339 research outputs found

    Interference analysis for optical wireless communications in Network-on-Chip (NoC) scenarios

    Get PDF
    Optical wireless (OW) communications, besides being of great interest for indoor and outdoor applications, have been recently proposed as a powerful alternative to the existing wired and wireless radio frequency (RF) interconnects in network-on-chips (NoCs). Design and analysis of networks with OW links require a careful investigation of cross-link interference, which impacts considerably the efficiency of systems that reuse the same channel for multiple transmissions. Yet, there is no comprehensive analysis of interference for OW NoCs, and the analyses of crosstalk in optical waveguide communications usually rely on synchronous data transmissions. A novel framework for the analysis of on-chip OW communications in the presence of cross-link cochannel interference and noise is proposed, where asynchronous data transmissions are considered. Self-beating of interfering signals is also considered, which was often neglected in previous literature. The bit error probability (BEP) for arbitrary number of interfering sources is derived as a function of signal-to-noise ratio (SNR), interference powers, detection threshold and pulse shaping, using both exact and approximation methods. The proposed analysis can be applied to both noise- and interference-limited cases, and enables a system designer to evaluate reuse distance between links that share the same optical carrier for simultaneous communication in NoCs

    Multi-level analysis of on-chip optical wireless links

    Get PDF
    Networks-on-chip are being regarded as a promising solution to meet the on-going requirement for higher and higher computation capacity. In view of future kilo-cores architectures, electrical wired connections are likely to become inefficient and alternative technologies are being widely investigated. Wireless communications on chip may be therefore leveraged to overcome the bottleneck of physical interconnections. This work deals with wireless networks-on-chip at optical frequencies, which can simplify the network layout and reduce the communication latency, easing the antenna on-chip integration process at the same time. On the other end, optical wireless communication on-chip can be limited by the heavy propagation losses and the possible cross-link interference. Assessment of the optical wireless network in terms of bit error probability and maximum communication range is here investigated through a multi-level approach. Manifold aspects, concurring to the final system performance, are simultaneously taken into account, like the antenna radiation properties, the data-rate of the core-to core communication, the geometrical and electromagnetic layout of the chip and the noise and interference level. Simulations results suggest that communication up to some hundreds of ÎĽm can be pursued provided that the antenna design and/or the target data-rate are carefully tailored to the actual layout of the chip

    Multi-level analysis of on-chip optical wireless links

    Get PDF
    Networks-on-chip are being regarded as a promising solution to meet the on-going requirement for higher and higher computation capacity. In view of future kilo-cores architectures, electrical wired connections are likely to become inefficient and alternative technologies are being widely investigated. Wireless communications on chip may be therefore leveraged to overcome the bottleneck of physical interconnections. This work deals with wireless networks-on-chip at optical frequencies, which can simplify the network layout and reduce the communication latency, easing the antenna on-chip integration process at the same time. On the other end, optical wireless communication on-chip can be limited by the heavy propagation losses and the possible cross-link interference. Assessment of the optical wireless network in terms of bit error probability and maximum communication range is here investigated through a multi-level approach. Manifold aspects, concurring to the final system performance, are simultaneously taken into account, like the antenna radiation properties, the data-rate of the core-to core communication, the geometrical and electromagnetic layout of the chip and the noise and interference level. Simulations results suggest that communication up to some hundreds of \u3bcm can be pursued provided that the antenna design and/or the target data-rate are carefully tailored to the actual layout of the chip

    Adaptive code division multiple access protocol for wireless network-on-chip architectures

    Get PDF
    Massive levels of integration following Moore\u27s Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn\u27t need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol outperformed the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. Significant gains were observed in packet energy dissipation and bandwidth even with scaling the system to higher number of cores. Non-uniform traffic simulations showed that the proposed CDMA-WiNoC was consistent in bandwidth across all traffic patterns. It is also shown that the CDMA based MAC scheme does not introduce additional reliability concerns in data transfer over the on-chip wireless interconnects

    Collective Communication Patterns Using Time-Reversal Terahertz Links at the Chip Scale

    Full text link
    Wireless communications in the terahertz band have been recently proposed as complement to conventional wired interconnects within computing packages. Such environments are typically highly reverberant, hence showing long channel impulse responses and severely limiting the achievable rates. Fortunately, this communications scenario is static and can be pre-characterized, which opens the door to techniques such as time reversal. Time reversal acts a spatial matched filter and has a spatiotemporal focusing effect, which allows not only to increase the achievable symbol rates, but also to create multiple spatial channels. In this paper, the multi-user capability of time reversal is explored in the context of wireless communications in the terahertz band within a computing package. Full-wave simulations are carried out to validate the approach, whereas modulation streams are simulated to evaluate the error rate as a function of the transmitted power, symbol rate, and number of simultaneous transmissions

    Security of Electrical, Optical and Wireless On-Chip Interconnects: A Survey

    Full text link
    The advancement of manufacturing technologies has enabled the integration of more intellectual property (IP) cores on the same system-on-chip (SoC). Scalable and high throughput on-chip communication architecture has become a vital component in today's SoCs. Diverse technologies such as electrical, wireless, optical, and hybrid are available for on-chip communication with different architectures supporting them. Security of the on-chip communication is crucial because exploiting any vulnerability would be a goldmine for an attacker. In this survey, we provide a comprehensive review of threat models, attacks, and countermeasures over diverse on-chip communication technologies as well as sophisticated architectures.Comment: 41 pages, 24 figures, 4 table

