalition interference. To achieve this goal, we propose a distributed joint interference management (JIM) algorithm. The proposed algorithm allows each small cell base station to self-organize and interact into a stable overlapping coalition structure and reduce interference gradually from multi-domain, thus achieving an optimal tradeoff between costs and benefits. Compared with existing approaches, the proposed JIM algorithm provides appreciable performance improvement in terms of total throughput, which is demonstrated by simulation results

    Atomicity and non-anonymity in population-like games for the energy efficiency of hybrid-power HetNets

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the user–base station (BS) association problem is addressed to reduce grid consumption in heterogeneous cellular networks (HetNets) powered by hybrid energy sources (grid and renewable energy). The paper proposes a novel distributed control scheme inspired by population games and designed considering both atomicity and non-anonymity – i.e., describing the individual decisions of each agent. The controller performance is considered from an energy–efficiency perspective, which requires the guarantee of appropriate qualityof-service (QoS) levels according to renewable energy availability. The efficiency of the proposed scheme is compared with other heuristic and optimal alternatives in two simulation scenarios. Simulation results show that the proposed approach inspired by population games reduces grid consumption by 12% when compared to the traditional best-signal-level association policy.Peer ReviewedPostprint (author's final draft
    • …
    corecore