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Abstract

The demand for mobile wireless network resources is constantly on the rise, push-
ing for new communication technologies that are able to support unprecedented
rates. In this thesis we address the issue by considering advanced interference
management techniques to exploit the available resources more efficiently under
relaxed channel state information (CSI) assumptions. While the initial studies
focus on current half-duplex (HD) technology, we then move on to full-duplex
(FD) communication due to its inherent potential to improve spectral efficiency.
Work in this thesis is divided into four main parts as follows.

In the first part, we focus on the two-cell two-user-per-cell interference broad-
cast channel (IBC) and consider the use of topological interference management
(TIM) to manage inter-cell interference in an alternating connectivity scenario.
Within this context we derive novel outer bounds on the achievable degrees of free-
dom (DoF) for different system configurations, namely, single-input single-output
(SISO), multiple-input single-output (MISO) and multiple-input multiple-output
(MIMO) systems. Additionally, we propose new transmission schemes based on
joint coding across states that exploit global topological information at the trans-
mitter to increase achievable DoF. Results show that when a single state has a
probability of occurrence equal to one, the derived bounds are tight with up to
a twofold increase in achievable DoF for the best case scenario. Additionally,
when all alternating connectivity states are equiprobable: the SISO system gains
11
16

DoF, achieving 96.4% of the derived outer bound; while the MISO/MIMO
scenario has a gain of 1

2
DoF, achieving the outer bound itself.

In the second part, we consider a general G-cell K-user-per-cell MIMO IBC
and analyse the performance of linear interference alignment (IA) under imperfect
CSI. Having imperfect channel knowledge impacts the effectiveness of the IA
beamformers, and leads to a significant amount of residual leakage interference.
Understanding the extent of this impact is a fundamental step towards obtaining
a performance characterisation that is more relevant to practical scenarios. The
CSI error model used is highly versatile, allowing the error to be treated either
as a function of the signal-to-noise ratio (SNR) or as independent of it. Based
on this error model, we derive a novel upper bound on the asymptotic mean
sum rate loss and quantify the DoF loss due to imperfect CSI. Furthermore,
we propose a new version of the maximum signal-to-interference plus noise ratio
(Max-SINR) algorithm which takes into account statistical knowledge of the CSI
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error in order to improve performance over the naive counterpart in the presence
of CSI mismatch.

In the third part, we shift our attention to FD systems and consider weighted
sum rate (WSR) maximisation for multi-user multi-cell networks where FD base-
stations (BSs) communicate with HD downlink (DL) and uplink (UL) users. Since
WSR problems are non-convex we transform them into weighted minimum mean
squared error (WMMSE) ones that are proven to converge. Our analysis is first
carried out for perfect CSI and then expanded to cater for imperfect CSI under
two types of error models, namely, a norm-bounded error model and a stochastic
error model. Additionally, we propose an algorithm that maximises the total DL
rate subject to each UL user achieving a desired target rate. Results show that
the use of FD BSs provides significant gains in achievable rate over the use of HD
BSs, with a gain of 1.92 for the best case scenario under perfect CSI. They also
demonstrate the robust performance of the imperfect CSI designs, and confirm
that FD outperforms HD even under CSI mismatch conditions.

Finally, the fourth part considers the use of linear IA to manage interference
in a multi-user multi-cell network with FD BSs and HD users under imperfect
CSI. The number of interference links present in such a system is considerably
greater than that present in the HD network counterpart; thus, understanding
the impact of residual leakage interference on performance is even more important
for FD enabled networks. Using the same generalised CSI error model from the
second part, we study the performance of IA by characterising the sum rate and
DoF losses incurred due to imperfect CSI. Additionally, we propose two novel IA
algorithms applicable to this network; the first one is based on minimising the
mean squared error (MMSE), while the second is based on Max-SINR. The pro-
posed algorithms exploit statistical knowledge of the CSI error variance in order
to improve performance. Moreover, they are shown to be equivalent under certain
conditions, even though the MMSE based one has lower computational complex-
ity. Furthermore for the multi-cell case, we also derive the proper condition for
IA feasibility.
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Lay Summary

Having constant access to mobile data is gaining significant importance in our
day-to-day lives, with mobile devices and the services they provide us with chang-
ing many aspects, from the way we contact each other, to the way we consume
video or even process payments. However, wireless network resources are scarce
and need to be allocated conservatively. This has pushed the wireless commu-
nications research community to look into new technologies that will be able to
support the increasing rate demands of future generation cellular networks. In
this thesis we address the issue by focusing on ways that allow us to exploit the
available resources in a more efficient manner.

One major concern in wireless networks is interference. Mobile devices com-
municating in the same time/frequency resource, can conflict with each other re-
sulting in unreliable communication. The traditional way to manage interference
is to simply avoid it by allocating orthogonal resources. However, recent infor-
mation theory results show that by exploiting knowledge of the channel state
information (CSI), more advanced interference management techniques can be
applied in order to boost wireless network capacity. Here, we focus on advanced
interference management solutions that allow us to serve multiple users across
multiple cells concurrently. This is done under relaxed CSI conditions, where the
channel information is not assumed to be perfect, in order to study scenarios that
are more easily relatable to practical situations.

The first half of the thesis deals with half-duplex (HD) systems where uplink
and downlink communication are separate. Within this context we consider a
two-cell two-user-per-cell network with alternating connectivity where transmit-
ters only have topological knowledge of the global channel links; we characterise
the potential gains and devise new transmission schemes to achieve them. Next,
we consider a more general G-cell K-user-per-cell network and apply a new in-
terference management technique, called interference alignment (IA), to manage
interference under imperfect CSI. We characterise the capacity losses incurred
due to the CSI mismatch, and propose a novel IA algorithm that exploits statis-
tical knowledge of the error in order to improve performance over the standard
version.

In the second half of the thesis we consider full-duplex (FD) communica-
tion. In FD systems, uplink and downlink communication take place in the same
time/frequency resource, thereby providing us with potential to double spectral
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efficiency. While this technology is not used in current networks, it is a highly
promising candidate for future generation ones. Firstly, we consider weighted
sum rate maximisation problems for a multi-cell multi-user network with FD
base-stations (BSs) and HD users, under both perfect and imperfect CSI. Next,
we consider the use of linear IA within the same setting, and quantify the losses
incurred due to imperfect CSI, while also proposing novel IA algorithms applica-
ble to this scenario.
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Chapter 1

Introduction

1.1 Background

Cellular networks and the constant connectivity they provide us with, have en-

tered a period of ever increasing importance in our daily lives, having a positive

ripple effect on the economy and society. This has sparked a huge growth in

the demand for mobile data services, causing a significant shift from the origi-

nal voice-centric, circuit-switched, centrally optimised networks to data-centric,

packet-switched, organically deployed ones in an effort to cope with the higher

rate requirements.

Cisco’s capacity forecast, depicted in Fig. 1.1, estimates an eightfold increase

in mobile data traffic between 2015 and 2020. The expected compound annual

growth rate over this period is 53%, with mobile data traffic increasing from

3.7 exabytes per month in 2015 to 30.6 exabytes per month in 2020. By 2020

projections estimate there will be 11.6 billion mobile connected devices for a

global population of 7.8 billion, corresponding to approximately 1.5 devices per

person. The increase in the number of mobile devices, along with the rise in

mobile data requirements is mainly due to new trends in device usage. Fig. 1.2

shows the percentage of mobile data traffic per year distributed over four main

categories. In particular it can be noticed that mobile video traffic, which for

2015 corresponded to 55% (2 exabytes per month) of the total mobile traffic, will

grow to contribute 75% (20 exabytes per month) by 2020. The proliferation of

high-end mobile devices has increased the propensity for users to consume higher

bandwidth content and use data hungry applications. Therefore, the wireless
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Figure 1.1: Cisco global mobile data traffic forecast [1].
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Figure 1.2: Distribution of mobile data traffic over different categories [1].

communications research community is focused on finding new ways to cater for

the ever increasing data rate demands.

Cellular networks transmit information over radio frequency (RF) bands that

can be characterised by the carrier frequency, bandwidth, propagation properties

and interference conditions. The RF spectrum is a scarce and highly valuable

resource, with usage that is strictly regulated worldwide by national laws coordi-

nated by the International Telecommunication Union (ITU). Such regulation is

2
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necessary in order to ensure that different systems can coexist without interfer-

ing with each other, however it introduces significantly rigid usage constraints.

Moreover, opportunities to obtain exclusive rights to suitable frequency bands

occur very rarely and require high expenditure. Therefore, utilising the available

spectrum as efficiently as possible is a crucial step towards being able to meet the

increasing data rate requirements in future generation cellular networks. This

thesis aims to contribute to this effort by proposing novel solutions for advanced

interference management. While the first half considers current half-duplex (HD)

systems, in the second half attention shifts to full-duplex (FD) ones, since the use

of FD nodes has inherent potential to significantly increase spectral efficiency.

1.2 Contributions

Recent information-theoretic results show that it is possible to use the available

spectrum in a more efficient manner than the currently employed orthogonal-

isation based approaches. Such results indicate that the maximum achievable

capacity is significantly higher than conventionally presumed, however they have

generally been obtained under the assumption of perfect channel state informa-

tion (CSI) at the transmitter and the receiver. The CSI acquirement process

requires dedicated system resources, causing overheads and rendering it unable

to provide perfect and instantaneous CSI delivery [2]. Recognising the signifi-

cance of this issue has driven the wireless communications research community

to focus on scenarios where the CSI assumptions are relaxed, in order to obtain

results that are more easily relatable to practical settings. In this thesis we fo-

cus on the relaxed CSI context, and consider interference management solutions

under such conditions. The main contributions are listed as follows.

• We study the degrees of freedom (DoF) of a two-cell two-user-per-cell in-

terference broadcast channel (IBC) with alternating inter-cell connectivity

and global topological CSI at the transmitter (CSIT), deriving novel DoF

outer bounds for a variety of system configurations, namely, single-input

single-output (SISO), multiple-input single-output (MISO) and multiple-

input multiple-output (MIMO) systems. Additionally, we propose new

transmission schemes based on joint coding across states in order to ap-

proach the derived bounds. Results show that DoF higher than those con-

ventionally obtained without global topological information are achievable,
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with up to twofold increase for the best case scenario, indicating that even

such a minimal level of global CSIT is still highly useful.

• We consider the performance of linear interference alignment (IA) in the

general G-cell K-user-per-cell MIMO IBC under imperfect CSI, using a gen-

eralised CSI msimatch model that allows us to treat the CSI error variance

either as a function of the signal-to-noise ratio (SNR) or as independent of

it. Given this error model, we derive an upper bound on the asymptotic

mean loss in sum rate and quantify the achievable DoF with imperfect CSI.

Results show that when the error variance and SNR are inversely propor-

tional, full DoF can be achieved and the rate loss is finite and upper bounded

by a derived value dependent on the system configuration and the CSI error

parameters. When the error variance scales with SNR to the power of a

negative proper fraction, the DoF loss is quantified in terms of the error

parameters and the asymptotic sum rate loss is unbounded. Moreover, we

propose a novel version of the maximum signal-to-interference plus noise

ratio (Max-SINR) algorithm that exploits statistical knowledge of the CSI

error. This algorithm provides significant performance improvements over

the naive version, without incurring additional computational costs.

• We design beamformers for weighted sum rate (WSR) maximisation in a

multi-user multi-cell MIMO scenario with FD base-stations (BSs) and HD

downlink (DL) and uplink (UL) users. Since WSR problems are non-convex,

we exploit the relationship between rate and mean squared error (MSE) to

propose low complexity weighted minimum mean squared error (WMMSE)

alternating optimisation algorithms. While the initial design assumes per-

fect CSI, we also cater for imperfect CSI under two different models, namely,

a norm-bounded error model and a stochastic error model. Results show

that rates achieved in FD mode are significantly higher than those achieved

by the baseline HD schemes for low to intermediate distortion levels, even

under imperfect CSI conditions. Additionally, we extend our original WSR

problem to one which maximises the total DL rate subject to each UL user

achieving a desired target rate.

• We consider the use of linear IA to manage interference in a multi-user

multi-cell MIMO network with FD BSs and HD users, under imperfect

CSI. Within this context, we derive an upper bound on the asymptotic

4



1.3. Thesis overview

mean sum rate loss and quantify the DoF loss due to CSI mismatch. Re-

sults show that the way the error scales with SNR affects the general per-

formance trend significantly, with both losses going to zero under certain

conditions. Additionally, we propose two linear IA algorithms applicable to

the FD scenario under consideration; the first one is based on minimising

the mean squared error (MMSE), while the second is a Max-SINR based

solution. Both algorithms exploit statistical knowledge of the CSI error to

improve performance under imperfect CSI and are shown to result in iden-

tical beamformers under certain conditions, even though the MMSE one is

less computationally complex. Furthermore, for the multi-cell case we also

derive the proper condition for IA feasibility.

1.3 Thesis overview

The rest of this thesis is organised as follows.

• Chapter 2 provides a brief overview of the fundamental wireless commu-

nications concepts that underpin the work presented in this thesis, includ-

ing: MIMO systems, different interference management approaches and FD

communication.

• In Chapter 3 we focus on the two-cell two-user-per-cell IBC and consider

the use of topological interference management (TIM) in order to manage

inter-cell interference under an alternating connectivity scenario. Bounds

for the achievable DoF are derived for SISO, MISO and MIMO system

configurations. Additionally, we propose new transmission schemes based

on joint coding across states and demonstrate the DoF gains that can be

achieved by applying them.

• Chapter 4 focuses on the use of linear IA in the general HD MIMO IBC

under imperfect CSI. It provides a bound on the sum rate loss and quantifies

the DoF loss experienced due to the CSI mismatch. It also presents a novel

Max-SINR algorithm that takes into account statistical knowledge of the

CSI error to improve performance under imperfect CSI.

• Chapter 5 considers WSR problems for a multi-user multi-cell MIMO sce-

nario with FD BSs and HD users. It uses the rate to MSE relationship to
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propose solutions under: (a) perfect CSI, (b) a norm-bounded CSI error

model, and (c) a stochastic CSI error model. Additionally, it extends the

perfect CSI design to one which maximises the DL rate subject to a per UL

user rate constraint.

• Chapter 6 studies the use of linear IA in a multi-user multi-cell MIMO

scenario with FD BSs and HD users, and characterises the sum rate and

DoF losses incurred due to imperfect CSI. It also presents MMSE and Max-

SINR based IA algorithms applicable to this type of network; these take in

consideration the effect of CSI mismatch for added robustness.

• Finally, Chapter 7 provides a summary of the contributions and directions

for future work.
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Chapter 2

Overview of Wireless

Communications Concepts

2.1 Introduction

In this chapter, we provide a brief overview of the fundamental wireless commu-

nications concepts that underpin the work presented in the rest of this thesis.

First, we consider point-to-point MIMO systems, outlining their advantages and

characterising their capacity. Then, we move on to multi-user systems, introduc-

ing a variety of theoretical models that are used to capture different interference

aspects of practical communication scenarios. Next, our focus shifts to interfer-

ence management techniques, where we introduce the concepts of interference

alignment (IA) and topological interference management (TIM) which play an

important role in Chapters 3, 4 and 6. Finally, we consider FD communication,

which is relevant to Chapters 5 and 6, highlighting its characteristics, challenges

and the resulting interference scenario.

2.2 MIMO systems

The most basic form for a wireless communication link is a point-to-point one

where a single antenna transmitter communicates with a single antenna receiver.

Before reaching the receiver, the transmitted signal undergoes attenuation due to

fading. This can be classified into two general categories:

7
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• small-scale fading - due to the presence of reflectors and scatterers that

cause multiple versions of the transmitted signal to arrive at the receiver,

each one distorted in amplitude, phase and angle of arrival;

• large-scale fading - due to effects such as distance related attenuation and

shadowing by obstacles.

The effects of fading, along with interference (owing to the use of a shared

medium), are the most fundamental aspects of wireless communications [3]. By

relying on channel knowledge, transmit and receive beamforming can be applied

to mitigate their negative impact on the overall received signal. Additionally,

in recent years focus has shifted from single antenna nodes to ones equipped

with multiple antennas, as a means of further improving reliability and spectral

efficiency, due to the inherent ability of MIMO systems to address the issues

of fading and interference. Fig. 2.1 provides an illustration of a point-to-point

MIMO wireless link with M transmit antennas and N receive antennas.

. . . 

. . . 

M

2

1

Transmitter Receiver

N

2

1

Figure 2.1: MIMO point-to-point link with N transmit antennas and M receive
antennas.

The signal seen at the receiver in Fig. 2.1 can be expressed as

y = Hs + z
y1

y2

...

yN

 =


h1,1 h1,2 . . . h1,M

h2,1 h2,2 . . . h2,M

...
...

. . .
...

hN,1 hN,2 . . . hN,M




s1

s2

...

sM

+


z1

z2

...

zN

 (2.1)
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where yi for i = 1, . . . , N is the signal received at the ith antenna, sj for j =

1, . . . ,M is the signal transmitted by the jth antenna, hi,j is the channel from

the jth antenna at the transmitter to the ith antenna at the receiver, and zi for

i = 1, . . . , N is the noise seen at the ith receive antenna.

For a rich scattering environment, where there are a significant number of

reflectors and no dominant propagation along the line of sight path, the channel

matrix, H, can be represented using Rayleigh fading. A Rayleigh fading channel

is modelled as a statistical process with independent and identically distributed

(i.i.d) entries with zero mean and phase evenly distributed between 0 and 2π

radians, i.e.

hi,j ∼ N
(

0,
1

2

)
+
√
−1N

(
0,

1

2

)
. (2.2)

The noise vector, z, can be modelled as additive white Gaussian noise (AWGN),

with i.i.d. Gaussian random variable entries with zero mean and variance σ2, i.e.

zi ∼ N
(

0,
σ2

2

)
+
√
−1N

(
0,
σ2

2

)
. (2.3)

2.2.1 Advantages of MIMO

Compared to SISO systems, MIMO provides a number of advantages as follows

[3].

• Power gain: Via processing at the transmitter and the receiver, the average

received SNR can be increased. At the receiver side this can be done by

coherent combining of the received signals, while at the transmitter side it

can be achieved by allocating the transmit power to favour higher quality

links. These methods require knowledge of the CSI at the respective ends.

While CSI at the receiver is more easily realisable, CSI at the transmitter

is generally more difficult to obtain.

• Spatial diversity gain: Channel quality in wireless systems is subject to

random fluctuations because of fading; diversity can be exploited to com-

bat this issue. For SISO systems, only time or frequency diversity can be

exploited, owing to the one-to-one nature of the link. However, MIMO sys-

tems offer a new type of diversity known as spatial diversity, due to the
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presence of multiple channel links. Spatial diversity can be exploited at

both transmit and receive ends, with a maximal gain of M ×N .

• Interference suppression gain: In wireless networks co-channel interference

(CCI) arises due to frequency reuse. When multiple antenna nodes are de-

ployed, there is increased opportunity to differentiate between the desired

signal and CCI. This is done via beamforming, either at the transmitter, the

receiver or a combination of both, depending on the type of inference net-

work and the type of beamforming solution applied. Such methods require

knowledge of the desired signal’s path, and ideally also of the interferers’

paths.

