1,707 research outputs found

    Robust Lattice Alignment for K-user MIMO Interference Channels with Imperfect Channel Knowledge

    Full text link
    In this paper, we consider a robust lattice alignment design for K-user quasi-static MIMO interference channels with imperfect channel knowledge. With random Gaussian inputs, the conventional interference alignment (IA) method has the feasibility problem when the channel is quasi-static. On the other hand, structured lattices can create structured interference as opposed to the random interference caused by random Gaussian symbols. The structured interference space can be exploited to transmit the desired signals over the gaps. However, the existing alignment methods on the lattice codes for quasi-static channels either require infinite SNR or symmetric interference channel coefficients. Furthermore, perfect channel state information (CSI) is required for these alignment methods, which is difficult to achieve in practice. In this paper, we propose a robust lattice alignment method for quasi-static MIMO interference channels with imperfect CSI at all SNR regimes, and a two-stage decoding algorithm to decode the desired signal from the structured interference space. We derive the achievable data rate based on the proposed robust lattice alignment method, where the design of the precoders, decorrelators, scaling coefficients and interference quantization coefficients is jointly formulated as a mixed integer and continuous optimization problem. The effect of imperfect CSI is also accommodated in the optimization formulation, and hence the derived solution is robust to imperfect CSI. We also design a low complex iterative optimization algorithm for our robust lattice alignment method by using the existing iterative IA algorithm that was designed for the conventional IA method. Numerical results verify the advantages of the proposed robust lattice alignment method

    Advanced interference management techniques for future wireless networks

    Get PDF
    In this thesis, we design advanced interference management techniques for future wireless networks under the availability of perfect and imperfect channel state information (CSI). We do so by considering a generalized imperfect CSI model where the variance of the channel estimation error depends on the signal-to-noise ratio (SNR). First, we analyze the performance of standard linear precoders, namely channel inversion (CI) and regularized CI (RCI), in downlink of cellular networks by deriving the received signal-to-interference-plus-noise ratio (SINR) of each user subject to both perfect and imperfect CSI. In this case, novel bounds on the asymptotic performance of linear precoders are derived, which determine howmuch accurate CSI should be to achieve a certain quality of service (QoS). By relying on the knowledge of error variance in advance, we propose an adaptive RCI technique to further improve the performance of standard RCI subject to CSI mismatch. We further consider transmit-power efficient design of wireless cellular networks. We propose two novel linear precoding techniques which can notably decrease the deployed power at transmit side in order to secure the same average output SINR at each user compared to standard linear precoders like CI and RCI. We also address a more sophisticated interference scenario, i.e., wireless interference networks, wherein each of the K transmitters communicates with its corresponding receiver while causing interference to the others. The most representative interference management technique in this case is interference alignment (IA). Unlike standard techniques like time division multiple access (TDMA) and frequency division multiple access (FDMA) where the achievable degrees of freedom (DoF) is one, with IA, the achievable DoF scales up with the number of users. Therefore, in this thesis, we quantify the asymptotic performance of IA under a generalized CSI mismatch model by deriving novel bounds on asymptotic mean loss in sum rate and the achievable DoF. We also propose novel least squares (LS) and minimum mean square error (MMSE) based IA techniques which are able to outperform standard IA schemes under perfect and imperfect CSI. Furthermore, we consider the implementation of IA in coordinated networks which enable us to decrease the number of deployed antennas in order to secure the same achievable DoF compared to standard IA techniques

    Advanced interference management techniques for future generation cellular networks