    Design Trade-offs for reliable On-Chip Wireless Interconnects in NoC Platforms

    Get PDF
    The massive levels of integration following Moore\u27s Law making modern multi-core chips prevail in various domains ranging from scientific applications to bioinformatics applications for consumer electronics. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn\u27t need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. An efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. A token-passing protocol proposed to grant access of the wireless channel to competing transmitters. This limits the number of simultaneous users of the communication channel to one although multiple wireless hubs are deployed over the chip. In principle, a Frequency Division Multiple Access (FDMA) based medium access scheme would improve the utilization of the wireless resources. However, this requires design of multiple very precise, high frequency transceivers in non-overlapping frequency channels. Therefore, the scalability of this approach is limited by the state-of-the-art in transceiver design. The Code Division Multiple Access (CDMA) enables multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. The CDMA protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. The CDMA based MAC protocol outperforms the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. However, the reliability of CDMA based wireless NoC\u27s is limited, as the probability of error is eminent due to synchronization delays at the receiver. The thesis proposes the use of an advanced filter which improves the performance and also reduces the error due to synchronization delays. This thesis also proposes investigation of various channel modulation schemes on token passing wireless NoC\u27s to examine the performance and reliability of the system. The trade-off between performance and energy are established for the various conditions. The results are obtained using a modified cycle accurate simulator

    Architecting a One-to-many Traffic-Aware and Secure Millimeter-Wave Wireless Network-in-Package Interconnect for Multichip Systems

    Get PDF
    With the aggressive scaling of device geometries, the yield of complex Multi Core Single Chip(MCSC) systems with many cores will decrease due to the higher probability of manufacturing defects especially, in dies with a large area. Disintegration of large System-on-Chips(SoCs) into smaller chips called chiplets has shown to improve the yield and cost of complex systems. Therefore, platform-based computing modules such as embedded systems and micro-servers have already adopted Multi Core Multi Chip (MCMC) architectures overMCSC architectures. Due to the scaling of memory intensive parallel applications in such systems, data is more likely to be shared among various cores residing in different chips resulting in a significant increase in chip-to-chip traffic, especially one-to-many traffic. This one-to-many traffic is originated mainly to maintain cache-coherence between many cores residing in multiple chips. Besides, one-to-many traffics are also exploited by many parallel programming models, system-level synchronization mechanisms, and control signals. How-ever, state-of-the-art Network-on-Chip (NoC)-based wired interconnection architectures do not provide enough support as they handle such one-to-many traffic as multiple unicast trafficusing a multi-hop MCMC communication fabric. As a result, even a small portion of such one-to-many traffic can significantly reduce system performance as traditional NoC-basedinterconnect cannot mask the high latency and energy consumption caused by chip-to-chipwired I/Os. Moreover, with the increase in memory intensive applications and scaling of MCMC systems, traditional NoC-based wired interconnects fail to provide a scalable inter-connection solution required to support the increased cache-coherence and synchronization generated one-to-many traffic in future MCMC-based High-Performance Computing (HPC) nodes. Therefore, these computation and memory intensive MCMC systems need an energy-efficient, low latency, and scalable one-to-many (broadcast/multicast) traffic-aware interconnection infrastructure to ensure high-performance. Research in recent years has shown that Wireless Network-in-Package (WiNiP) architectures with CMOS compatible Millimeter-Wave (mm-wave) transceivers can provide a scalable, low latency, and energy-efficient interconnect solution for on and off-chip communication. In this dissertation, a one-to-many traffic-aware WiNiP interconnection architecture with a starvation-free hybrid Medium Access Control (MAC), an asymmetric topology, and a novel flow control has been proposed. The different components of the proposed architecture are individually one-to-many traffic-aware and as a system, they collaborate with each other to provide required support for one-to-many traffic communication in a MCMC environment. It has been shown that such interconnection architecture can reduce energy consumption and average packet latency by 46.96% and 47.08% respectively for MCMC systems. Despite providing performance enhancements, wireless channel, being an unguided medium, is vulnerable to various security attacks such as jamming induced Denial-of-Service (DoS), eavesdropping, and spoofing. Further, to minimize the time-to-market and design costs, modern SoCs often use Third Party IPs (3PIPs) from untrusted organizations. An adversary either at the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an SoC. Such malicious circuitry is known as a Hardware Trojan (HT). An HTplanted in the WiNiP from a vulnerable design or manufacturing process can compromise a Wireless Interface (WI) to enable illegitimate transmission through the infected WI resulting in a potential DoS attack for other WIs in the MCMC system. Moreover, HTs can be used for various other malicious purposes, including battery exhaustion, functionality subversion, and information leakage. This information when leaked to a malicious external attackercan reveals important information regarding the application suites running on the system, thereby compromising the user profile. To address persistent jamming-based DoS attack in WiNiP, in this dissertation, a secure WiNiP interconnection architecture for MCMC systems has been proposed that re-uses the one-to-many traffic-aware MAC and existing Design for Testability (DFT) hardware along with Machine Learning (ML) approach. Furthermore, a novel Simulated Annealing (SA)-based routing obfuscation mechanism was also proposed toprotect against an HT-assisted novel traffic analysis attack. Simulation results show that,the ML classifiers can achieve an accuracy of 99.87% for DoS attack detection while SA-basedrouting obfuscation could reduce application detection accuracy to only 15% for HT-assistedtraffic analysis attack and hence, secure the WiNiP fabric from age-old and emerging attacks
    • …
    corecore