• Spatial multiplexing gain: Having multiple transmit and receive anten-

nas provides extra spatial dimensions for communication, allowing for the

transmission of multiple independent data streams without using additional

power or bandwidth, i.e. it provides us with a spatial multiplexing gain,

also known as a DoF gain. At high SNR capacity scales linearly with DoF,

with the maximum achievable DoF being equivalent to min(M,N) for an

M ×N MIMO link.

The spatial multiplexing gain, along with the increased opportunity to suppress

interference, are the main defining features of MIMO systems, putting them at the

forefront for technologies that can help increase spectral efficiency. These aspects

underpin most of the work presented in this thesis, where the networks studied

generally involve communication between multiple antenna nodes in multi-user

networks.

2.2.2 Capacity of MIMO links

For a time-varying channel, the capacity of a MIMO link with N transmit and

M receive antennas with CSI at the receiver is given by

CMIMO = max
K:Tr(K)≤P

E
{

log2 det

(
IN +

1

σ2
HKHH

)}
(2.4)

where H is the channel, K is the covariance of the transmitted signal and P is

the maximum transmit power.
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Under a Rayleigh fading channel assumption, it can be shown that the optimal

covariance matrix is K = P
M

IM [3], i.e. equal power allocation is optimal. In such

cases, capacity can be represented as

CMIMO = E
{

log2 det

(
IN +

SNR

M
HHH

)}
. (2.5)

Defining d = min(M,N) and λ1 ≥ λ2 ≥ · · · ≥ λd as the ordered singular values

of H, the capacity can be further expressed as

CMIMO =
d∑
i=1

E
{

log2

(
1 +

SNR

M
λ2
i

)}
. (2.6)

Under a high SNR assumption this can be approximated as

CMIMO ≈ d log2

SNR

M
+

d∑
i=1

E
{

log2λ
2
i

}
. (2.7)

Additionally,
∑d

i=1 E {log2λ
2
i } =

∑max{M,N}
m=|M−N |+1 E {log2χ

2
2m} where χ2

2m is a χ-

square distributed random variable with 2m degrees of freedom. This allows

us to represent the sum capacity as

CMIMO ≈ d log2SNR + o(log2SNR) (2.8)

which shows a linear DoF gain of d in the rate pre-log factor, implying that full

DoF are attained. For a SISO scenario, the corresponding capacity expression is

CSISO ≈ log2SNR + o(log2SNR), where the rate pre-log factor of 1 represents the

maximum achievable DoF for SISO links.

2.3 Multi-user systems

Moving beyond the point-to-point MIMO link illustrated in Fig. 2.1, real-world

networks involve multiple receivers and transmitters that all need access to a

limited amount of resources, giving rise to interference. There are several the-

oretical models that capture separate aspects of such communication systems.

Two commonly studied models are the broadcast channel (BC) and the interfer-

ence channel (IC), both depicted in Fig. 2.2. For the BC, a single transmitter

wants to communicate with multiple users delivering a unique message to each.
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Figure 2.2: Broadcast channel and interference channel.
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Figure 2.3: Interference broadcast channel.

Therefore, both the desired signal and interference are received over the same

link, represented by the solid black arrows in Fig. 2.2(a). The IC consists of

multiple point-to-point links interfering with each other, therefore desired signals

and interference ones are received over separate links. This is reflected in the

IC depicted in Fig. 2.2(b), where solid black arrows represent desired links and

dashed black ones represent interference links.

A more complex network model is the interference broadcast channel (IBC),

which captures both types of interference experienced in the BC and the IC. This

consists of multiple cells that contain one transmitter and several receivers each,

where every receiver requires a unique message from the corresponding transmit-

ter. The IBC is depicted in Fig. 2.3, where the dashed black arrows represent

inter-cell interference from other cell transmitters, and the solid black arrows rep-

resent links over which both the desired message and intra-cell interference are
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received. The IBC models DL communication, its UL counterpart is the interfer-

ence multiple access channel (IMAC) and consists of the scenario depicted in Fig.

2.3 with the direction of communication (represented by the arrows) reversed.

The IBC having all nodes equipped with multiple antennas is used as a starting

point for all the HD scenarios considered throughout this thesis, since it provides

a solid representation of real-world DL cellular systems where transmitters take

the role of the base-stations (BSs) and receivers represent mobile users.

2.4 Interference management

Having seen the complex interference scenario posed by trying to serve multiple

users simultaneously, it is clear that successful interference management strate-

gies need to be devised in order to enable communication. From an information-

theoretic perspective there are three traditional approaches to handling interfer-

ence [4] as listed below.

• Decode: In cases where interference is strong, the interfering part of the

signal can be decoded along with the portion of interest. The decodability

of the interfering signals limits the users’ rates and also the applicability of

this technique in practice.

• Treat as noise: When interference is sufficiently weak, interference signals

can be treated as noise. In such cases, single user encoding and decoding

procedures can be applied.

• Orthogonalise: When both the signal of interest and the interference signals

are of comparable strength, orthogonalisation techniques solve the issue by

allocating totally separate channel access, thereby avoiding the occurrence

of interference in the first place.

Practical approaches generally involve a combination of the last two tech-

niques. Orthogonal time/frequency resources are allocated to neighbouring links

of comparable strength, such that any resultant interference is weak enough to

be treated as noise. While such solutions are successful in mitigating the effect

of interference, they are wasteful with respect to the use of time and frequency

resources. Therefore, the wireless communications research community is shifting

towards trying to find innovative interference management solutions that enable
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multiple users to be served in the same time/frequency resource; with the ulti-

mate aim of developing systems that can meet the more demanding data rate re-

quirements of future generation cellular networks. From an information-theoretic

perspective these efforts have resulted in a much deeper understanding of the

fundamental capacity limits of interference limited wireless networks. There have

been numerous studies focusing on the determination of the number of achievable

DoF as a first order characterisation of network capacity due to the high SNR

relationship between these two metrics (see (2.8)). Results within this context

show that the maximum achievable capacity is significantly higher than what

is currently obtained via the use of conventional techniques. These have been

obtained by exploiting the availability of CSIT [5], giving rise to a number of

innovative techniques to manage interference via the design of novel transmission

schemes and beamforming solutions.

The rest of this section will focus on two classes of novel interference manage-

ment techniques, namely, interference alignment (IA) and topological interference

management (TIM), due to their relevance to Chapters 3, 4 and 6.

2.4.1 Interference alignment

IA exploits the numerous DoF available from the time, frequency and spatial

domains, in order to ensure that the interfering signals seen at each receiver

occupy a low-dimensional subspace such that the desired signal can be decoded.

By coding over multiple dimensions and carefully constructing the transmission

and receiving strategies, IA maximises the number of non-interfering signals that

can be simultaneously communicated over the interference network as a whole.

In their 2008 landmark paper [4] Cadambe and Jafar proposed an IA technique

for the IC that aligns an arbitrarily large number of interferers, leading to the

fundamental conclusion that wireless networks are not necessarily interference

limited. The authors show that their proposed scheme can restrict interference

at each receiver to approximately half of the received signal space, leaving the

other half interference free for the desired signal. With this approach, a K-user

IC where each node is equipped with a single antenna can achieve total DoF of
K
2

rather than 1 as conventionally assumed. Starting from these initial highly

promising IC results, which show that DoF can scale linearly with the number

of users, IA has now evolved to address numerous types of interference scenarios
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across a wide range of applications. Fig. 2.4 illustrates an IA example for a 3-user

IC where each node is equipped with two antennas [5]. As can be noticed, by

carefully constructing the precoders {V1,V2,V3} according to (2.9), interference

can be made to overlap at the receivers. Each receiver sees two linear equations

with three unknowns - since only one unknown is desired and the other two are

aligned along the same dimension, the desired symbol can be decoded.

V1 = (H1,2)−1H1,3V3

V2 = (H2,1)−1H2,3V3

V3 = eigvec
(
(H2,3)−1H2,1(H3,1)−1H3,2(H1,2)−1H1,3V3

)
(2.9)

 Tx 1 Rx 1

 Tx 2 Rx 2

 Tx 3 Rx 3

H1,1

H2,2

H3,3

H1,2

H1,3

H2,3

H2,1

H3,1

H3,2

V1

V2 

V3

H1,1V1

H2,2V2

H3,3V3

H1,2V2

H1,3V3

H3,1V1

H3,2V2

H2,1V1

H2,3V3

Figure 2.4: IA example for 3-user IC with two antennas at each node [5].

2.4.1.1 Types of IA and implementation challenges

As mentioned earlier IA can exploit a variety of domains (time, frequency and

spatial) in order to increase achievable DoF, this has led to the development of a

wide range of different IA techniques

The example depicted in Fig. 2.4 applies linear IA. This aligns signal spaces

via the use of specifically designed transmit and receive beamformers, and pro-

vides a one-shot solution to the IA problem, making it highly accessible from a

practical perspective [5]. However, as the number of interfering nodes increases,

the amount of signals that need to be aligned also grows rapidly. This can cause

linear IA problems to become infeasible, unless the number of antennas at the
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various nodes is chosen appropriately to sustain the required DoF. Therefore, sig-

nificant research effort has been targeted to understanding the feasibility of linear

IA for a variety of network configurations [6–8]. Such studies derive relationships

between the maximum number of streams that can be delivered simultaneously

for a specific number of nodes, and the required number of transmit and receive

antennas. Additionally, since closed-form solutions such as the one in (2.9) can

only be obtained for a very restricted set of networks (e.g. [4,9]), a parallel body

of work has focused on developing iterative IA algorithms. These algorithms

are used to test the IA feasibility conditions derived, and more importantly, to

provide numerical IA beamforming solutions for various network types. Starting

with initial studies on the IC [10,11], several iterative approaches have been pro-

posed, for example, minimising the leakage interference (Min-LI), Max-SINR and

MMSE.

Linear IA schemes are based on spatial beamforming, and exploit the gains

provided by having multiple antennas at the nodes. However, when the number

of antennas is insufficient other solutions may be applied. One option is to use

symbol extensions, which implies beamforming across multiple channel uses [12].

Such techniques require the channel to be unique for each channel use to obtain

full rank matrices, and often result in schemes that only reach the promised DoF

as the number of channel uses goes to infinity, for example, the asymptotic IA

scheme proposed in [4]. Therefore, the concept of IA via symbol extensions is

generally more useful from an information-theoretic perspective rather than a

practical one. Other types of IA, such as ergodic IA and blind IA, rely on specific

properties of the channels themselves. Ergodic IA pairs complementary channel

states to naturally cancel interference by repetition coding across the identified

state pairs [13]. Blind IA requires the channel states to be part of a known set of

channel fluctuation patterns that are either naturally occurring [14] or enforced

via the use of reconfigurable antennas [15].

The majority of IA techniques mentioned so far, except blind IA, require the

availability of perfect CSI. In truth, dedicated system resources are needed to

acquire this information, implying that perfect and instantaneous delivery of CSI

to all network nodes is not possible in practice. Recognising the highly idealistic

nature of the initial studies, research is moving into interference management for

scenarios where the CSI assumptions are more relaxed. This is fundamental in

order to obtain results that are more closely relatable to practical systems and
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has been considered in numerous works, for example by recognising the effect of

imperfect, delayed [16], mixed [17,18] or partial [19] CSIT.

An in depth review of the types of IA available in literature and the challenges

involved in their implementation may be found in [5]. For the purpose of this

thesis linear IA is of particular interest, since it is the most easily accessible form

of IA from a practical perspective [5]. Additionally, imperfect CSI also plays

a central role. In Chapters 4 and 6, we focus on the performance of linear IA

under imperfect CSI, and develop iterative algorithms that are applicable to the

HD MIMO IBC (Chapter 4) and the FD MIMO multi-user multi-cell network

(Chapter 6). The availability of imperfect CSI is also considered in Chapter 5

which focuses on WSR maximisation in FD MIMO multi-user multi-cell networks.

2.4.2 Topological interference management

IA studies generally start from a perfect and abundant CSIT assumption and then

try to move into more relaxed CSIT scenarios that are more relevant to practical

situations. Topological interference management (TIM) introduced in [20] offers

a new but complementary perspective. Rather than starting with an idealistic

CSIT assumption, it considers the issue from the opposite end of the spectrum as

shown in Fig. 2.5; with the ultimate aim of reaching a compromise where higher

rates can be achieved in practical CSIT settings.

No CSIT

Topological interference
                 management 

Perfect CSIT

Prior perspective

Figure 2.5: Motivation behind TIM.

For wireless networks, having no CSIT at all is a degenerate setting where no

reliable communication can be guaranteed. Thus, to ensure that the resultant

problem is non-degenerate, the TIM framework assumes that the desired channel

links are of sufficient quality to sustain the required SNR for reliable communi-

cation in the absence of interference. Using the K-user SISO IC as an example,

this interference free SNR guarantee can be expressed as

|hi,i|2Pi
σ2

≥ SNR ∀ i ∈ {1, . . . , K} (2.10)
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where hi,i represents the desired channel link, Pi is the transmit power constraint

and σ2 is the noise power. Therefore, if no interference is present, each user can

achieve a rate of log2(1 + SNR). The capacity of the K-user SISO IC under

such conditions can be achieved via the use of orthogonal schemes like time di-

vision multiple access (TDMA), and corresponds to 1
K

log2(1 +KSNR) per user,

equivalent to 1
K

DoF each.

The application of orthogonal techniques leads to highly conservative values

for achievable capacity and DoF. Such results are obtained under two rather

strong and pessimistic assumptions: (a) all possible interference links exist and

are all equally significantly strong (this is a worst case scenario assumption since

fading is an intrinsic characteristic of wireless networks, and it is therefore nat-

ural for some links to be weak enough to be considered non-existent), and (b)

no information is available with respect to the interfering links. Moreover, litera-

ture proposing innovative interference management alternatives to the traditional

orthogonal based techniques, tends to combine the overly pessimistic fully con-

nected scenario hypothesis, with a highly idealistic full CSIT availability assump-

tion, rendering the solutions proposed highly difficult to implement in practice.

The TIM framework aims to find a middle ground that moves beyond both,

(a) the overly cautious fully connected scenario assumption, and also (b) the

extreme either full or no CSIT assumptions with respect to the interfering links.

This is achieved by classifying all interference links into two main categories as

follows.

• Weak interference links : links over which the nominal received power is

below a pre-established threshold value equivalent to the noise floor.

• Strong interference links : links over which the nominal received power is

above this threshold.

Therefore, just one bit of CSIT per interfering link is required to provide topo-

logical information to all the transmitters present in the network; weak links

are assigned a ‘0’, while strong links are assigned a ‘1’. This ensures that feed-

back related overheads are significantly lower, and that the CSIT requirements

can be met in practice. Thus, for the general wireless TIM framework, apart

from the interference free SNR guarantee for the desired channel (analogous to

(2.10)), transmitters only need know the network structure, i.e. they are aware

of the existence of interference links but have no knowledge of their exact channel
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value.

To understand the potential benefits offered by TIM more clearly, consider

for example the partially connected 5-user IC network in Fig. 2.6. If we only

know the value of the desired channels, then we have the interference free SNR

guarantee in (2.10) and can apply TDMA to achieve 1
5

DoF per user. However, if

topological information is available higher DoF can be achieved. Using orthogonal

techniques that schedule non-interfering users groups simultaneously results in

achievable DoF per user of 1
3
. Additionally, [20] shows that with fixed channels

under the TIM framework, even higher DoF can be obtained by constructing the

transmitted signals intelligently such that interference is aligned. This is achieved

by activating transmitters {1, 2, 5} in time slot 1, and transmitters {2, 3, 4} in

time slot 2. Receivers 1 and 2 obtain their desired symbols directly in time slot

1, similarly receivers 3 and 4 obtain their symbols directly in time slot 2. Lastly,

receiver 5 can subtract the signal received in time slot 2 from the signal received in

time slot 1 to obtain its desired symbol. This results in a symbol being delivered

to each user over two time slots, equivalent to 1
2

DoF per user.

Rx 1

Rx 2

Rx 3

Rx 4

Rx 5

 Tx 1

 Tx 2

 Tx 3

 Tx 4

 Tx 5

Figure 2.6: Partially connected 5-user IC; solid arrows represent desired links, dashed
arrows represent interference links [20].

Furthermore, [20] draws a highly interesting parallel between wireless and

wired networks, showing that with the use of linear network coding in wired
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networks, the distinction between these two types of networks is virtually non-

existent under the TIM framework. While traditionally interference is not an

issue in standard wired networks, with the application of linear network coding

at intermediate nodes, the resulting network experiences interference between

different flows, such that the underlying structure is equivalent to that of the

corresponding wireless network. The work in [20] shows how the innovative in-

terference management solutions derived under the TIM framework for wireless

networks can be transferred to the wired network equivalents, with the emphasis

being placed on the underlying network structure, rather than the value of the

channel links. Therefore, TIM allows us to obtain a unified view of wired and

wireless networks, such that the normalised network capacity for both networks

is identical. In this case, DoF can be viewed as a representation of the capacity

of the underlying noiseless linear communication network, where the received sig-

nals are a linear combination of the transmitted ones. This generally translates

to a direct capacity result for wired networks, since noise is not an issue, and

corresponds to a first order high SNR capacity approximation for wireless ones,

where noise is unavoidable.

The study in [20] considers partially connected networks where connectivity is

fixed throughout the duration of communication. Within this thesis, in Chapter

3, we move beyond this assumption and consider the use of TIM to manage inter-

cell interference in a two-cell two-user per cell network with alternating inter-cell

connectivity. For the alternating connectivity scenario, the network may range

from a fully connected one in the worst case scenario, to one without any inter-

cell interference in the best case scenario. While our main focus is on wireless

networks, we also show how the results obtained results can be translated into

capacity results for the corresponding wired network equivalents.

2.5 Full-duplex communication

Traditionally RF nodes were considered to be unable to transmit and receive

in the same frequency band simultaneously due to self-interference (SI) between

the transmitted and received signals [21]. Effects like path loss and fading cause

signals received over the air to be much weaker than those transmitted, rendering

it difficult to detect the desired signal. Current communication systems avoid

creating SI by operating in HD mode. Bi-directional communication is enabled
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via the use of orthogonal channels in the time and frequency domains; this is

typically achieved through the use of techniques like time division duplex (TDD)

or frequency division duplex (FDD) that provide complete separation between the

transmit and receive signals. However, such methods lead to an inefficient use of

the limited RF spectrum. This waste, combined with the ever increasing data rate

demands of wireless networks, has driven the wireless communications research

community to aspire to the realisation of FD nodes that can concurrently transmit

and receive information in the same time/frequency resource. The realisation of

FD technology promises to improve spectral efficiency by a factor of two compared

to conventional HD systems.

2.5.1 FD node architecture

FD nodes can generally be implemented in two different ways as depicted in

Fig. 2.7. One method is separate antenna architecture [22], where each transmit

chain uses a dedicated radiating antenna and each receive chain uses a separate

sensing antenna. The second method is shared antenna architecture [23] where a

duplexer (usually a ferrite device that exploits non-linear propagation in magnetic

materials, known as a circulator) is attached to the antenna, and used to direct the

received signal to the receiver and route the transmit signal from the transmitter

to the antenna, while also isolating the two chains.

Tx Rx

(a) Separate antenna.

Tx Rx

Duplexer

(b) Shared antenna.

Figure 2.7: FD node architecture, red solid arrows represent the SI path.