    Get PDF
    The demand for mobile wireless network resources is constantly on the rise, pushing for new communication technologies that are able to support unprecedented rates. In this thesis we address the issue by considering advanced interference management techniques to exploit the available resources more efficiently under relaxed channel state information (CSI) assumptions. While the initial studies focus on current half-duplex (HD) technology, we then move on to full-duplex (FD) communication due to its inherent potential to improve spectral efficiency. Work in this thesis is divided into four main parts as follows. In the first part, we focus on the two-cell two-user-per-cell interference broadcast channel (IBC) and consider the use of topological interference management (TIM) to manage inter-cell interference in an alternating connectivity scenario. Within this context we derive novel outer bounds on the achievable degrees of freedom (DoF) for different system configurations, namely, single-input single-output (SISO), multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) systems. Additionally, we propose new transmission schemes based on joint coding across states that exploit global topological information at the transmitter to increase achievable DoF. Results show that when a single state has a probability of occurrence equal to one, the derived bounds are tight with up to a twofold increase in achievable DoF for the best case scenario. Additionally, when all alternating connectivity states are equiprobable: the SISO system gains 11/16 DoF, achieving 96:4% of the derived outer bound; while the MISO/MIMO scenario has a gain of 1/2 DoF, achieving the outer bound itself. In the second part, we consider a general G-cell K-user-per-cell MIMO IBC and analyse the performance of linear interference alignment (IA) under imperfect CSI. Having imperfect channel knowledge impacts the effectiveness of the IA beamformers, and leads to a significant amount of residual leakage interference. Understanding the extent of this impact is a fundamental step towards obtaining a performance characterisation that is more relevant to practical scenarios. The CSI error model used is highly versatile, allowing the error to be treated either as a function of the signal-to-noise ratio (SNR) or as independent of it. Based on this error model, we derive a novel upper bound on the asymptotic mean sum rate loss and quantify the DoF loss due to imperfect CSI. Furthermore, we propose a new version of the maximum signal-to-interference plus noise ratio (Max-SINR) algorithm which takes into account statistical knowledge of the CSI error in order to improve performance over the naive counterpart in the presence of CSI mismatch. In the third part, we shift our attention to FD systems and consider weighted sum rate (WSR) maximisation for multi-user multi-cell networks where FD base-stations (BSs) communicate with HD downlink (DL) and uplink (UL) users. Since WSR problems are non-convex we transform them into weighted minimum mean squared error (WMMSE) ones that are proven to converge. Our analysis is first carried out for perfect CSI and then expanded to cater for imperfect CSI under two types of error models, namely, a norm-bounded error model and a stochastic error model. Additionally, we propose an algorithm that maximises the total DL rate subject to each UL user achieving a desired target rate. Results show that the use of FD BSs provides significant gains in achievable rate over the use of HD BSs, with a gain of 1:92 for the best case scenario under perfect CSI. They also demonstrate the robust performance of the imperfect CSI designs, and confirm that FD outperforms HD even under CSI mismatch conditions. Finally, the fourth part considers the use of linear IA to manage interference in a multi-user multi-cell network with FD BSs and HD users under imperfect CSI. The number of interference links present in such a system is considerably greater than that present in the HD network counterpart; thus, understanding the impact of residual leakage interference on performance is even more important for FD enabled networks. Using the same generalised CSI error model from the second part, we study the performance of IA by characterising the sum rate and DoF losses incurred due to imperfect CSI. Additionally, we propose two novel IA algorithms applicable to this network; the first one is based on minimising the mean squared error (MMSE), while the second is based on Max-SINR. The proposed algorithms exploit statistical knowledge of the CSI error variance in order to improve performance. Moreover, they are shown to be equivalent under certain conditions, even though the MMSE based one has lower computational complexity. Furthermore for the multi-cell case, we also derive the proper condition for IA feasibility

    MIMO Interference Alignment Over Correlated Channels with Imperfect CSI

    Full text link
    Interference alignment (IA), given uncorrelated channel components and perfect channel state information, obtains the maximum degrees of freedom in an interference channel. Little is known, however, about how the sum rate of IA behaves at finite transmit power, with imperfect channel state information, or antenna correlation. This paper provides an approximate closed-form signal-to-interference-plus-noise-ratio (SINR) expression for IA over multiple-input-multiple-output (MIMO) channels with imperfect channel state information and transmit antenna correlation. Assuming linear processing at the transmitters and zero-forcing receivers, random matrix theory tools are utilized to derive an approximation for the post-processing SINR distribution of each stream for each user. Perfect channel knowledge and i.i.d. channel coefficients constitute special cases. This SINR distribution not only allows easy calculation of useful performance metrics like sum rate and symbol error rate, but also permits a realistic comparison of IA with other transmission techniques. More specifically, IA is compared with spatial multiplexing and beamforming and it is shown that IA may not be optimal for some performance criteria.Comment: 21 pages, 7 figures, submitted to IEEE Transactions on Signal Processin

    The DoF of Network MIMO with Backhaul Delays

    Full text link
    We consider the problem of downlink precoding for Network (multi-cell) MIMO networks where Transmitters (TXs) are provided with imperfect Channel State Information (CSI). Specifically, each TX receives a delayed channel estimate with the delay being specific to each channel component. This model is particularly adapted to the scenarios where a user feeds back its CSI to its serving base only as it is envisioned in future LTE networks. We analyze the impact of the delay during the backhaul-based CSI exchange on the rate performance achieved by Network MIMO. We highlight how delay can dramatically degrade system performance if existing precoding methods are to be used. We propose an alternative robust beamforming strategy which achieves the maximal performance, in DoF sense. We verify by simulations that the theoretical DoF improvement translates into a performance increase at finite Signal-to-Noise Ratio (SNR) as well
    • …
    corecore