2.5.2 SI suppression

In order to enable the practical realistion of FD systems a lot of research effort

has been directed towards identifying ways to suppress SI. To understand the

impact of SI more clearly, let us focus on a femto cell cellular system example
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from [24], depicted in Fig. 2.8. Here, femto BSs and mobile handsets transmit at

a power of 21 dBm, with a receiver noise floor of 100 dBm. Assuming that the

FD node can naturally isolate the transmit and receive signal paths by 15 dB1,

then the SI interference will be 106 dB above the noise floor; implying that SI

suppression of at least 106 dB must occur in order to achieve a link SNR equal

to that of the HD counterpart. Note that for larger cells, where transmit powers

are higher, even more SI would need to be suppressed.

BS transmit power 

SI level 

Noise floor 

dBm 

6 

-100 

21 

Amount of SI 
suppression  

required 

Figure 2.8: Amount of SI suppression required for femto cell example from [24].

Since the transmitted signal is known, one might erroneously think that per-

fect SI cancellation is possible by simply subtracting the transmitted signal from

the received one; however, this cannot be done in practice. For digital domain

only cancellation, issues like the dynamic range of the analogue-to-digital con-

verter (ADC), quantisation noise, oscillator phase noise and non-linearities in the

amplifiers and mixers, act as a bottleneck for the effectiveness of digital SI cancel-

lation and lead to some residual SI. This has motivated a more holistic approach

to SI suppression, where techniques that can be applied both before and after

the ADC are combined together, in an effort to achieve acceptable levels of SI

suppression. The different methods can be classified into three main categories

as follows [24].

• Propagation domain SI isolation: Propagation domain techniques aim to

1An SI isolation figure of 15 dB is quite conservative. Larger values have been reported in
literature for different antenna architectures, for example up to 45 dB of SI isolation is achieved
in [25]. See also [22,26,27] for further information.
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suppress SI before it manifests itself at the receiver chain circuitry, by iso-

lating the transmit and receive chains. For separate antenna systems, prop-

agation domain SI suppression is achieved using a combination of: (a) path

loss - by increasing spacing or by placing absorptive shielding between the

transmit and receive chains, (b) cross-polarisation - for example by having

a node that only transmits horizontally polarised signals and only receives

vertically polarised ones or vice-versa, and (c) antenna directionality - by

ensuring that the main radiation lobes of the transmit and receive antennas

have minimal intersection. For shared antenna systems propagation domain

SI is achieved by the duplexer.

• Analogue circuit domain SI cancellation: Analogue circuit domain methods

aim to suppress SI in the receive chain circuitry before the ADC. Such tech-

niques include classic time domain training based methods that estimate

the SI leakage and then apply signal inversion to cancel it. Additionally, for

MIMO nodes the increased spatial DoF offered by having multiple anten-

nas may also be exploited to mitigate SI. In each case, the main principle

behind analogue SI suppression is the idea of introducing a cancelling signal

to diminish the amount of SI experienced at the receive side.

• Digital circuit domain SI cancellation: Digital circuit domain methods aim

to suppress SI after the ADC, by using knowledge of the SI signal and ap-

plying digital signal processing techniques to mitigate its effects. Operating

in the digital domain has the advantage of rendering sophisticated signal

processing techniques relatively easy to implement compared to the ana-

logue domain. However, hardware impairments like for example the ADC’s

dynamic range, and noise and non-linearities in various other components,

limit the amount of SI reduction possible. Thus, digital domain SI suppres-

sion techniques are generally considered as the final resort to cancel residual

SI left over from the previously applied propagation domain and analogue

circuit domain SI cancellation techniques.

Fig. 2.9 shows how the various SI suppression techniques are combined to-

gether in order to obtain the final received signal that can be used for decoding.

Recent advances in antenna design and RF circuitry have demonstrated highly

promising results in terms of SI suppression levels. For example, [28] uses a com-

bination of signal inversion and digital cancellation to achieve 73 dB of SI sup-

pression for a 10 MHz orthogonal frequency division multiplexed (OFDM) signal.
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In [29] all three classes of SI cancellation methods are combined to achieve an

average cancellation of 85 dB, with a minimum of 70 dB and a maximum of 100

dB, over a 20 MHz signal. Additionally, [25] proposes a single-antenna FD node

prototype that can achieve 40− 45 dB of SI isolation before analogue and digital

cancellation. Another single-antenna design is proposed in [23]; this achieves up

to 110 dB of SI suppression in total, over an 80 MHz bandwidth.

ADC
Transmitted 
signal (SI)

Noise

Desired
signal

Received
signal

Propagation
domain SI 
isolation

Analogue circuit
domain SI

cancellation

Digital
domain SI

cancellation

Figure 2.9: Implementation of different SI suppression techniques [30].

2.5.3 Interference in FD networks

Given the fact that sufficient SI cancellation is well on its way to becoming prac-

tically feasible, the next stage is to consider wirelesses networks containing FD

enabled nodes. While it is possible to construct networks where all nodes operate

in FD mode, since FD operation requires significant hardware changes with higher

costs and power usage, it is more practical to initially consider scenarios where

only the infrastructure elements (BSs) are upgraded to FD, with user devices still

operating in HD mode [31].

The FD capability at the BSs allows both UL and DL users to be served

simultaneously, this leads to a surge in the amount of interference experienced

across the network compared to its HD counterpart. Consider for example a two-

cell network with one BS, one UL user and one DL user per cell, and compare

HD operation in Fig. 2.10 with FD operation in Fig. 2.11. For the HD network

there are two inter-cell interference links in both UL and DL scenarios. For FD

operation, the UL and DL interference links seen in each HD scenario appear

simultaneously, in addition to a number of new interference components depicted

in blue in Fig. 2.11. The novel interference components that occur when replacing

HD BSs with FD ones are:

• residual SI - as discussed earlier in Section 2.5.2 there are numerous ways

to mitigate SI, however none of them can cancel it completely;
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UL 2

FD BS 2

Cell 2

UL 1

FD BS 1

Cell 1

(a) Serve only UL users.

FD BS 2

DL 2

Cell 2

FD BS 1

DL 1

Cell 1

(b) Serve only DL users.

Figure 2.10: HD two-cell scenario with one UL and one DL user per cell. UL and DL
users are scheduled in separate time/frequency resources.

UL 2

FD BS 2

DL 2

Cell 2

UL 1

FD BS 1

DL 1

Cell 1

Figure 2.11: FD two-cell scenario with one UL and one DL user per cell.
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• BS-to-BS interference - since BSs are now transmitting and receiving at the

same time, DL data from one BS interferes with UL information desired at

the neighbouring BS and vice-versa;

• UL user to DL user interference - transmission from UL users, both in the

same cell and in neighbouring ones, interferes with the received signal at

DL users.

Considering the complex interference scenario that results by replacing HD

BSs with FD ones, it is clear that having appropriate techniques to handle them

is fundamental for the practical realisation of FD networks. In this thesis we

focus on multi-cell multi-user networks with FD BSs and HD users. In Chapter

5, we propose solutions for WSR maximisation both under perfect and imperfect

CSI. While, in Chapter 6, we consider the use of linear IA for the same system

in the presence of CSI mismatch.
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Chapter 3

Topological Interference

Management for Interference

Broadcast Channels

3.1 Introduction

As highlighted earlier in Chapter 2, recent years have seen major advances in

terms of understanding the information-theoretic capacity limits of interference

limited networks, mainly under the assumption of abundant CSIT. While this

has given rise to a number of innovative ways on how to exploit different aspects

of CSIT, the theoretical gains have been difficult to translate into practical ones

due to the idealistic CSIT requirements.

Therefore, moving on from the initial perfect CSIT studies, the current re-

search direction is to focus on more relaxed assumptions in order to reach a

middle ground where higher rates can be achieved with realistic CSIT require-

ments. Some works rely on specific properties of the channel links themselves,

such as ergodic IA [13] (outlined earlier in Section 2.4.1.1), or the technique pro-

posed in [35] for finite state compound wireless networks, which relies on the fact

that the channel realisations come from a finite set of possibilities. Other works

focus on using the available CSIT even though it is not perfect. For example, [16]

Work in this chapter has been published in IEEE Transactions on Communications, April
2016 [32], with a preliminary version presented at IEEE ICASSP 2015 [33] and IEEE ISIT
2015 [34].
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and [36] show that even completely delayed CSIT provides a gain in achievable

DoF. Scenarios with both delayed and imperfect current CSIT are considered

in [17] and [37]. A combined setting where the CSIT alternates between perfect,

delayed and unavailable is analysed in [38]. Literature mentioned so far assumes

all transmitters have an identical view of the network; however, this is not al-

ways a pre-requisite. For example, in [19] transmitters only have perfect CSIT

for a restricted subset of the global channel links, with this subset being specific

to each transmitter. Additionally, situations where nodes have asymmetric local

views of the global network structure are also considered in [39].

The TIM approach [20] (a general overview of which was provided earlier

in Section 2.4.2) offers a new but complementary perspective to the interference

management problem, starting from a limited CSIT availability perspective rather

than an abundant one. The work in [40] considers such a setting for the case where

transmitters cooperate via message sharing; results show that considerable DoF

gains can be obtained for networks that are not fully connected. Additionally, [41]

expands the DL hexagonal cellular network scenario from [20] to include multiple

layers of interference and analyses how these affect the corresponding DoF gains.

Throughout the studies in [20, 40, 41] it is assumed that network topology is

fixed for the duration of communication. For this chapter, we move beyond such

an assumption, and consider a scenario where inter-cell connectivity may vary

in order to analyse the DoF gains that can be achieved. The overall setting is

referred to as an alternating connectivity scenario and was considered for the two-

user SISO IC and the X-channel in [42], and three-user SISO ICs with various

restrictions in [43] and [44]. Here, we focus on the more complex IBC which has

the additional challenge of intra-cell interference, and also introduce a mixed CSIT

setting where global topological knowledge is combined with varying degrees of

local CSIT.

The main contribution of our work is in the derivation of novel DoF outer

bounds for the two-cell two-user-per-cell IBC with alternating connectivity. While

our initial focus is on a SISO system, we also consider MISO and MIMO configu-

rations as a means of resolving intra-cell interference. Global channel knowledge is

restricted to topological information only; however, local CSIT availability varies

depending on the system configuration itself, leading to a mixed CSIT setting

for the MISO case. The achievability of the derived bounds is investigated for a

variety of contexts. Additionally, we propose novel transmission schemes based
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on joint coding across states that are applicable for arbitrary state probabilities

and analyse their performance, both for the general case and for situations where

all states are equiprobable. Results show that DoF higher than those convention-

ally obtained without global topological knowledge can be achieved, proving that

even such a minimal level of global CSIT is still very useful.

The rest of this chapter is organised as follows. Section 3.2 provides some

preliminaries by introducing the system model, the alternating connectivity sce-

nario, and the local CSIT availability. Next, in Section 3.3 we present the DoF

outer bound for the SISO system, while the MISO and MIMO counterpart is

provided in Section 3.4. The achievability of the derived DoF outer bounds is

investigated in Section 3.5 and Section 3.6 respectively. Section 3.7 shows how

the wireless network DoF results can be translated into capacity results for the

corresponding wired network instances. Finally, Section 3.8 provides some con-

cluding remarks. Additionally, there are three appendices; the first two provide

extra details required to complete the outer bound derivations, while the third

contains a useful lemma relavant to this chapter.

3.2 Preliminaries

3.2.1 System model

We consider a two-cell two-user-per cell IBC. This consists of two adjacent cells

in a wireless network, where the first cell includes BS A and receivers a1 and

a2, while the second cell has BS B and receivers b1 and b2. The basic network

structure is shown in Fig. 3.1, where inter-cell interference links are omitted

and the solid arrows represent useful links over which the desired symbols are

delivered. The general input-output relationship is given by,

Y r[n] = Hr,A[n]XA[n] +Hr,B[n]XB[n] + Zr[n] (3.1)

where at channel use index [n], Y r[n] is the signal observed at receiver r for

r ∈ {a1, a2, b1, b2}, XT [n] is the signal sent from transmitter T for T ∈ {A,B},
Zr[n] represents unit variance AWGN at receiver r, and Hr,T [n] is the channel

link between transmitter T and receiver r, whose entries are i.i.d. and drawn from

a continuous distribution. Additionally, E{‖XT [n]‖2} ≤ P I, where P represents

the transmit power constraint and is equal to SNR for unit power AWGN.
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cell A cell B

a1 a2

A

b1 b2

B

Figure 3.1: Two-cell two-user-per-cell network with omitted inter-cell interference
links.

Note that throughout this chapter we use standard capital font for Y , X andH

as a general notation to encompass their possible scalar, vector or matrix (only for

H) forms depending on the SISO, MISO or MIMO configurations as highlighted

later in Section 3.2.2. Moreover, for notational simplicity, the channel use index

[n] will be omitted from here onwards. Additionally, since all noise terms are

drawn from the same distribution, they are all statistically equivalent, thus the

general notation Z will be used throughout the rest of this chapter.

Within the scenario under analysis, inter-cell interference can occur between

any of the users and the non-corresponding BS. We consider an alternating con-

nectivity context, where inter-cell connectivity is not fixed throughout the dura-

tion of the whole communication process. Connectivity can easily vary in wireless

networks, where some links may go into deep fade making them effectively non-

existent. Additionally, in frequency selective environments, frequency hopping

or multi-carrier transmission may also create a variety of inter-cell connectivity

states. For the system in Fig. 3.1, a total of 16 different states may occur, as

shown in Fig. 3.2. Each of these states is associated with a probability of occur-

rence λk for k = 1, . . . , 16, where
∑16

k=1 λk = 1. Note that to ensure the problem

is non-degenerate, desired links are considered to be always present and able to

support the desired rate in the absence of interference.

3.2.2 Antenna configuration and CSIT availability

For each cell, we define MB as the number of antennas at the BS and Nd as the

number of antennas at each of the two receivers. With an appropriate choice

of MB and Nd, spatial multiplexing can be applied within the cells to resolve

intra-cell interference, such that each BS can simultaneously deliver one symbol

to its corresponding two users. This results in total achievable DoF of 2 per cell,
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(1)    

(5)    

(9)    

(13)    

(2)    

(6)    

(10)    

(14)    

(3)    

(7)    

(11)    

(15)    

(4)    

(8)    

(12)    

(16)    

Figure 3.2: Set of all possible inter-cell connectivity states for the two-cell two-user-
per-cell IBC. Cell A transmitters and receivers are on the left in green, while cell B
elements are on the right in blue. The dashed red arrows represent interference links.

provided no inter-cell interference is present.

For a mixed CSIT1 setting, where in addition to global topological CSIT,

perfect current local CSIT is also available, the achievable DoF per cell are given

by [45]

min{MB, KNd}

where K represents the number of users in each cell. Here we consider a scenario

where each cell has two users; thus, any MB×1 system (where for MISO MB ≥ 2

by definition) achieves the required 2 DoF per cell. This is possible via zero-

forcing (ZF) precoding. Consider a general cell C having users c1 and c2, where

BS C transmits a combined symbol, XC , consisting of sc1 intended for user c1

and sc2 intended for user c2. Given the availability of local CSIT, sc1 can be

precoded such that it is orthogonal to the channel from BS C to user c2, and sc2

can be precoded such that it is orthogonal to the channel from BS C to user c1.

This allows users to extract their desired symbol from a single observation of XC ,

thereby achieving 2 DOF within the cell if no inter-cell interference is present.

1Throughout this chapter the term mixed CSIT is used to refer to a mixture of global
topological information and perfect current local CSIT. This is different to prior usage of the
term in [17] and [18], where it is used to refer to a mixture of perfect delayed CSIT and imperfect
current CSIT.
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On the other hand, if local CSIT is not available, the achievable DoF per cell

are equal to [46]

min{MB, Nd} .

Therefore, any MB × 2 or 2×Nd MIMO system (where by definition for MIMO

MB ≥ 2 and Nd ≥ 2 ), can achieve the required 2 DoF per cell. Consider

a general cell C having users c1 and c2, where the BS transmits a combined

symbol, XC , consisting of sc1 and sc2, and the antenna configuration is either

MB × 2 or 2×Nd. Due to the multiple antenna setting, each user can obtain at

least two independent equations for the two unknown symbols sc1 and sc2, and

can therefore decode for the desired one. This results in achievable DoF of 2 per

cell in the absence of inter-cell interference.

Note that for the SISO scenario spatial multiplexing is not an option, since by

definition MB = Nd = 1; thereby, even in the abscence of inter-cell interference,

only 1 DoF per cell can be achieved.

Regardless of the system configuration, if no feedback is available with respect

to the alternating global network topology, both transmitters have to assume full

inter-cell connectivity throughout, i.e. State 1 in Fig. 3.2. This only allows for

one possible transmission strategy, where BS A and BS B are provided with non-

overlapping transmission opportunities and leads to a sum DoF across the two

cells of: 1 for the SISO configuration, and 2 for the MISO system with local CSIT

or the MIMO one without local CSIT. Considering all the states in Fig. 3.2, it is

clear that assuming full connectivity throughout is wasteful in terms of network

resource use - states 2 to 16 have a smaller amount of inter-cell interference links,

and can potentially achieve higher sum DoF than the fully connected scenario in

state 1.

Our interest lies in exploiting this opportunity, whilst keeping the global CSIT

requirement to a minimum. Therefore, while varying degrees of local CSIT are

considered, global knowledge of the inter-cell interference channels is restricted

to topological information only. This requires just one bit of CSIT per inter-

cell interference link, used to indicate whether interference may be experienced

over that link or not. Receivers can compare the nominal received power from

an undesired link to a pre-established threshold value and assign a ‘0’ to those

links for which the received power is below the threshold and a ‘1’ to those links

for which the received power exceeds it; this information is then fed back to the

transmitters making them aware of the network’s topological structure [20].
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3.2.3 Reformulation for SISO scenario

While the setting described so far is sufficient to analyse the MISO and MIMO

IBC scenarios, we also consider a SISO scenario which requires further reformu-

lation. For SISO systems, maximum achievable DoF per cell equal to 1 can be

achieved simply by avoiding intra-cell interference and serving only one user at

a time. Hence from a DoF outer bound perspective, we can consider the case

where for every instant each BS selects one user to be its designated user to

serve, according to what is most advantageous in terms of achievable sum rate.

Let us define U as the cell A designated user, U ∈ {a1, a2}, and V as the cell B

designated user, V ∈ {b1, b2}. For any given U and V , the original network in

Fig. 3.1 can be represented with the equivalent one in Fig. 3.3, where only four

(U, V ) combinations may occur, i.e.

(U, V ) ∈ { (a1, b1), (a2, b1), (a1, b2), (a2, b2) } . (3.2)

cell A

U

A

cell B

V

B

Figure 3.3: Equivalent network for SISO scenario, where U represents the cell A
designated user and V represents the cell B designated user.

Having defined an equivalent network for the SISO scenario, the set of 16

alternating states from Fig. 3.2 can be mapped to a reduced set of only 4 possible

states, as in Fig. 3.4. For any given (U, V ) combination it only matters whether

inter-cell interference affects the designated users. For example, when (U, V ) =

(a1, b1) in state 9 from Fig. 3.2, a1 is free from inter-cell interference while b1

receives interference from BS A; thus, from the perspective of this particular

(U, V ) combination, state 9 corresponds to state S in Fig. 3.4. Next, consider

state 9 from the perspective of (U, V ) = (a1, b2); in this case both a1 and b2 are

free from inter-cell interference, hence state 9 is mapped to the no interference

state T in Fig. 3.4. Similar arguments can be made for all (U, V ) combinations

listed in (3.2) and all the states depicted in Fig. 3.2. The mapping of the
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(Q) 

A B

U V

(R) 

A B

U V

(S) 

A B

U V

(T) 

A B

U V

Figure 3.4: Reduced set of states used to replace original ones from Fig. 3.2 when
considering the equivalent network for the SISO scenario in Fig. 3.3.

Table 3.1: Mapping of original states from Fig. 3.2 to the equivalent reduced set in
Fig. 3.4 for each possible (U, V ) combination.

(U,V) Q R S T
(a1, b1) 1, 10, 13, 16 6, 8, 12, 14 3, 4, 9, 15 2, 5, 7, 11
(a2, b1) 1, 9, 13, 15 6, 7, 11, 14 3, 4, 10, 16 2, 5, 8, 12
(a1, b2) 1, 12, 14, 16 6, 8, 10, 13 3, 5, 11, 15 2, 4, 7, 9
(a2, b2) 1, 11, 14, 15 6, 7, 9, 13 3, 5, 12, 16 2, 4, 8, 10

original set of states from Fig. 3.2 to the reduced one in Fig. 3.4 for each (U, V )

combination is provided in Table 3.1.

3.3 DOF outer bound for SISO IBC

In this section we present a DoF outer bound for the two-cell two-user-per-cell

SISO IBC with alternating connectivity.

Theorem 3.1. For the two-cell two-user-per-cell SISO IBC with alternating con-

nectivity, the sum DoF, dΣ,S, can be characterised as

dΣ,S ≤ 2− Λ
where

Λ = max


λ3 + λ6

λ1 + λ6 + λ13 + λ14

λ1 + λ3 + λ15 + λ16 .

(3.3)

Proof. The overall outer bound consists of merging together bounds originating

from different sources; one comes from the summation of the achievable rates per
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cell, and an additional pair arises from genie aided bounds for each cell. Here,

we present a compact version of the proof focusing on how the cell A expressions

are obtained, details for their cell B counterparts are provided in Appendix 3.A.

3.3.1 Sum bound

For the sum bound, first we obtain separate expressions for the achievable rate

within each cell, these are then combined to give an overall outer bound for the

sum DoF across the two cells. Starting with the cell A achievable rate, we have

nRA,S ≤ I(WA;Y U
1 , . . . , Y

U
16) + nε

where WA is the message set from BS A, and Y U
k is the signal received by the

cell A designated user U during state k. This can be further expressed as

nRA,S ≤ h(Y U
1 , . . . , Y

U
16)− h(Y U

1 , . . . , Y
U

16 | WA) + nε

(a)
= h(Y U

1 , . . . , Y
U

16)− h(Y U
Q , Y

U
R , Y

U
S , Y

U
T |WA) + nε

= h(Y U
1 , . . . , Y

U
16)− h(Y U

R , Y
U
S , Y

U
T | WA)− h(Y U

Q | WA, Y U
R , Y

U
S , Y

U
T )︸ ︷︷ ︸

≥h(Y U
Q
|WA,Y U

R
,Y U
S
,Y U
T
,WB)

=no(log2P )

+nε

(b)

≤ h(Y U
1 , . . . , Y

U
16)− h(Y U

R , Y
U
S , Y

U
T | WA) + no(log2P ) + nε (3.4)

where (a) follows since the original set of 16 states are all contained within states

Q, R, S and T for the equivalent SISO scenario, and (b) follows since condition-

ing reduces entropy and the effect of noise disappears at high SNR. Note that

o(·) comes from the standard Landau notation, where f(x) = o(g(x)) implies

lim
x→∞

f(x)/g(x) = 0.

Considering (3.4) and the state configurations in Fig. 3.4, it can be noticed

that the received signal for the cell A designated user U in states S and T consists

only of an XA component and noise. The XA component has no effect on entropy

since it is solely a function of WA, while the effect of noise disappears as P →∞
and can be integrated into the no(log2P ) term, resulting in

nRA,S ≤ h(Y U
1 , . . . , Y

U
16)− h(Y U

R | WA) + no(log2P ) + nε . (3.5)

For all states corresponding to R, the cell A received signal is combination of XA,
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XB and noise, i.e. it takes the form of Y U
R = HU,AX

A + HU,BX
B + Z. The XA

component is negligible with respect to entropy. The XB and noise components

are independent of WA. Additionally, since HU,B and HV,B are independently

drawn from the same distribution, they are statistically equivalent and inter-

changeable [46]. Therefore, the XB and noise terms can be represented by the

signal received at the cell B designated user V , provided that V itself has no

inter-cell interference. Comparing the list of all R states from Table 3.1, it can be

noticed that this substitution is guaranteed as being always possible regardless

of the current (U, V ) combination only for state 6. Using this information, the

cell A rate outer bound from (3.5) can be expressed as

nRA,S ≤ h(Y U
1 , . . . , Y

U
16)− h(HU,AX

A
6 +HU,BX

B
6 + Z | WA) + no(log2P ) + nε

= h(Y U
1 , . . . , Y

U
16)− h(HU,BX

B
6 + Z) + no(log2P ) + nε

= h(Y U
1 , . . . , Y

U
16)− h(HV,BX

B
6 + Z) + no(log2P ) + nε

= h(Y U
1 , . . . , Y

U
16)− h(Y V

6 ) + no(log2P ) + nε

≤ h(Y U
1 ) + · · ·+ h(Y U

16)− h(Y V
6 ) + no(log2P ) + nε . (3.6)

Following a similar process from the perspective of cell B, we obtain the

cell B rate outer bound as (3.7) below; additional details on how to derive this

expression are provided in Appendix 3.A.1.

nRB,S ≤ h(Y V
1 ) + · · ·+ h(Y V

16 )− h(Y U
3 ) + no(log2P ) + nε (3.7)

The separate expressions from (3.6) and (3.7) are combined together to obtain

an outer bound for the achievable rate across the whole network as

nRΣ(SB),S = nRA,S + nRB,S

≤ h(Y U
1 ) + h(Y U

2 ) + h(Y U
4 ) + · · ·+ h(Y U

16) + h(Y V
1 ) + · · ·+ h(Y V

5 )

+ h(Y V
7 ) + · · ·+ h(Y V

16 ) + no(log2P ) + nε

(a)

≤ n(λ1 + λ2 + λ4 + · · ·+ λ16 + λ1 + · · ·+ λ5 + λ7 + · · ·+ λ16)(log2P )

+ no(log2P ) + nε (3.8)

where λk represents the probability of occurrence of the corresponding state k

and reflects the effect of alternating connectivity, and (a) follows from the fact

that Gaussian distribution maximises differential entropy. Applying
∑16

k=1 λk = 1
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to (3.8), we obtain

nRΣ(SB),S ≤ n(2− λ3 − λ6)(log2P ) + no(log2P ) + nε .

Normalising by n(log2P ) and letting P →∞, results in

dΣ(SB),S ≤ 2− λ3 − λ6 . (3.9)

3.3.2 Genie aided bounds

Genie aided bounds are obtained by finding an outer bound on the rate achievable

at a single cell after providing it with enough extra information, i.e. ‘genies’, such

that the data required across the two cells can be decoded within that cell.

Starting with the genie aided bound for cell A, we have

nRΣ(GA),S ≤ I(WA,WB;Y U
1 , . . . , Y

U
16 , G

A
S ) + nε (3.10)

where GA
S represents the genie set required by cell A. Genies are necessary in cases

where no cell B data is received at cell A, thus GA
S consists of all the original

states from Fig. 3.2 that correspond to states S and T in Fig. 3.4. Considering

the corresponding entries from Table 3.1, we obtain

GA
S =

{
Y V

2 , . . . , Y
V

5 , Y
V

7 , . . . , Y
V

12 , Y
V

15 , Y
V

16

}
.

Having defined GA
S , the initial expression in (3.10) can be represented as

nRΣ(GA),S ≤ h(Y U
1 , . . . , Y

U
16 , G

A
S )− h(Y U

1 , . . . , Y
U

16 , G
A
S | WA,WB)︸ ︷︷ ︸

=no(log2P )

+nε

≤ h(Y U
1 ) + · · ·+ h(Y U

16) + h(Y V
2 ) + · · ·+ h(Y V

5 ) + h(Y V
7 ) + · · ·+ h(Y V

12 )

+ h(Y V
15 ) + h(Y V

16 ) + no(log2P ) + nε

(a)

≤ n(1 + λ2 + · · ·+ λ5 + λ7 + · · ·+ λ12 + λ15 + λ16)(log2P )

+ no(log2P ) + nε

(b)
= n(2− λ1 − λ6 − λ13 − λ14)(log2P ) + no(log2P ) + nε (3.11)

where (a) follows from the fact that Gaussian distribution maximises differential

entropy, and (b) follows from the fact that
∑16

k=1 λk = 1. Normalising by n(log2P )
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and letting P →∞, we have

dΣ(GA),S ≤ 2− λ1 − λ6 − λ13 − λ14 . (3.12)

Following a similar process for cell B, details for which are provided in Ap-

pendix 3.A.2, we obtain the cell B genie aided outer bound as in (3.13) below.

dΣ(GB),S ≤ 2− λ1 − λ3 − λ15 − λ16 (3.13)

Finally the expression for dΣ,S in Theorem 3.1 results by combining the sep-

arate bounds from (3.9), (3.12) and (3.13).

3.4 DOF outer bound for MISO/MIMO IBC

As outlined in Section 3.2, a MISO system with local CSIT and M ≥ 2 trans-

mit antennas achieves 2 DoF per cell provided there is no inter-cell interference.

Similarly, a MIMO system with no local CSIT having either M = 2 and N ≥ 2

or M ≥ 2 and N = 2 can also achieve 2 DoF per cell. This makes the two

settings equivalent from an achievable DoF perspective, since both apply spatial

multiplexing to resolve intra-cell interference. Based on this equivalence, it fol-

lows that the same outer bound applies to both cases. Therefore, in this section

we present a DoF outer bound for two-cell two-user-per-cell MISO/MIMO IBC

systems which handle intra-cell interference via spatial multiplexing.

Theorem 3.2. For the two-cell two-user-per-cell MISO/MIMO IBC with alter-

nating connectivity, where intra-cell interference is handled via spatial multiplex-

ing, the sum DoF, dΣ,M , can be characterised as

dΣ,M ≤ 2 + 2λ2 + λ4 + λ5 + λ7 + λ8 + Γ

where

Γ = min


2λ1

2λ3 + λ4 + λ5 + λ9 + · · ·+ λ12 + λ15 + λ16

2λ6 + λ7 + · · ·+ λ14 .

(3.14)

Proof. To obtain the overall outer bound, bounds originating from different sources

are merged together; one comes from the summation of outer bounds for the
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achievable rate at each user, while another two arise from genie aided bounds

obtained on a per cell basis. Due to the length of the proof itself, we present an

abbreviated version in this section; additional details are provided in Appendix

3.B.

3.4.1 Sum bound

To obtain the sum DoF outer bound, we require separate expressions for the

achievable rate at each user, which are then combined together. Starting with

the achievable rate at user a1, we have

nRa1,M ≤ I(WA;Y a1
1 , . . . , Y a1

16 ) + nε

where WA is the message set from BS A and Y a1
k is the signal received by user

a1 during state k. This can be further represented as

nRa1,M

≤ h(Y a1
1 , . . . , Y a1

16 )− h(Y a1
1 , . . . , Y a1

16 | WA) + nε

= h(Y a1
1 , . . . , Y a1

16 )− h(Y a1
2 , . . . , Y a1

15 | WA)− h(Y a1
1 , Y a1

16 | WA, Y a1
2 , . . . , Y a1

15 )︸ ︷︷ ︸
Ea1

+nε.

(3.15)

Next, it can be observed that Y a1
2 , . . . , Y a1

15 can be divided into two sets as follows

L′1 = {2, 3, 4, 5, 7, 9, 11, 15} and L1 = {6, 8, 10, 12, 13, 14}

where for the L′1 set signals received at a1 consist only of an XA component,

which has no effect on entropy, and noise, whose contribution can be represented

as no(log2P ). For the L1 set, data received at a1 is a combination of XA, XB

and noise. Using this information (3.15), can be represented as

nRa1,M

≤ h(Y a1
1 , . . . , Y a1

16 )− h(Y a1
L1
| WA)− Ea1 + no(log2P ) + nε

(a)
= h(Y a1

1 , . . . , Y a1
16 )− h(Ha1,AX

A
6 +Ha1,BX

B
6 + Z,Ha1,AX

A
8 +Ha1,BX

B
8 + Z,

Ha1,AX
A
10 +Ha1,BX

B
10 + Z,Ha1,AX

A
12 +Ha1,BX

B
12 + Z,Ha1,AX

A
13 +Ha1,BX

B
13

+ Z,Ha1,AX
A
14 +Ha1,BX

B
14 + Z | WA)− Ea1 + no(log2P ) + nε
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(b)
= h(Y a1

1 , . . . , Y a1
16 )− h(Ha1,BX

B
6 + Z,Ha1,BX

B
8 + Z,Ha1,BX

B
10 + Z,Ha1,BX

B
12

+ Z,Ha1,BX
B
13 + Z,Ha1,BX

B
14 + Z)− Ea1 + no(log2P ) + nε

(c)
= h(Y a1

1 , . . . , Y a1
16 )− h(Hb2,BX

B
6 + Z,Hb1,BX

B
8 + Z,Hb2,BX

B
10 + Z,Hb1,BX

B
12

+ Z,Hb2,BX
B
13 + Z,Hb1,BX

B
14 + Z)− Ea1 + no(log2P ) + nε

(d)
= h(Y a1

1 , . . . , Y a1
16 )− h(Y b2

6 , Y b1
8 , Y b2

10 , Y
b1

12 , Y
b2

13 , Y
b1

14 )− Ea1 + no(log2P ) + nε

(3.16)

where (a) follows by expressing the received signals for the L1 set in terms of

their original components; (b) follows by removing the XA parts since they have

no effect on entropy and also removing the conditioning since XB and Z are

independent of WA; (c) is obtained by replacing channel coefficients from BS B

to user a1 with ones to cell B users, due to their statistical equivalence, and

lastly (d) is obtained by representing the XB and noise components in terms of

the signals received at the corresponding inter-cell interference free cell B users.

Finally, considering all elements of the first negative entropy term in (3.16) to be

independent of each other results in

nRa1,M ≤ h(Y a1
1 ) + · · ·+ h(Y a1

16 )− h(Y b2
6 )− h(Y b1

8 )− h(Y b2
10 )− h(Y b1

12 )− h(Y b2
13 )

− h(Y b1
14 )− Ea1 + no(log2P ) + nε . (3.17)

Following a similar process for the remaining users a2, b1 and b2 separately,

we obtain the inequalities in (3.18), (3.19) and (3.20). Further details on how

to derive these expressions are provided in Appendices 3.B.1, 3.B.2 and 3.B.3

respectively.

nRa2,M ≤ h(Y a2
1 ) + · · ·+ h(Y a2

16 )− h(Y b1
6 )− h(Y b2

7 )− h(Y b2
9 )− h(Y b1

11 )− h(Y b2
13 )

− h(Y b1
14 − Ea2 + no(log2P ) + nε (3.18)

nRb1,M ≤ h(Y b1
1 ) + · · ·+ h(Y b1

16 )− h(Y a1
3 )− h(Y a1

4 )− h(Y a1
9 )− h(Y a2

10 )− h(Y a1
15 )

− h(Y a2
16 )− Eb1 + no(log2P ) + nε (3.19)

nRb2,M ≤ h(Y b2
1 ) + · · ·+ h(Y b2

16 )− h(Y a2
3 )− h(Y a2

5 )− h(Y a1
11 )− h(Y a2

12 )− h(Y a1
15 )

− h(Y a2
16 )− Eb2 + no(log2P ) + nε (3.20)

Combining (3.17) to (3.20), the achievable sum rate across the whole network

is bounded as
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nRΣ(SB),M

= nRa1,M + nRa2,M + nRb1,M + nRb2,M

≤ h(Y a1
1 ) + h(Y a1

2 ) + h(Y a1
5 ) + · · ·+ h(Y a1

8 ) + h(Y a1
10 ) + h(Y a1

12 ) + h(Y a1
13 )

+ h(Y a1
14 ) + h(Y a1

16 ) + h(Y a2
1 ) + h(Y a2

2 ) + h(Y a2
4 ) + h(Y a2

6 ) + · · ·+ h(Y a2
9 )

+ h(Y a2
11 ) + h(Y a2

13 ) + h(Y a2
14 ) + h(Y a2

15 ) + h(Y b1
1 ) + · · ·+ h(Y b1

5 ) + h(Y b1
7 )

+ h(Y b1
9 ) + h(Y b1

10 ) + h(Y b1
13 ) + h(Y b1

15 ) + h(Y b1
16 ) + h(Y b2

1 ) + · · ·+ h(Y b2
5 )

+ h(Y b2
8 ) + h(Y b2

11 ) + h(Y b2
12 ) + h(Y b2

14 ) + h(Y b2
15 ) + h(Y b2

16 )− h(Y a1
15 )− h(Y a2

16 )

− h(Y b1
14 )− h(Y b2

13 )− Ea1 − Ea2 − Eb1 − Eb2 + no(log2P ) + nε . (3.21)

Next, we consider the remaining negative terms in (3.21) and pair one of {Ea1, Ea2,

Eb1, Eb2} with one of {h(Y a1
15 ), h(Y a2

16 ), h(Y b1
14 ), h(Y b2

13 )} to find a joint lower bound.

Starting with Ea1, we can express it as

Ea1 = h(Y a1
1 , Y a1

16 | WA, Y a1
2 , . . . , Y a1

15 )

= h(Y a1
16 | WA, Y a1

2 , . . . , Y a1
15 ) + h(Y a1

1 | WA, Y a1
2 , . . . , Y a1

16 )

(a)
= h(Ha1,AX

A
16 +Ha1,BX

B
16 + Z | WA) + h(Y a1

1 | WA, Y a1
2 , . . . , Y a1

16 )︸ ︷︷ ︸
≥h(Y a11 |W

A,Y a12 ,...,Y a116 ,W
B)

=no(log2P )

(b)

≥ h(Ha1,BX
B
16 + Z) + no(log2P )

where (a) follows by expressing Y a1
16 in terms of its original components and

considering it to be independent of Y a1
2 , . . . , Y a1

15 , and (b) follows by neglecting the

XA component since its effect is negligible with respect to entropy and removing

the conditioning since the remaining terms are independent of WA. Pairing Ea1

with h(Y a2
16 ), we obtain

h(Y a2
16 ) + Ea1

(a)

≥ h(Ha2,AX
A
16 + Z) + h(Ha1,BX

B
16 + Z) + no(log2P )

(b)
= h(Ha1,AX

A
16) + h(Ha1,BX

B
16) + no(log2P ) (3.22)

where (a) follows by representing Y a2
16 in terms of its original components, and (b)

follows by applying the fact that Ha2,A and Ha1,A are statistically equivalent, and

removing the noise components since their effect disappears with high SNR and

can therefore be integrated into the no(log2P ) term. Additionally, considering

h(Y a1
16 ) and the fact that Y a1

16 = Ha1,AX
A
16 +Ha1,BX

B
16 + Z, we can apply Lemma

3.1 from Appendix 3.C to obtain
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3.4. DOF outer bound for MISO/MIMO IBC

h(Y a1
16 ) ≤ h(Ha1,AX

A
16) + h(Ha1,BX

B
16) + no(log2P ). (3.23)

Subtracting (3.22) from (3.23), we obtain

h(Y a1
16 )− h(Y a2

16 )− Ea1 ≤ no(log2P ) . (3.24)

Applying a similar process to different pairings we can also establish the fol-

lowing inequalities

h(Y a2
15 )− h(Y a1

15 )− Ea2 ≤ no(log2P ) , (3.25)

h(Y b1
13 )− h(Y b2

13 )− Eb1 ≤ no(log2P ) , (3.26)

h(Y b2
14 )− h(Y b1

14 )− Eb2 ≤ no(log2P ) . (3.27)

Using (3.24) to (3.27) in the total rate expression from (3.21), we obtain

nRΣ(SB),M

≤ h(Y a1
1 ) + h(Y a1

2 ) + h(Y a1
5 ) + · · ·+ h(Y a1

8 ) + h(Y a1
10 ) + h(Y a1

12 ) + h(Y a1
13 )

+ h(Y a1
14 ) + h(Y a2

1 ) + h(Y a2
2 ) + h(Y a2

4 ) + h(Y a2
6 ) + · · ·+ h(Y a2

9 ) + h(Y a2
11 )

+ h(Y a2
13 ) + h(Y a2

14 ) + h(Y b1
1 ) + · · ·+ h(Y b1

5 ) + h(Y b1
7 ) + h(Y b1

9 ) + h(Y b1
10 )

+ h(Y b1
15 ) + h(Y b1

16 ) + h(Y b2
1 ) + · · ·+ h(Y b2

5 ) + h(Y b2
8 ) + h(Y b2

11 ) + h(Y b2
12 )

+ h(Y b2
15 ) + h(Y b2

16 ) + no(log2P ) + nε

(a)

≤ n(2 + 2λ1 + 2λ2 + λ4 + λ5 + λ7 + λ8)(log2P ) + no(log2P ) + nε (3.28)

where (a) follows by using the fact that Gaussian distribution maximises differ-

ential entropy and applying
∑16

k=1 λk = 1. Finally, normalising by n(log2P ) and

letting P →∞, we obtain the desired DoF sum bound as

dΣ(SB),M ≤ 2 + 2λ1 + 2λ2 + λ4 + λ5 + λ7 + λ8 . (3.29)

3.4.2 Genie aided bounds

The genie aided bounds for the MISO/MIMO scenario are obtained in a similar

way to the SISO ones from Section 3.3.2. However, in this case the number of

genies provided must ensure that 2 symbols from the other cell can be retrieved.
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3.4. DOF outer bound for MISO/MIMO IBC

Starting with the cell A genie aided DoF bound, we have

nRΣ(GA),M ≤ I(WA,WB;Y a1
1 , . . . , Y a1

16 , Y
a2

1 , . . . , Y a2
16 , G

A
M) + nε (3.30)

where GA
M represents the additional genie set required such that cell B data may

be reconstructed within cell A. The amount of genies required is either one or

two, depending on the number of signals containing cell B information reaching

cell A. Looking at all the possible topologies in Fig. 3.2, this corresponds to

GA
M =

{
2× [Y B

2 , Y
B

3 , Y
B

4 , Y
B

5 ], Y B
7 , . . . , Y

B
12 , Y

B
15 , Y

B
16

}
where B is used to represent either b1 or b2. Having defined GA

M , this can be

integrated into (3.30) as

nRΣ(GA),M ≤ h(Y a1
1 , . . . , Y a1

16 , Y
a2

1 , . . . , Y a2
16 , G

A
M) + nε

− h(Y a1
1 , . . . , Y a1

16 , Y
a2

1 , . . . , Y a2
16 , G

A
M | WA,WB)︸ ︷︷ ︸

=no(log2P )

≤ h(Y a1
1 ) + · · ·+ h(Y a1

16 ) + h(Y a2
1 ) + · · ·+ h(Y a2

16 ) + 2h(Y B
2 ) + 2h(Y B

3 )

+ 2h(Y B
4 ) + 2h(Y B

5 ) + h(Y B
7 ) + · · ·+ h(Y B

12 ) + h(Y B
15 ) + h(Y B

16 )

+ no(log2P ) + nε

(a)

≤ n(2 + 2λ2 + 2λ3 + 2λ4 + 2λ5 + λ7 + · · ·+ λ12 + λ15 + λ16)(log2P )

+ no(log2P ) + nε (3.31)

where (a) follows by using the fact that Gaussian distribution maximises differ-

ential entropy and applying
∑16

k=1 λk = 1. Normalising by n(log2P ) and letting

P →∞, results in

dΣ(GA),M ≤ 2 + 2λ2 + 2λ3 + 2λ4 + 2λ5 + λ7 + · · ·+ λ12 + λ15 + λ16 . (3.32)

Following a similar process for cell B, details for which are provided in Ap-

pendix 3.B.4, we have

dΣ(GB),M ≤ 2 + 2λ2 + λ4 + λ5 + 2λ6 + 2λ7 + 2λ8 + λ9 + · · ·+ λ14 . (3.33)

Finally, the result for dΣ,M in Theorem 3.2 is obtained by combining the

bounds from (3.29), (3.32) and (3.33) together.
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3.5. Achievable DoF for SISO IBC

Remark 3.1. Similarities can be observed between the IBC outer bounds in The-

orem 3.1 and Theorem 3.2, and the one for the two-user SISO IC from [42]. This

is expected since the IC is essentially a subset of the IBC having only one user

per cell. Before drawing any similarities we need to express the outer bound from

Theorem 3.1 in an alternative way. Using the fact that
∑16

k=1 λk = 1 this can be

represented as

dΣ,S ≤ 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + Ψ (3.34)

where

Ψ = min


λ1 + λ13 + · · ·+ λ16

λ3 + λ15 + λ16

λ6 + λ13 + λ14 .

The reformulated version of Theorem 3.1, alongside with the outer bound in

Theorem 3.2, and the SISO IC result in [42] can collectively be summarised as

dΣ ≤ dc + λ̃d + λ̃e

where dc is the achievable DoF per cell when no inter-cell interference is present.

This is equal to 1 for the two-user SISO IC and the two-cell two-user-per-cell

SISO IBC, and corresponds to 2 for the MISO/MIMO IBC counterpart. For all

scenarios, λ̃d consists exclusively of the probability of occurrence of all the states

that directly obtain higher DoF than the fully connected one; its fixed presence

in the outer bound reflects the corresponding DoF gain. Finally, λ̃e depends on

which bound is the most restrictive, but is always a function of the probability

of occurrence of the states which inherently obtain less DoF than the inter-cell

interference free one.

3.5 Achievable DoF for SISO IBC

Without knowledge of the network’s topological structure, a fully connected sce-

nario has to be assumed at all times, achieving a sum DoF of 1 across all states

for the SISO system. However, if global topological CSIT is provided, the BSs

can adapt their transmission strategies to exploit the partially connected states

and obtain a DoF gain.
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3.5. Achievable DoF for SISO IBC

3.5.1 Single state has a probability of occurrence of one

This is an extreme case for the scenario considered, with λi = 1 and λj = 0

for j = 1, . . . , 16, j 6= i. It essentially implies connectivity is fixed in state i

throughout the whole transmission process.

For i ∈ {2, 4, 5, 7, . . . , 12} there is at least one user per cell that is free from

inter-cell interference. These states represent the best case scenario from an

achievable DoF perspective, with the outer bound in Theorem 3.1 corresponding

to dΣ,S ≤ 2. Having knowledge of the network’s structure, both BSs can operate

simultaneously and serve one inter-cell interference free user per cell, achieving

2 DoF across the whole network. This is equal to the outer bound itself, and

corresponds to a twofold increase over the no global topological CSIT case.

For the remaining states i ∈ {1, 3, 6, 13, . . . , 16}, at least one of the two cells

has both users experiencing inter-cell interference and the outer bound from The-

orem 3.1 corresponds to dΣ,S ≤ 1. Sum DoF of 1 can be achieved simply by

operating one BS at a time and serving one user within the corresponding cell.

3.5.2 Arbitrary state probabilities

Without global topological CSIT, only 1 DoF can be achieved regardless of the

current connectivity state. However, if this information is available, BSs can use

it to adapt their transmission strategy accordingly. Both BSs operate simultane-

ously for states where there is at least one inter-cell interference free user in each

cell, delivering a symbol each to two users from different cells. For the remaining

states, only one BS needs to be operated, delivering one symbol across the whole

network. Therefore, considering all the states in Fig. 3.2 it is possible to obtain

DoF =

{
1 for states 1, 3, 6, 13, 14, 15, 16

2 for states 2, 4, 5, 7, 8, 9, 10, 11, 12

= 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 . (3.35)

Higher DoF can be achieved via joint coding across states. Within the SISO

IBC setting, joint coding can be used across a variety of state combinations to

deliver a total of 4 symbols over 3 states. Considering the alternating connectivity

states in Fig. 3.2, it can be noticed that the same interference links appear twice

over states {3, 13, 14}. Thus, the three states in this set can be combined together
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3.5. Achievable DoF for SISO IBC

to resolve inter-cell interference. Defining sr as the symbol intended for user r,

then for scheme S1, which performs joint coding across states {3, 13, 14}, BSs

transmit according to Table 3.2. User b2 obtains sb2 directly from the signal

received in state 13, while the combination of received signals at the remaining

users allows for interference cancellation decoding. For users a1 and a2, received

signals are functions of sa1, sa2 and sb2. Having three independent equations in

terms of three different symbols, then the desired data can be obtained at the

respective users. For user b1, all received signals are functions of (sa1 + sa2), sb1

and sb2. Considering (sa1 + sa2) as a single symbol, we have three independent

equations for three unknowns and can solve for sb1. Therefore 1 symbol each is

transmitted to all 4 users in 3 channel uses, leading to an average of 4
3

DoF per

state.

Table 3.2: Transmission strategy for scheme S1.

Transmitted symbols State 3 State 13 State 14
XA (sa1 + sa2) (sa1 + sa2) sa1

XB sb1 sb2 sb2

Joint coding can also be applied across other sets of states. In particular,

states {6, 15, 16} can be combined together using scheme S2 in Table 3.3 and

states {1, 3, 6} can be combined via scheme S3 in Table 3.4. In each case 4
3

DoF per state are achieved. Additionally for quasi-static fading channels, where

the value of the channel links does not change across the states involved in the

scheme, it is also possible to code across states {13, 15, 16} using scheme S4 in

Table 3.5 or across states {14, 15, 16} via scheme S5 in Table 3.6.

Table 3.3: Transmission strategy for scheme S2.

Transmitted symbols State 6 State 15 State 16
XA sa2 sa1 sa1

XB (sb1 + sb2) (sb1 + sb2) sb1

Table 3.4: Transmission strategy for scheme S3.

Transmitted symbols State 1 State 3 State 6
XA (sa1 + sa2) (sa1 + sa2) sa1

XB (sb1 + sb2) sb1 (sb1 + sb2)
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3.5. Achievable DoF for SISO IBC

Table 3.5: Transmission strategy for scheme S4.

Transmitted symbols State 13 State 15 State 16
XA (sa1 + sa2) sa1 sa2

XB sb2 sb1 sb2

Table 3.6: Transmission strategy for scheme S5.

Transmitted symbols State 14 State 15 State 16
XA (sa1 + sa2) sa1 sa2

XB sb1 sb1 sb2

Due to the repetition of the states involved in schemes S1 to S5, no more than

two can be combined together. The possible combinations are: S1 and S2, S3

and S4, or S3 and S5. With arbitrary state probabilities, achievable DoF for each

combination can be characterised as follows.

(i) Schemes S1 and S2:

dΣ,S−S1,S2 = λ1 + 2λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + 4α1 + 4β1 + (λ3 − α1)

+ (λ13 − α1) + (λ14 − α1) + (λ6 − β1) + (λ15 − β1) + (λ16 − β1)

= 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + θ1 + ψ1

where θ1 = min{λ3, λ13, λ14} and ψ1 = min{λ6, λ15, λ16}.

(ii) Schemes S3 and S4:

dΣ,S−S3,S4 = 2λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + λ14 + 4α2 + 4β2 + (λ1 − α2)

+ (λ3 − α2) + (λ6 − α2) + (λ13 − β2) + (λ15 − β2) + (λ16 − β2)

= 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + θ2 + ψ2

where θ2 = min{λ1, λ3, λ6} and ψ2 = min{λ13, λ15, λ16}.

(iii) Schemes S3 and S5:

dΣ,S−S3,S4 = 2λ2 + λ4 + λ5 + λ7 + · · ·+ λ13 + 4α2 + 4β3 + (λ1 − α2)

+ (λ3 − α2) + (λ6 − α2) + (λ14 − β3) + (λ15 − β3) + (λ16 − β3)

= 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + θ2 + ψ3

where θ2 is as defined in (ii) and ψ3 = min{λ14, λ15, λ16}.
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3.5. Achievable DoF for SISO IBC

Combining dΣ,S−S1,S2 , dΣ,S−S3,S4 and dΣ,S−S3,S5 , into a single expression for the

maximum achievable DoF we obtain

dΣ,S−Ach = 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + Ψ̃ (3.36)

where Ψ̃ = max{θ1 + ψ1, θ2 + ψ2, θ2 + ψ3} for quasi-static fading channels, and

Ψ̃ = θ1 + ψ1 for the fast-fading scenario.

Note that the only difference between the outer bound in Theorem 3.1 (see the

reformulated expression in (3.34)) and the achievable DoF expression in (3.36)

is the final term. In fact for any state probabilities such that Ψ̃ = Ψ, the two

are equal, resulting in an outer bound which is achievable. For example, this

happens for λ1 = λ3 = λ6 = λ13 = · · · = λ16 = 0 and general values of λi where

i ∈ I = {2, 4, 5, 7, . . . , 12} and
∑

i∈I λi = 1.

3.5.3 Equal state probabilities

To understand the advantages obtained from this type of scenario on average, we

now consider the case where all states are equiprobable, i.e. λ1 = · · · = λ16 = 1
16

,

which can occur in a fast fading context. Using the result of Theorem 3.1 we can

establish the following corollary.

Corollary 3.1. For the two-cell two-user-per-cell SISO IBC with alternating con-

nectivity and equiprobable states, dΣ,S ≤ 13
4
.

Without global topological CSIT, only sum DoF of 1 can be achieved. How-

ever if this information is available the DoF in (3.35) can be obtained; with

equiprobable states this implies 25 symbols are transmitted in 16 channel uses

on average, equivalent to 1 9
16

DoF. While this is an improvement of 9
16

over the

no global topological CSIT case, it is still 3
16

DoF away from the outer bound

in Corollary 3.1. Applying joint coding across states the DoF in (3.36) can be

achieved. With equiprobable states this is equal to 111
16

and corresponds to a

gain of 11
16

DoF over the no global topological CSIT setting. While this is not

equivalent to the outer bound in Corollary 3.1, there is only a difference of 1
16

DoF between the two, i.e. 96.4% of the outer bound is achieved.
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3.6 Achievable DoF for MISO/MIMO IBC

In this section we investigate the achievability of the outer bound in Theorem 3.2.

Without global topological CSIT, a fully connected network has to be assumed at

all times. This allows only for one possible transmission strategy where the BSs

are given unique transmission opportunities, thereby achieving 2 DoF across all

states. However, if global topological information is provided, the BSs can adapt

their strategies in order to exploit the partially connected states and achieve

higher DoF.

3.6.1 Single state has a probability of occurrence of one

This represents an extreme case for the scenario considered in this work, where

connectivity is fixed in a single state throughout the whole transmission process,

i.e. λi = 1 and λj = 0 for j = 1, . . . , 16, j 6= i.

For i = 2, Theorem 3.2 can be represented as dΣ,M ≤ 4. From an achievable

DoF perspective, this situation corresponds to the best case scenario, since all

users are inter-cell interference free. Having knowledge of the network’s topology,

both BSs can operate simultaneously and deliver a symbol each to their respective

users, thereby achieving 4 DoF across the whole network. This is equal to the

outer bound itself, and corresponds to a twofold increase in achievable DoF over

the no global topological CSIT case.

For i ∈ {4, 5, 7, 8}, three out of the four users are free from inter-cell inter-

ference and the outer bound in Theorem 3.2 corresponds to dΣ,M ≤ 3. Since

network topology is known, both BSs can operate simultaneously to serve the

three inter-cell interference free users, while the fourth user is not served due

to inter-cell interference. This achieves 3 DoF over the whole network, which is

equal to the derived outer bound and provides a gain of 1 DoF over the case

where global topological CSIT is not provided.

For the remaining states i ∈ {1, 3, 6, 9, . . . , 16}, the outer bound from Theorem

3.1 is dΣ,M ≤ 2. Sum DoF of 2 can be achieved simply by operating one BS at a

time and delivering one symbol each to the two users in the corresponding cell.

3.6.2 Arbitrary state probabilities

Without global topological CSIT, only 2 DoF can be achieved regardless of the

current connectivity state; however, if this information is provided, the BSs can
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adapt their transmission strategies to exploit the partially connected states. Con-

sidering the set of states in Fig. 3.2, it is possible to achieve

DoF =


2 for states 1, 3, 6, 9, 10, 11, 12, 13, 14, 15, 16

3 for states 4, 5, 7, 8

4 for state 2

= 2 + 2λ2 + λ4 + λ5 + λ7 + λ8 . (3.37)

Higher DoF can be obtained via scheme S6 which applies joint coding across

states. Looking at the states in Fig. 3.2, it can be noticed that the interference

links present in states 3 and 6 are contained within state 1; therefore, state 1 can

be used to resolve them. The transmission strategy for scheme S6 is outlined in

Table 3.7.

Table 3.7: Transmission strategy for scheme S6.

Transmitted symbols State 3 State 6 State 1
XA sA sA sA
XB sB sB sB

For the MISO case, we define the signals transmitted from BS A as sA =

(va1sa1 + va2sa2) and sA = (
¯
va1

¯
sa1 +

¯
va2

¯
sa2), where vi and

¯
vi are M × 1 ZF

precoders. These are constructed using local CSIT knowledge according to the

orthogonality principles outlined in Section 3.2, and ensure that each user can

extract the desired symbol from the combined signal transmitted by the corre-

sponding BS. The symbols transmitted by BS B are defined in a similar manner.

By following the transmission strategy in Table 3.7, signals received over the

three states at users a1 and a2 consist only of sA, sA and sB, thus both users can

decode for sA and sA. Additionally, due to the ZF precoding, users only see the

desired part of the combined signal, thus a1 obtains {sa1,
¯
sa1}, while a2 obtains

{sa2,
¯
sa2}. A similar decoding process is carried out at users b1 and b2 to obtain

{sb1,
¯
sb1} and {sb2,

¯
sb2} respectively. Therefore, across the 3 states a total of 8

new symbols are delivered, 2 for each user. Note that since the precoders depend

on the corresponding channels, for the MISO case this scheme can only be applied

in a slow-fading scenario, where the channel value remains constant across states

{1, 3, 6}.

For the MIMO case, we define the signals transmitted from BS A as sA =

(va1sa1 + va2sa2) and sA = (
¯
va1

¯
sa1 +

¯
va2

¯
sa2), where vi and

¯
vi are M × 1 are
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pseudo-random precoders which change for every state involved in scheme S6.

The symbols transmitted by BS B are similarly defined. Considering users a1

and a2, it can be seen that across the whole set of states, received signals consist

only of sa1, sa2,
¯
sa1,

¯
sa2,

¯
sb1 and

¯
sb2. Due to the multiple antenna configuration

at the transmitters and receivers, both users a1 and a2 are in possession of six

independent observations (two from each state) and can thus decode for their

desired symbols, {sa1,
¯
sa1} and {sa2,

¯
sa2} respectively. A similar decoding process

is carried out at users b1 and b2 to obtain {sb1,
¯
sb1} and {sb2,

¯
sb2} respectively.

Therefore, by applying this scheme, each user obtains 2 new symbols across 3

states. For the MIMO case this scheme is applicable to both fast-fading or slow-

fading channel scenarios.

Using scheme S6, for arbitrary state probabilities, achievable DoF can be

characterised as

dΣ,M−Ach = 4λ2 + 3(λ4 + λ5 + λ7 + λ8) + 2(λ9 + · · ·+ λ16) + 8γ

+ 2(λ1 − γ) + 2(λ3 − γ) + 2(λ6 − γ)

= 2 + 2λ2 + λ4 + λ5 + λ7 + λ8 + 2Γ̃ (3.38)

where 2Γ̃ = min{λ1, λ3, λ6}.

Note the similarity between the achievable DoF in (3.38) and the outer bound

in Theorem 3.2. The only difference is in the final term, such that for any state

probabilities that result in 2Γ̃ = Γ the two are equal, leading to a tight outer

bound. For example, this occurs when λ1 ≤ min{λ3, λ6} for arbitrary values of

λi ∀i = 1, . . . , 16.

3.6.3 Equal state probabilities

We now consider the case where all states are equiprobable, i.e. λ1 = · · · =

λ16 = 1
16

. This can occur for a fast fading context, and provides us with an

understanding of the advantages that can be obtained from this type of scenario

on average. For equiprobable states, the result in Theorem 3.2 can be used to

establish the following corollary.

Corollary 3.2. For the two-cell two-user-per-cell MISO/MIMO IBC with alter-

nating connectivity and equiprobable states, where intra-cell interference is han-

dled via spatial multiplexing, dΣ,M ≤ 21
2
.
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Without global topological CSIT, only a sum DoF of 2 can be achieved. How-

ever if topological CSIT is available, the DoF in (3.37) can be obtained; with

equiprobable states this is equivalent to 23
8

DoF, since 38 symbols are transmit-

ted in 16 channel uses on average. While this is an improvement of 3
8

DoF over

the no global topological CSIT case, it is still 1
8

DoF away from the outer bound

value established in Corollary 3.2. Applying joint coding across states, the DoF

in (3.38) can be achieved, with equiprobable states this results in 21
2

DoF. This

corresponds to a gain of 1
2

DoF over the no global topological CSIT setting, and

is equal to the outer bound value from Corollary 3.2.

3.7 Applicability to wired network equivalents

In [20] it was established that under the TIM framework, the capacity of a wireless

network and the corresponding wired instance are equivalent in their normalised

forms. The term ‘corresponding’ implies that the two networks have the same

underlying noiseless linear network structure. For wireless networks, normalised

capacity represents the achievable rate normalised by log2SNR as SNR → ∞,

i.e. DoF. For wired networks, normalised capacity refers to the capacity of the

network divided by the capacity of a single link, i.e. divided by log2|GF|, where

GF represents the finite Galois field.

This equivalence essentially implies that all networks (either wired or wireless)

with the same logical end-to-end topology have the same normalised capacity, and

requires wired networks to be SISO ones where each source has only one outgoing

edge and each destination has only one incoming edge. Both wireless scenarios

considered in this work can be mapped to such wired equivalent networks, exam-

ples of which are provided in Fig. 3.5 and Fig. 3.6. Here sources are in black,

destinations are in white and intermediate nodes are in grey. Both figures rep-

resent the fully connected state, i.e. state 1 in Fig. 3.2, however the presence of

the dotted red lines is variable to reflect the alternating connectivity. For wired

networks connectivity can change due to variations in the linear network coding

coefficients. Therefore, from the results of Theorems 3.1 and 3.2 we can establish

the corresponding wired network results as stated in Corollaries 3.3 and 3.4.

Corollary 3.3. The normalised sum capacity of a wired network with the same

end-to-end topology as the wireless SISO network considered in this chapter is

upper bounded by 2− Λ, where Λ is defined as in (3.3).
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A
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D

C

a1G a1a1

a1H a1a2

a1I ab1

a1J a1b2

B

F

a1

a2

b1

b2

Figure 3.5: Wired network equivalent for SISO scenario.

A

E

D

C

a1 A1 a1G a1a1

a2 A2 a1H a1a2

b1 B1 a1I ab1

b2 B2 a1J a1b2

B

F

Figure 3.6: Wired network equivalent for MISO/MIMO scenario.
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3.8. Conclusion

Corollary 3.4. The normalised sum capacity of a wired network with the same

end-to-end topology as the wireless MISO/MIMO network considered in this chap-

ter is upper bounded by 2 + 2λ2 + λ4 + λ5 + λ7 + λ8 + Γ, where Γ is defined as in

(3.14).

Note that the bounds in these corollaries have also been confirmed by deriving

the outer bounds for the wired scenarios, i.e. using discrete rather than differential

entropy and omitting noise considerations. Details are not provided, since our

main focus is on wireless networks.

3.8 Conclusion

In this chapter we studied the DoF of a two-cell two-user-per-cell IBC with alter-

nating connectivity and global topological interference management. Our analysis

was first carried out for SISO systems, and later extended to MISO and MIMO

ones. For each setting, we derived novel DoF outer bounds and investigated

their achievability. We also proposed new transmission schemes based on joint

coding across states and demonstrated under what conditions the derived outer

bounds are achievable. In particular, when a single state has a probability of

occurrence equal to one, the bounds are tight and for the best case scenario there

is a twofold increase in achievable DoF over the no global topological CSIT case.

Additionally, when all states are equiprobable, the SISO system obtains a gain

of 11
16

DoF and achieves 96.4% of the derived outer bound. For the corresponding

MISO/MIMO scenario, there is a gain of 1
2

DoF and the outer bound itself can

be achieved. Our results clearly show that significant DoF gains can be obtained

when transmitters are provided with global topological information, indicating

that even such a minimal level of global CSIT is still highly useful.

Appendix 3.A

Additional details for proof of Theorem 3.1

3.A.1 Derivation of cell B rate outer bound in (3.7)

Considering the cell B achievable rate, we have

nRB,S ≤ I(WB;Y V
1 , . . . , Y

V
16 ) + nε
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(a)
= h(Y V

1 , . . . , Y
V

16 )− h(Y V
Q , Y

V
R , Y

V
S , Y

V
T | WB) + nε

= h(Y V
1 , . . . , Y

V
16 )− h(Y V

R , Y
V
S , Y

V
T | WB)− h(Y V

Q , | WB, Y V
R , Y

V
S , Y

V
T )︸ ︷︷ ︸

≥H(Y V
Q
,|WB,Y V

R
,Y V
S
,Y V
T
,WA)

=no(log2P )

+nε

(b)

≤ h(Y V
1 , . . . , Y

V
16 )− h(Y V

R , Y
V
S , Y

V
T | WB) + no(log2P ) + nε (3.39)

where (a) follows since the original set of 16 states is contained in states Q, R, S

and T , and (b) follows since conditioning reduces entropy and the effect of noise

disappears at high SNR.

Considering (3.39) and the state configurations in Fig. 3.4, it can be noticed

that the cell B received signal in states R and T consists only of an XB component

and noise. The XB component has no effect on entropy, and the effect of noise can

be represented as no(log2P ). For all states corresponding to S, the cell B received

signals are a combination of XA, XB and noise. The XB component is negligible

with respect to entropy. The XA and noise components are independent of WB,

and due to the statistical equivalence of HV,A and HU,A can be represented in

terms of the signal received at user U , provided that U is free from inter-cell

interference. Comparing the list of S states from Table 3.1, this is guaranteed as

being always possible regardless of the current (U, V ) combination only for state

3. Using this information we can express (3.39) as

nRB,S ≤ h(Y V
1 , . . . , Y

V
16 )− h(HU,AX

A
3 +HU,BX

B
3 + Z) + no(log2P ) + nε

= h(Y V
1 , . . . , Y

V
16 )− h(HU,AX

A
3 + Z) + no(log2P ) + nε

≤ h(Y V
1 ) + · · ·+ h(Y V

16 )− h(Y U
3 ) + no(log2P ) + nε

which is equivalent to (3.7).

3.A.2 Derivation of cell B genie aided DoF bound in (3.13)

The genie aided bound for the cell B achievable rate is given by

nRΣ(GB),S ≤ I(WA,WB;Y V
1 , . . . , Y

V
16 , G

B
S ) + nε (3.40)

where GB
S represents the genie set required at cell B such that the data required

across the two cells can be decoded within cell B. Genies are necessary when no

cell A data is received in cell B, which corresponds to states R and T in Table

3.1, resulting in

55



3.B. Additional details for proof of Theorem 3.2

GB
S = {Y U

2 , Y
U

4 , . . . , Y
U

14} . (3.41)

Integrating GB
S into (3.40), we obtain

nRΣ(GB),S

≤ h(Y V
1 , . . . , Y

V
16 , G

B
S )− h(Y V

1 , . . . , Y
V

16 , G
B
S | WA,WB)︸ ︷︷ ︸

=no(log2P )

+nε

≤ h(Y V
1 ) + · · ·+ h(Y V

16 ) + h(Y U
2 ) + h(Y U

4 ) + · · ·+ h(Y U
14) + no(log2P ) + nε

(a)

≤ n(2− λ1 − λ3 − λ15 − λ16) + no(log2P ) + nε

where (a) follows from the fact that Gaussian distribution maximises differential

entropy and using
∑16

k=1 λk = 1. Normalising by n(log2P ) and letting P → ∞,

we obtain the cell B genie aided DoF bound in (3.13).

Appendix 3.B

Additional details for proof of Theorem 3.2

3.B.1 Derivation of a2’s achievable rate bound in (3.18)

For user a2, we have

nRa2,M

≤ I(WA;Y a2
1 , . . . , Y a2

16 ) + nε

= h(Y a2
1 , . . . , Y a2

16 )− h(Y a2
1 , . . . , Y a2

16 | WA) + nε

= h(Y a2
1 , . . . , Y a2

16 )− h(Y a2
L′2
, Y a2

L2
| WA)− h(Y a2

1 , Y a2
15 | WA, Y a2

2 , . . . , Y a2
14 , Y

a2
16 )︸ ︷︷ ︸

Ea2

+nε

(3.42)

where L′2 = {2, 3, 4, 5, 8, 10, 12, 16} and L2 = {6, 7, 9, 11, 13, 14}.

For the L′2 set, the a2 received signal consists only of an XA component,

which has no effect on entropy and can therefore be ignored, and noise whose

contribution is no(log2P ). For the L2 set, data received at a2 is a combination

of XA, XB and noise. Using this information, (3.42) can be expressed as
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nRa2,M

≤ h(Y a2
1 , . . . , Y a2

16 )− h(Y a2
L2
| WA)− Ea2 + no(log2P ) + nε

(a)
= h(Y a2

1 , . . . , Y a2
16 )− h(Ha2,AX

A
6 +Ha2,BX

B
6 + Z,Ha2,AX

A
7 +Ha2,BX

B
7 + Z,

Ha2,AX
A
9 +Ha2,BX

B
9 + Z,Ha2,AX

A
11 +Ha2,BX

B
11 + Z,Ha2,AX

A
13 +Ha2,BX

B
13

+ Z,Ha2,AX
A
14 +Ha2,BX

B
14 + Z | WA)− Ea2 + no(log2P ) + nε

(b)
= h(Y a2

1 , . . . , Y a2
16 )− h(Hb1,BX

B
6 + Z,Hb2,BX

B
7 + Z,Hb2,BX

B
9 + Z,Hb1,BX

B
11

+ Z,Hb2,BX
B
13 + Z,Hb1,BX

B
14 + Z)− Ea2 + no(log2P ) + nε

(c)
= h(Y a2

1 , . . . , Y a2
16 )− h(Y b1

6 , Y b2
7 , Y b2

9 , Y b1
11 , Y

b2
13 , Y

b1
14 )− Ea2 + no(log2P ) + nε

(3.43)

where (a) follows by expressing the signal in the L2 set in terms of their separate

components; (b) follows by ignoring the XA parts since they don’t have any effect

on entropy and replacing channel coefficients from BS B to user a2 with ones to

cell B users, due to their statistical equivalence, and (c) is obtained by replacing

the XB and noise components with the equivalent received signals at cell B inter-

cell interference free users. Finally, by considering all the components of the first

negative term in (3.43) to be independent of each other, we obtain (3.18).

3.B.2 Derivation of b1’s achievable rate bound in (3.19)

For user b1, we have

nRb1,M ≤ I(WB;Y b1
1 , . . . , Y b1

16 ) + nε

= h(Y b1
1 , . . . , Y b1

16 )− h(Y b1
1 , . . . , Y b1

16 | WB) + nε

= h(Y b1
1 , . . . , Y b1

16 )− h(Y b1
L′3
, Y b1

L3
| WB)

− h(Y b1
1 , Y b1

13 | WB, Y b1
2 , . . . , Y b1

12 , Y
b1

14 , Y
b1

15 , Y
b1

16 )︸ ︷︷ ︸
Eb1

+nε (3.44)

where L′3 = {2, 5, 6, 7, 8, 11, 12, 14} and L3 = {3, 4, 9, 10, 15, 16}.

For the L′3 set, the signal received at b1 consists only of an XB component

which is a function of WB and is therefore negligible with respect to entropy,

and noise whose contribution is no(log2P ). Taking this into consideration, and

expressing the received signals for the L3 set in terms of their original components,

allows us to express

57



3.B. Additional details for proof of Theorem 3.2

nRb1,M

≤ h(Y b1
1 , . . . , Y b1

16 )− h(Hb1,BX
A
3 +Hb1,BX

B
3 + Z,Hb1,BX

A
4 +Hb1,BX

B
4 + Z,

Hb1,BX
A
9 +Hb1,BX

B
9 + Z,Hb1,BX

A
10 +Hb1,BX

B
10 + Z,Hb1,BX

A
15 +Hb1,BX

B
15

+ Z,Hb1,BX
A
16 +Hb1,BX

B
16 + Z, | WB)− Eb1 + no(log2P ) + nε

(a)
= h(Y b1

1 , . . . , Y b1
16 )− Eb1 − h(Ha1,AX

A
3 + Z,Ha1,AX

A
4 + Z,Ha1,AX

A
9 + Z,

Ha2,AX
A
10 + Z,Ha1,AX

A
15 + Z,Ha2,AX

A
16 + Z) + no(log2P ) + nε

(b)
= h(Y b1

1 , . . . , Y b1
16 )− h(Y a1

3 , Y a1
4 , Y a1

9 , Y a2
10 , Y

a1
15 , Y

a2
16 )− Eb1 + no(log2P ) + nε

(3.45)

where (a) follows by removing the XB components, since they have no effect on

entropy, and replacing the channel coefficients from BS B to user b1 with ones to

cell A users, since they are statistically equivalent, and (b) follows by representing

the XA and noise components using the signals received at inter-cell interference

free cell A users. Finally, (3.19) is obtained by considering all the components of

the first negative term in (3.45) to be independent of each other.

3.B.3 Derivation of b2’s achievable rate bound in (3.20)

For user b2, we have

nRb2,M ≤ I(WB;Y b2
1 , . . . , Y b2

16 ) + nε

= h(Y b2
1 , . . . , Y b2

16 )− h(Y b2
1 , . . . , Y b2

16 | WB) + nε

= h(Y b2
1 , . . . , Y b2

16 )− h(Y b2
L′4
, Y b2

L4
| WB)

− h(Y b2
1 , Y b2

14 | WB, Y b2
2 , . . . , Y b2

13 , Y
b2

15 , Y
b2

16 )︸ ︷︷ ︸
Eb2

+nε (3.46)

where L′4 = {2, 4, 6, 7, 8, 9, 10, 13} and L4 = {3, 5, 11, 12, 15, 16}.

For the L′4 set, the signal received at b2 consists only of an XB component

which has no effect on entropy, and noise whose contribution is no(log2P ). For

the L4 set, the data received at b2 consists of XA, XB and noise. Therefore we

can express (3.46) as

nRb2,M

≤ h(Y b1
1 , . . . , Y b1

16 )− h(Hb2,BX
A
3 +Hb2,BX

B
3 + Z,Hb2,BX

A
5 +Hb2,BX

B
5 + Z,
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Hb2,BX
A
11 +Hb2,BX

B
11 + Z,Hb2,BX

A
12 +Hb2,BX

B
12 + Z,Hb2,BX

A
15 +Hb2,BX

B
15

+ Z,Hb2,BX
A
16 +Hb2,BX

B
16 + Z, | WB)− Eb2 + no(log2P ) + nε

(a)
= h(Y b2

1 , . . . , Y b2
16 )− h(Ha2,AX

A
3 + Z,Ha2,AX

A
5 + Z,Ha1,BX

A
11 + Z,Ha2,BX

A
12

+ Z,Ha1,BX
A
15 + Z,Ha2,BX

A
16 + Z)− Eb2 + no(log2P ) + nε

(b)
= h(Y b2

1 , . . . , Y b2
16 )− h(Y a2

3 , Y a2
5 , Y a1

11 , Y
a2

12 , Y
a1

15 , Y
a2

16 )− Eb2 + no(log2P ) + nε

(3.47)

where (a) follows by removing the XB components, since they are functions of

WB and thus negligible with respect to entropy, and also replacing the channel

coefficients from BS B to user b2 with ones to cell A users, since they are statisti-

cally equivalent, and (b) is obtained by representing the remaining XA and noise

components in terms of the signals received at inter-cell interference free cell A

users. Finally, by considering all the components of the first negative entropy

term in (3.47) to be independent of each other we obtain (3.20).

3.B.4 Derivation of cell B genie aided DoF bound in (3.33)

The genie aided bound for the cell B achievable rate is given by

nRΣ(GB),M ≤ I(WA,WB;Y b1
1 , . . . , Y b1

16 , Y
b2

1 , . . . , Y b2
16 , G

B
M) + nε (3.48)

where GB
M represents the genie set required by cell B, given by

GB
M =

{
2× [Y A

2 , Y
A

6 , Y
A

7 , Y
A

8 ], Y A
4 , Y

A
5 , Y

A
9 , . . . , Y

A
14

}
.

Having defined GB
M , this can be integrated into (3.48) to obtain

nRΣ(GB),M ≤ h(Y b1
16 , . . . , Y

b1
16 , Y

b2
1 , . . . , Y b2

16 , G
B
M) + nε

− h(Y b1
16 , Y

b2
1 , . . . , Y b2

16 , G
B
M | WA,WB)︸ ︷︷ ︸

=no(log2P )

≤ h(Y b1
1 ) + · · ·+ h(Y b1

16 ) + h(Y b2
1 ) + · · ·+ h(Y b2

16 ) + 2h(Y A
2 ) + h(Y A

4 )

+ h(Y A
5 ) + 2h(Y A

6 ) + 2h(Y A
7 ) + 2h(Y A

8 ) + h(Y A
9 ) + · · ·+ h(Y A

14)

+ no(log2P ) + nε

(a)

≤ n(2 + 2λ2 + λ4 + λ5 + 2λ6 + 2λ7 + 2λ8 + λ9 + · · ·+ λ14)(log2P )

+ no(log2P ) + nε (3.49)
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where (a) follows by using the fact that Gaussian distribution maximises differ-

ential entropy and applying
∑16

k=1 λk = 1. Normalising by n(log2P ) and letting

P →∞, we obtain the cell B genie aided DoF bound in (3.33).

Appendix 3.C

Useful Lemma

Lemma 3.1. For independent Hi,AX
A
k , Hi,BX

B
k and Z, h(Hi,AX

A
k + Hi,BX

B
k +

Z) ≤ h(Hi,AX
A
k ) + h(Hi,BX

B
k ) + no(log2P ).

Proof. Starting with the following equality [47], for D and E independent of each

other

h(D) + h(E) = h(D,E) = h(D,D + E) = h(D + E) + h(E|D + E) .

Letting D = Hi,AX
A
k and E = Hi,BX

B
k + Z, we have

h(Hi,AX
A
k +Hi,BX

B
k + Z)

= h(Hi,AX
A
k ) + h(Hi,BX

B
k + Z)− h(Hi,BX

B
k + Z|Hi,AX

A
k +Hi,BX

B
k + Z)︸ ︷︷ ︸

≥h(Hi,BX
B
k

+Z|Hi,AX
A
k

+Hi,BX
B
k

+Z,WB)

=h(Z|Hi,AX
A
k

+Hi,BX
B
k

+Z,WB)

=no(log2P )

(a)

≤ h(Hi,AX
A
k ) + h(Hi,BX

B
k ) + no(log2P )

where (a) follows since the effect of noise disappears as P →∞ and can thus be

represented as no(log2P ).
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Chapter 4

Interference Alignment for

MIMO Interference Broadcast

Channels with Imperfect CSI

4.1 Introduction

In Chapter 3, we considered a two-cell two-user-per-cell scenario where only topo-

logical information is available with respect to the inter-cell links. The topological

CSIT assumption is on the worst case end of the CSIT availability range depicted

in Fig. 2.5. In the rest of this thesis, we will move further along the channel infor-

mation availability spectrum, and consider the case where global CSI is available

but imperfect. Moreover, in this chapter we shift our attention to the general

G-cell K-user-per-cell MIMO IBC setting, and consider the use of linear IA to

manage the resultant interference under an imperfect CSI assumption.

While IA has the potential to achieve full DoF, this generally requires the

highly idealistic assumption of the availability of perfect CSI at both the trans-

mitter and the receiver. Therefore, it is important to fully understand to what

extent imperfect CSI knowledge degrades IA performance. A substantial amount

of work in literature focuses on imperfection due to quantisation. For example,

it has been shown that with quantised CSI feedback, IA can still achieve optimal

Work in this chapter has been published in IEEE Transactions on Communications, April
2015 [48].
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DoF, as long as the feedback bit rate scales sufficiently fast with SNR for both

SISO [49] and MIMO ICs [50]. Aside from imperfection due to quantisation,

performance analysis of IA under generalised CSI mismatch is of great interest;

however, due to the complex nature of the issue, different works deal with various

CSI uncertainty aspects separately. For example, the DoF achievable by IA over

correlated channels with imperfect CSI has been investigated in [51], while [52]

deals with the performance analysis of IA in systems with analogue channel state

feedback. Also, [53] derives upper and lower bounds on the sum mutual informa-

tion where the variance of the CSI error is considered as a constant. The literature

highlighted so far deals with either multiple point-to-point interfering links or a

single transmitter communicating with multiple users. Within the context of

multi-cell systems with more than one user per cell, [54] develops a scheme for

the IMAC that approaches full DoF as the number of users in each cell increases,

while [55] studies the feasibility of IA in the symmetric MIMO IMAC. Moving on

to the MIMO IBC, the achievable DoF under perfect CSI were initially studied

for two-cell systems in [56, 57] and later investigated for systems with a varying

number of cells in [58–61].

In this chapter, we focus on the performance of linear IA in the presence of

imperfect CSI in a MIMO IBC setting. The CSI mismatch model used is highly

versatile and allows us to the treat error variance either as a function of SNR or

as independent of it. Given this error model, we derive a bound on the sum rate

loss, and quantify the achievable DoF for the MIMO IBC. Results show that when

the error variance is inversely proportional to SNR, full DoF can be achieved and

the asymptotic sum rate loss is bounded by a derived value dependent on both

the system parameters and the CSI error parameters. When the error variance

depends on SNR to the power of a proper fraction, we quantify the ensuing DoF

loss and also show that the asymptotic sum rate loss is unbounded.

Next, we consider two linear IA schemes for the MIMO IBC, namely the Max-

SINR and the Min-LI algorithms. Both techniques were initially proposed for the

MIMO IC in [10]. Subsequent works have shown that a straightforward extension

to the MIMO IBC does not provide optimal results [62–64]. Here, we present our

adaptations to the multi-cell multi-stream MIMO IBC setting, and use them to

verify the derived bounds. Additionally, we consider performance improvement

for the Max-SINR algorithm under CSI mismatch. This algorithm is given high

relevance in literature since it has been found to outperform other techniques.
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For example, [65] establishes its optimality within the class of linear beamforming

algorithms at high SNR, while [66] shows that it achieves better throughput than

sum rate gradient algorithms at low-to-intermediate SNRs. Therefore, inspired

by the imperfect CSI model used to derive the bounds, we propose a novel version

of the Max-SINR algorithm for the MIMO IBC that exploits knowledge of the

CSI error variance in order to counter its negative impact. Results show that

the proposed method, which we refer to as Max-SINR with statistical knowledge

of the CSI error (Max-SINR-SKCE), does indeed improve performance over the

standard version, without any additional computational costs.

This chapter is organised as follows. Section 4.2 provides some preliminar-

ies, including, the system model, the CSI error model and the signal recovery

process at the receivers. Section 4.3 gives an overview of the performance of IA

under perfect CSI. In Section 4.4 we deal with the performance analysis of IA

under imperfect CSI conditions, presenting two theorems that separately define

the asymptotic sum rate loss and quantify the achievable DoF. Next, Section 4.5

presents IA schemes for the MIMO IBC; the first part focuses on adaptations

of standard schemes used to verify the derived theorems, while the second part

introduces the Max-SINR-SKCE algorithm. Section 4.7 provides simulation re-

sults, and finally Section 4.8 presents some concluding remarks. Additionally,

there is an appendix which contains a number of lemmas used throughout this

chapter.

4.2 Preliminaries

4.2.1 System model

We consider the symmetric1 G-cell MIMO IBC network depicted in Fig. 4.1,

where every cell has K users, each equipped with Nd antennas and requiring bd

streams. There is one BS having MB antennas per cell, and it is assumed that

the choice of system parameters is such that IA is feasible. The signal received

by user k in cell g is given by

ykg =UH
kgHkg ,gVkgskg︸ ︷︷ ︸
desired signal

+
K∑
l=1
l 6=k

UH
kgHkg ,gVlgslg

︸ ︷︷ ︸
intra-cell interference

+
G∑
j=1
j 6=g

K∑
l=1

UH
kgHkg ,jVljslj

︸ ︷︷ ︸
inter-cell interference

+UH
kgzkg︸ ︷︷ ︸
noise

(4.1)

1We consider a symmetric system for notational and presentational simplicity. This analysis
can also be carried for non-symmetric systems.
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BS G

User 1G

User KG

. . .

BS 1

User 11

User K1

. . .

. . .

. . .

Figure 4.1: G-cell K-user-per-cell MIMO IBC with green solid arrows representing
direct links and red dashed arrows representing inter-cell interference links.

where skg ∈ Cb×1 is the transmitted symbol vector intended for kg, satisfying

E{skgsHkg} ≤ P I; Vkg ∈ CM×b is the transmit beamforming matrix for data

transmitted to kg; Ukg ∈ CN×b is the receive beamforming matrix applied at kg;

Hkg ,j ∈ CN×M is the channel link from BS j to user kg with each element being

drawn from a complex normal distribution with zero mean and variance one, and

zkg ∈ CN×1 represents AWGN with variance σ2.

4.2.2 Imperfect CSI considerations

We are concerned with the effect of imperfect CSI on IA performance, thus we

define the following model for the CSI mismatch

Ĥ = H + E (4.2)

where Ĥ represents the observed mismatched CSI, vec(H) ∼ CN (0, I) is the

actual channel matrix, and E is the error matrix representing the degree of inac-

curacy in the observed CSI. The error matrix, E, is assumed to be independent

of H. Defining nominal SNR as ρ , P
σ2 , then E is modelled as [67]

vec(E) ∼ CN (0, ηI) with η , βρ−α . (4.3)
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With this model, the error variance, η, can be used to capture a variety of CSI

acquisition scenarios for any constants α ≥ 0 and β > 0. Of particular interest

are the following instances.

• Perfect CSI: As α→∞, perfect CSI is obtained for ρ ≥ 1.

• Reciprocal channels: In reciprocal systems, like TDD, users transmit pilots

over the UL based on which channel information is obtained at the BS.

This CSI knowledge is applicable for both UL and DL channels, due to

the reciprocity. Therefore, the CSI error is dependent on the ratio of pilot

power to noise level at the BS, i.e. it is inversely proportional to SNR, and

the error can be modelled by setting α = 1 in (4.3).

• Mismatched reciprocal channels: There may be instances of reciprocal chan-

nels where the BS and the user equipment have power levels that vary sig-

nificantly from each other (for example they are not in the same order of

magnitude). Such scenarios are referred to as mismatched reciprocal chan-

nels. These can be represented by having 0 < α < 1, depending on the level

of the power mismatch.

• CSI feedback: In non-reciprocal systems, like FDD, UL and DL are inde-

pendent. Given the lack of reciprocity, pilots are transmitted by the BS to

the users, allowing the receivers to obtain the DL channel information. This

information is supplied to the BS via a dedicated feedback link. Data sent

over this link is quantised before transmission and received back at the BS

with a certain feedback delay, therefore the major contributors to the CSI

mismatch are the quantisation and feedback processes. Since the resulting

channel error is independent of SNR, it can be modelled by setting α = 0

in (4.3).

Alternatively the error variance, η, as a whole can be interpreted as a single

parameter that encapsulates the quality of the CSI. Its value may be assumed to

be known a priori, and can be determined depending on the channel dynamics

and the channel estimation schemes applied. Some examples are highlighted

below, for additional details see [68] and references within.

• For a block Rayleigh fading channel with coherence time T , using orthonor-

mal training signals, η = 1/(1 + Tτ
t
Pτ ) where Tτ is the training interval
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length, Pτ is the transmit power of the training symbols and t is the size of

the channel input [69].

• For a continuously time varying Rayleigh fading channel with a band-

limited low-pass spectrum with cutoff frequency, F , using pilot signals with

sampling rate 1/L ≥ 2F , η = 1/(1 + 1
2FL

Pτ ) [70].

• For a CSI feedback scenario where each user feeds back its channel index,

η = 2−B/M where B is the number of feedback bits that represent the index

of the quantised complex channel vector of length M [71].

For our performance analysis we require the statistical properties of the actual

channel H conditioned on Ĥ. Since Ĥ = H+E, with H and E being statistically

independent Gaussian variables, then Ĥ and H are jointly Gaussian. Therefore

conditioned on Ĥ, H is Gaussian distributed with mean Ĥ/(1 + η) and statisti-

cally independent elements of variance η/(1 + η) [72]. Thus, the actual channel

can be expressed as

H =
1

1 + η
Ĥ + Υ (4.4)

where Υ is independent of Ĥ, and distributed as

vec(Υ) ∼ CN (0,
η

1 + η
I) . (4.5)

4.2.3 Signal recovery at the receivers

Here we focus on the data recovery process at the user nodes using linear receivers.

In particular, without loss of generality, we consider a ZF equaliser. Note that

more sophisticated non-linear receiver architectures can also be applied, in which

case the considerations outlined in this section would not be directly applicable.

For perfect CSI at both the receiver and the transmitter, defining the effective

channel as H̄kg ,lj = UH
kg

Hkg ,jVlj and the ZF equaliser as Gkg , the recovered signal

at user kg can be expressed as

Gkgykg = GkgH̄kg ,kgskg︸ ︷︷ ︸
desired signal

+

(
Gkg

K∑
l=1
l 6=k

H̄kg ,lgslg +
G∑
j=1
j 6=g

K∑
l=1

H̄kg ,ljslj + UH
kgzkg

)
︸ ︷︷ ︸

interference-plus-noise

(4.6)
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where the interference-plus-noise term disappears at high SNR since we are ap-

plying IA, and the ZF equaliser Gkg can be expressed as Gkg = (H̄kg ,kg)
†.

For imperfect CSI at the transmitter, the recovered signal at user kg can be

expressed as

Ĝkgykg = ĜkgÛ
H
kg

(
1

1 + η
Ĥkg ,g + Υkg ,g

)
V̂H
kgskg︸ ︷︷ ︸

desired signal

+

(
Ĝkg

K∑
l=1
l 6=k

H̃kg ,lgslg +
G∑
j=1
j 6=g

K∑
l=1

H̃kg ,ljslj + ÛH
kgzkg

)
︸ ︷︷ ︸

interference-plus-noise

(4.7)

where Û and V̂ are the receive and transmit beamformers calculated with im-

perfect CSI, H̃kg ,lj is the effective channel with imperfect CSI given by H̃kg ,lj =

ÛH
kg

( 1
1+η

Ĥkg ,j + Υkg ,j)V̂lj = ÛH
kg

Hkg ,jV̂lj , and Ĝkg is the ZF equaliser for imper-

fect CSI. The value of Ĝkg depends on the quality of the CSI available at the

receiver and is specified as follows.

• For perfect CSI at the receiver: Ĝkg = (ÛH
kg

Hkg ,gV̂
H
kg

)†.

• For imperfect CSI at the receiver: Ĝkg = (1 + η)(ÛH
kg

Ĥkg ,gV̂
H
kg

)†, i.e. the

signal needs to be scaled by (1 + η) for signal recovery.

4.3 Performance with perfect CSI

Our analysis is concerned with performance degradation due to imperfect CSI.

Since our focus is on the sum rate and DoF loss, it is necessary to first define these

metrics under perfect CSI for comparison purposes. For the system specified in

(4.7) with perfect CSI, the following conditions need to be satisfied to achieve IA

|ud Hkg Hkg ,gv
d
kg | > 0 ∀ d, k, g

ud Hkg Hkg ,jv
m
lj

= 0 ∀ d, k, g, (d, k, g) 6= (m, l, j) (4.8)

where udkg and vdkg refer to the dth column of Ukg and Vkg respectively.

Considering i.i.d. Gaussian inputs, and the fact there is no interference leakage

with perfect CSI, then the achievable sum rate is given by
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R =
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

P |ud Hkg Hkg ,gv
d
kg
|2

σ2

)
. (4.9)

Sum rate is related to DoF as

DoF = lim
P→∞

Rate

log2P
. (4.10)

Using this relationship, provided that the IA feasibility conditions are met, we

obtain the DoF achievable with perfect CSI as

D = lim
P→∞

R

log2P
= GKbd . (4.11)

4.4 Performance analysis under imperfect CSI

When it comes to the imperfect CSI scenario, the information available for the

calculation of the precoders and the receivers is only an imperfect observation

of the actual channel state; thus, all beamformers are calculated using Ĥ rather

than H. This implies that instead of the original IA conditions in (4.8), the

alignment conditions observed are

|ûd Hkg Ĥkg ,gv̂
d
kg | > 0 ∀ d, k, g

ûd Hkg Ĥkg ,jv̂
m
lj

= 0 ∀ d, k, g, (d, k, g) 6= (m, l, j) (4.12)

where ûdkg and v̂dkg refer to the dth column of the beamformers calculated with

imperfect CSI, Ûkg and V̂kg respectively. Satisfying the modified IA conditions

in (4.12) leads to an amount of residual leakage interference equivalent to

Ĵdkg =

bd∑
m=1
m6=d

P
∣∣∣ûd Hkg Hkg ,gv̂

m
kg

∣∣∣2 +
K∑
l=1
l 6=k

bd∑
m=1

P
∣∣∣ûd Hkg Hkg ,gv̂

m
lg

∣∣∣2

+
G∑
j=1
j 6=g

K∑
l=1

bd∑
m=1

P
∣∣∣ûd Hkg Hkg ,jv̂

m
lj

∣∣∣2 . (4.13)

Residual leakage has a negative impact on the sum rate and DoF achievable by the

system. Understanding the extent of this loss is fundamental, because it gives

68



4.4. Performance analysis under imperfect CSI

a more realistic characterisation of system performance. Here, we present two

theorems that separately quantify the asymptotic sum rate loss and the decrease

in achievable DoF.

4.4.1 Sum rate loss with imperfect CSI

The mean sum rate loss, ∆R, is a measure of the difference between the expected

value for the sum rate achievable with perfect CSI, R, and the expected value for

the sum rate achievable with imperfect CSI, R̂ , i.e.

∆R = EH{R} − EĤ{EH|Ĥ{R̂}} (4.14)

where R is defined in (4.9) and R̂ is defined as

R̂ =
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

P |ûd Hkg Hkg ,gv̂
d
kg
|2

Ĵdkg + σ2

)
. (4.15)

Given this definition, we can now refer to the following theorem.

Theorem 4.1. Consider a G-cell MIMO IBC with K users per cell, each re-

quiring b streams. For such a system under imperfect CSI with error variance,

η = βρ−α, at asymptotically high SNR: ∆R tends to zero for α > 1, tends

to infinity for 0 ≤ α < 1, and for α = 1 is finite and upper bounded by

GKbd log2 (1 + β(GKbd − 1)), i.e.

lim
SNR→∞

∆R


= 0 α > 1

≤ GKbd log2 (1 + β(GKbd − 1)) α = 1

→∞ 0 ≤ α < 1 .

(4.16)

Proof. Starting with the expression from (4.14) and replacing R with (4.9) and

R̂ with (4.15), we obtain

∆R = EH

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

P |ud Hkg Hkg ,gv
d
kg
|2

σ2

)}

− EĤ

{
EH|Ĥ

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

P |ûd Hkg Hkg ,gv̂
d
kg
|2

Ĵdkg + σ2

)}}
. (4.17)
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After some algebraic manipulations (4.17) can be further represented as (4.18).

∆R = EH

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

P |ud Hkg Hkg ,gv
d
kg
|2

σ2

)}

− EĤ

{
EH|Ĥ

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

Ĵdkg + P |ûd Hkg Hkg ,gv̂
d
kg
|2

σ2

)}}

+ EĤ

{
EH|Ĥ

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

Ĵdkg
σ2

)}}
(4.18)

Since for unitary beamformers, analogous to [73, Lemma 2] it can be shown

that |ud Hkg Hkg ,gv
d
kg
|2 and |ûd Hkg Hkg ,gv̂

d
kg
|2 are exponentially distributed with both

mean and variance one, we can establish the following inequality

EH

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

P |ud Hkg Hkg ,gv
d
kg
|2

σ2

)}
≤

EĤ

{
EH|Ĥ

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

Ĵdkg + P |ûd Hkg Hkg ,gv̂
d
kg
|2

σ2

)}}
. (4.19)

Next, taking into account (4.19), we can express (4.18) as

∆R ≤ EĤ

{
EH|Ĥ

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

Ĵdkg
σ2

)}}
(a)

≤
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

EĤ{EH|Ĥ{Ĵdkg}
σ2

)
(4.20)

where (a) follows from Jensen’s inequality.

Therefore to quantify ∆R, we need to find an expression for the expected

value of the leakage interference, EĤ{EH|Ĥ{Ĵdkg}}. Combining the expression for

Ĵdkg from (4.13), with the channel model from (4.4) we obtain

EĤ{EH|Ĥ{Ĵ
d
kg}} =

bd∑
m=1
m 6=d

PEĤ,Υ

{∣∣∣∣ûd Hkg ( 1

1 + η
Ĥkg ,g + Υkg ,g

)
v̂mkg

∣∣∣∣2
}

+
K∑
l=1
l 6=k

bd∑
m=1

PEĤ,Υ

{∣∣∣∣ûd Hkg ( 1

1 + η
Ĥkg ,g + Υkg ,g

)
v̂mlg

∣∣∣∣2
}
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+
G∑
j=1
j 6=g

K∑
l=1

bd∑
m=1

PEĤ,Υ

{∣∣∣∣ûd Hkg ( 1

1 + η
Ĥkg ,j + Υkg ,j

)
v̂mlj

∣∣∣∣2
}
.

(4.21)

This can be further simplified by considering the IA conditions for imperfect CSI

in (4.12). Applying the fact that
[
ûd Hkg Ĥkg ,jv̂

m
jl

= 0 ∀ d, k, g, (d, k, g) 6= (m, l, j)
]
,

results in

EĤ{EH|Ĥ{Ĵ
d
kg}} =

bd∑
m=1
m 6=d

PEΥ

{∣∣∣ûd Hkg Υkg ,gv̂
m
kg

∣∣∣2}+
K∑
l=1
l 6=k

bd∑
m=1

PEΥ

{∣∣∣ûd Hkg Υkg ,gv̂
m
lg

∣∣∣2}

+
G∑
j=1
j 6=g

K∑
l=1

bd∑
m=1

PEΥ

{∣∣∣ûd Hkg Υkg ,jv̂
m
lj

∣∣∣2}
(a)
=P

η

(η + 1)
(GKbd − 1) (4.22)

where (a) follows by using Lemma 4.1 from Appendix 4.A.

This expression for EĤ{EH|Ĥ{Ĵdkg}} is next applied into the inequality from

(4.20) to obtain

∆R ≤
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

P

σ2

η

(η + 1)
(GKbd − 1)

)
(4.23)

which after evaluating the summation and replacing η with βρ−α, becomes

∆R ≤ GKbd log2

(
1 + (GKbd − 1)

βρ(1−α)

1 + βρ−α

)
. (4.24)

Taking a high SNR approximation, the asymptotic sum rate loss can be de-

fined as in (4.16), proving Theorem 4.1 as originally stated.

4.4.2 DoF loss with imperfect CSI

The DoF loss, ∆D, is a measure of the difference between the DoF achievable with

perfect CSI,D, and the DoF achievable under imperfect CSI, D̂, i.e. ∆D = D−D̂,

where

D̂ = lim
P→∞

EĤ{EH|Ĥ{R̂}}
log2P

(4.25)
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Given this definition, we can now refer to the following theorem.

Theorem 4.2. Consider a G-cell MIMO IBC with K users per cell, each re-

quiring b streams. For such a system under imperfect CSI with error variance,

η = βρ−α, full DoF can be achieved for values of α ≥ 1, while in the range of

0 ≤ α < 1 the DoF loss is equivalent to a fraction of (1− α) of the full DoF, i.e.

∆D =

{
0 α ≥ 1

(1− α)GKbd 0 ≤ α < 1 .
(4.26)

Proof. We have already established that the DoF achievable under perfect CSI

is given by D = GKb from (4.11). Therefore, we only need to evaluate the

achievable DoF under imperfect CSI, D̂.

Starting with (4.25) and including the imperfect CSI sum rate expression from

(4.15), we obtain

D̂ = lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
1 +

P |ûd Hkg Hkg ,gv̂
d
kg
|2

Ĵdkg + σ2

)}}
log2P

= lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
P |ûd Hkg Hkg ,gv̂

d
kg |

2 + Ĵdkg + σ2
)}}

log2P︸ ︷︷ ︸
A

− lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
Ĵdkg + σ2

)}}
log2P︸ ︷︷ ︸

B

(4.27)

which after discarding the interference-plus-noise term in part A, and applying

Jensen’s inequality to part B, can be expressed as

D̂ ≥ lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
P |ûd Hkg Hkg ,gv̂

d
kg |

2
)}}

log2P

− lim
P→∞

G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
EĤ{EH|Ĥ{Ĵ

d
kg}}+ σ2

)
log2P

. (4.28)
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Since for unitary beamformers, analogous to [73, Lemma 2] it can be shown

that |ûd Hkg Hkg ,gv̂
d
kg
|2 is exponentially distributed with both mean and variance

one. Using this result and replacing EĤ{EH|Ĥ{Ĵdkg}} by the actual expression

from (4.22), the DoF expression in (4.27) becomes

D̂ = GKbd − lim
P→∞

G∑
g=1

K∑
k=1

bd∑
d=1

log2

(
P

η

(η + 1)
(GKbd − 1) + σ2

)
log2P

. (4.29)

After replacing η with βρ−α = βP−ασ2α and letting P → ∞, the achievable

DoF can be characterised as

D̂ =

{
GKbd α ≥ 1

αGKbd 0 ≤ α < 1 .
(4.30)

Noting that ∆D = D−D̂ and also that D = GKbd from (4.11), we obtain the

result in (4.26), thereby proving the DoF loss is as originally stated in Theorem

4.2.

Remark 4.1. Note that the implications of the two theorems presented in this

section are intrinsically related. For example, in the range of α ≥ 1 Theorem

4.1 indicates the sum rate loss is either zero or finite, which is directly reflected

in Theorem 4.2 where no DoF loss is expected within the same α range. On the

other hand for the case where 0 ≤ α < 1, Theorem 4.2 indicates that a DoF loss

is inevitable. This is also reflected in Theorem 4.1, which states that the sum rate

loss increases unboundedly with SNR for the same range of α values.

4.5 IA schemes adapted to the MIMO IBC

In order to test the bounds presented in Section 4.4, we require linear IA schemes

for the MIMO IBC. Two iterative IA solutions are the Max-SINR and Min-LI

algorithms originally proposed for the MIMO IC in [10]. Having originally been

developed for the IC, the algorithms from [10] are unable to cater for intra-cell

interference. Various works propose different alternatives on how to handle this

additional interference component, here we outline our adaptations for the multi-

stream MIMO IBC.
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4.5.1 Max-SINR for the MIMO IBC

This algorithm focuses on maximising the signal-to-interference-plus-noise ratio

(SINR) on a per stream basis, in order to create a desired signal subspace that

contains the required number of interference free dimensions. SINR is defined as

the ratio of the power of the signal of interest to the sum power of the interference

and noise, i.e.

SINR =
signal of interest power

interference-plus-noise power
. (4.31)

A direct extension of the algorithm from [10] would involve calculating both

the transmit and receive filters based on the total interference-plus-noise covari-

ance matrix, which for the MIMO IBC also includes intra-cell interference. How-

ever, [62, 63] show that a direct extension does not always achieve the desired

alignment results over the whole SNR range, particularly in the high SNR re-

gion where saturation may occur. Solutions proposed in [62] and [63] separately

ignore intra-cell interference in the transmit subspace. The adapted Max-SINR

algorithm outlined in Algorithm 4.1 applies a similar principle, while still retain-

ing an underlying structure that mirrors the original algorithm from [10]. Thus,

the receive filters are concerned only with inter-cell interference, while the trans-

mit filters deal with both inter-cell and intra-cell interference when calculating

the forward and backward interference-plus-noise covariance matrices, given by

Qd
kg

in (4.32) and
←−
Qd
kg

in (4.33) respectively.

Qd
kg =

G∑
j=1
j 6=g

K∑
l=1

bd∑
m=1

PHkg ,jv
m
lj

vm H
lj

H H
kg ,j + σ2I (4.32)

←−
Qd
kg =

bd∑
m=1
m 6=d

P
←−
Hg,kgu

m
kgu

m H
kg

←−
H H

g,kg +
K∑
l=1
l 6=k

bd∑
m=1

P
←−
Hg,lgu

m
lgu

m H
lg

←−
H H

g,lg

+
G∑
j=1
j 6=g

K∑
l=1

bd∑
m=1

P
←−
Hg,lju

m
lj

um H
lj

←−
H H

g,lj
+ σ2I (4.33)

Note that to obtain the backward interference-plus-noise covariance matrix,
←−
Qd
kg

, in (4.33) we operate the channel in the reverse direction with users transmit-

ting data to the corresponding BSs. Channel notations of the form
←−
Hx,y = H H

y,x

are used to represent the channel going from y to x in the reciprocal network.

74



4.6. Max-SINR algorithm with statistical knowledge of the CSI error

Algorithm 4.1: Max-SINR algorithm for the MIMO IBC

1 Initialise vdkg as random unit-norm vectors ∀ d, k, g.

2 Compute the inter-cell interference-plus-noise covariance matrix in the for-
ward communication channel as Qd

kg from (4.32) ∀ d, k, g.

3 Calculate receive filters ∀ d, k, g using

udkg =
(Qd

kg
)−1Hkg ,gv

d
kg

‖ (Qd
kg

)−1Hkg ,gv
d
kg
‖
.

4 Reverse the direction of communication and compute the total interference-
plus-noise covariance matrix as Bd

kg from (4.33) ∀ d, k, g.

5 Calculate transmit beamformers ∀ d, k, g using

vdkg =
(
←−
Qd
kg

)−1←−Hg,kgu
d
kg

‖ (
←−
Qd
kg

)−1
←−
Hg,kgu

d
kg
‖
.

6 Repeat the process from Step 2 until convergence or for a fixed number of
iterates.

4.5.2 Min-LI for the MIMO IBC

The principle behind this algorithm is to design beamformers that limit the in-

terference experienced from all other users within the same system. The original

algorithm was proposed for the IC in [10] and does not cater for intra-cell in-

terference. The key aspect in adapting it to the IBC is to treat intra-cell and

inter-cell interference separately. This can be achieved by applying iterative leak-

age minimisation only with respect to inter-cell interference, and then using an

additional cascaded precoder to handle intra-cell interference on its own. Leak-

age minimisation with cascaded filters was proposed in [64] for a single-stream

setting, here we apply its multi-stream counterpart as outlined in Algorithm 4.2.

4.6 Max-SINR algorithm with statistical knowl-

edge of the CSI error

In this section, inspired by the CSI mismatch model used for the performance

analysis, we focus on the Max-SINR algorithm and propose a novel version, Max-

SINR-SKCE, that exploits statistical knowledge of the CSI error in order to im-

prove performance. The key difference between the naive Max-SINR technique
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Algorithm 4.2: Min-LI algorithm for the MIMO IBC

1 Initialise Ṽg as a random unitary matrix ∀ g.
2 Calculate the inter-cell interference covariance matrix in the forward commu-

nication channel ∀ k, g using

Bkg =
∑G

j=1
j 6=g

Hkg ,jṼjṼ
H
j HH

kg ,j .

3 The receive filter at each user is given by Ukg = Vb
[
Bkg

]
.

4 Calculate the inter-cell interference covariance matrix for the BSs in the re-
ciprocal network ∀ g using

←−
Bg =

∑G

j=1
j 6=g

∑K

k=1

←−
Hg,ljUljU

H
lj

←−
HH

g,lj
.

5 The first part of the transmit beamformer at BS g is given by Ṽg=VKb [Bg],
where VKb [Bg] represents the set of eigenvectors corresponding to the Kb
smallest eigenvalues of Bg.

6 Repeat the process from Step 2 until convergence or for a fixed number of
iterates.

7 Calculate V̄g, the additional ZF precoder that handles intra-cell interference
using

V̄g =

UH
1gH1g ,gṼg

...

UH
Kg

HKg ,gṼg


†

.
(4.34)

8 Overall transmit beamformer at BS g is given by, Vg = ṼgV̄g.
9 Take b consecutive columns of Vg separately for each user k and normalise to

obtain Vkg ∀ k, g.

in Algorithm 4.1 and Max-SINR-SKCE is in the way the interference-plus-noise

covariance matrices are calculated when the available CSI is imperfect. The

naive version uses imperfect CSI directly in place of the actual channels without

any consideration for effects that the channel mismatch may have. Thus, the

beamformers are calculated by replacing H with Ĥ directly in (4.32) and (4.33).

However, in the design of the Max-SINR-SKCE algorithm we take advantage of

statistical knowledge with respect to the CSI mismatch and replace H with the

expression in (4.4). This leads to the calculation of more accurate interference-

plus-noise covariance matrices in both forward and backward directions.

Starting with the forward channel inter-cell interference covariance matrix in

(4.32) and replacing H with (4.4), we obtain

Qd
kg =

G∑
j=1
j 6=g

K∑
l=1

bd∑
m=1

P

(
1

1 + η
Ĥkg ,j + Υkg ,j

)
vmlj v

m H
lj

(
1

1 + η
Ĥkg ,j + Υkg ,j

)H
+ σ2I
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=
G∑
j=1
j 6=g

K∑
l=1

bd∑
m=1

P

[
1

(1 + η)2
Ĥkg ,jv

m
lj

vm H
lj

ĤH
kg ,j + Υkg ,jv

m
lj

vm H
lj

ΥH
kg ,j︸ ︷︷ ︸

A

+
1

(1 + η)

(
Ĥkg ,jv

m
lj

vm H
lj

ΥH
kg ,j + Υkg ,jv

m
lj

vm H
lj

ĤH
kg ,j

)
︸ ︷︷ ︸

B

]
+ σ2I . (4.35)

Since the only information available with respect to the channel uncertainty is

statistical, we replace all elements of (4.35) containing Υ by their expected values.

Using Lemma 4.2 from Appendix 4.A EΥ{A} = η
1+η

I, and from Lemma 4.3

EĤ,Υ{B} = 0. Therefore, the improved expression for the inter-cell interference-

plus-noise covariance matrix in the forward direction is given by

Q̂d
kg =

G∑
j=1
j 6=g

K∑
l=1

bd∑
m=1

γĤkg ,jv
m
lj

vm H
lj

ĤH
kg ,j + ξI (4.36)

where

γ =
P

(1 + η)2
(4.37)

and

ξ = P
η

(1 + η)
(G− 1)Kbd + σ2 . (4.38)

Reversing the direction of communication, such that users are now transmit-

ting data to the corresponding BSs, we can also calculate the interference-plus-

noise covariance matrix for the backward channel. This is done using a method

similar to the one applied in the forward communication channel, and results in

←−
Q̂d
kg =

bd∑
m=1
m 6=d

γ
←−
Hg,kgu

m
kgu

m H
kg

←−
HH

g,kg +
K∑
l=1
l 6=k

bd∑
m=1

γ
←−
Hg,lgu

m
lgu

m H
lg

←−
HH

g,lg

+
G∑
j=1
j 6=g

K∑
l=1

bd∑
m=1

γ
←−
Hg,lju

m
lj

um H
lj

←−
HH

g,lj
+
←−
ξ I (4.39)

where γ is as defined in (4.37) and

←−
ξ = P

η

(1 + η)
(GKbd − 1) + σ2 . (4.40)
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Having obtained improved expressions for the interference-plus-noise matri-

ces in both directions, the novel Max-SINR-SKCE algorithm is as outlined in

Algorithm 4.3 on the following page.

Remark 4.2. The advantage of the Max-SINR-SKCE algorithm is its ability to

calculate improved interference covariance matrices by proper specification of γ,

ξ and
←−
ξ . Setting γ = P and ξf = ξb = σ2 in the first step of Algorithm 4.3 would

cause it to behave exactly in the same manner as the naive version in Algorithm

4.1. Therefore, any performance advantages obtained by the use of the novel

version are obtained at no extra computational cost.

Algorithm 4.3: Max-SINR-SKCE algorithm for the MIMO IBC

1 Set γ, ξ and
←−
ξ according to (4.37), (4.38) and (4.40).

2 Initialise v̂dkg as random unit-norm vectors, ∀ d, k, g.

3 Calculate Q̂d
kg using the improved expression in (4.36) ∀ d, k, g.

4 The receive filters ∀ d, k, g are given by

ûdkg =
(Q̂d

kg
)−1Ĥkg ,gv̂

d
kg

‖ (Q̂d
kg

)−1Ĥkg ,gv̂
d
kg
‖
.

5 Compute
←−
Q̂d
kg

using the improved expression in (4.39) ∀ d, k, g .

6 The precoders ∀ d, k, g are calculated as

v̂dkg =
(
←−
Q̂d
kg

)−1
←−
Ĥg,kg û

d
kg

‖ (
←−
Q̂d
kg

)−1
←−
Ĥg,kg û

d
kg
‖
.

7 Repeat the process from Step 2 until convergence or for a fixed number of
iterates.

4.7 Simulation results

This section provides numerical results to validate the analyses presented so far.

It is divided into two main parts; first we confirm the validity of the bounds

derived in Section 4.4, next we consider the performance of the Max-SINR-SKCE

algorithm proposed in Section 4.6 compared to the standard one under imperfect

CSI conditions.
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Assuming all interference is treated as noise, throughout our simulations we

calculate the achieved sum rate across all users as

R̄ =
G∑
g=1

K∑
k=1

log2 det
(
I +

(
Xkg + σ2I

)−1
P U H

kg Hkg ,gVkgV
H
kg H H

kg ,gUkg

)
where Xkg represents the interference covariance matrix, given by

Xkg =
G∑
j=1

K∑
l=1

(j,l)6=(g,k)

PU H
kg Hkg ,jVljV

H
lj

H H
kg ,jUkg .

For imperfect CSI situations, the transmit and receive filters U and V are replaced

by Û and V̂, since they are calculated based on the available imperfect CSI. Note

that calculating the rate in this manner results in a lower bound on the actual

achievable rate. In truth higher rates can be obtained via the use of improved

receivers, for example by considering the availability of perfect CSI at the receiver

to obtain more accurate beamformers, or by applying more sophisticated receiver

strategies such as for example maximum likelihood detectors.
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Figure 4.2: Error variance, η, against SNR for different α and β combinations.

Throughout all our simulations the noise variance, σ2, is fixed at 1 making the

transmit signal power equivalent to the network SNR. Additionally, all results

provided are averaged over a number of channel realisations in a Monte Carlo

fashion. Furthermore, β values are always chosen to be significantly larger than α.

Fig. 4.2 plots the error variance, η, against SNR for various α and β combinations.
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Considering for example β = 0.5, it can be noticed that for α ∈ {1.5, 1, 0.5} the

resultant error variance is close to 0 for SNR ≥ 25 dB, however for the lower

α values of 0.1 and 0.01 the error variance is significantly higher for the same

SNR range. Considering α = 0.5, increasing the β value from 0.5 to 2 shifts the

quasi-zero error variance point from 25 dB up to 40 dB. Since our work focuses

on IA, which is mainly concerned with DoF, and consequently the high SNR

region, throughout our simulations β is always at least an order of magnitude

larger than α. This ensures that the effect of the CSI mismatch is experienced

across the whole SNR range, as confirmed by the η vs. SNR plots in Fig. 4.2.

4.7.1 Results for theoretically derived bounds

In this subsection we verify the validity of the bounds derived in Theorems 4.1

and 4.2. We simulate a system with G = 3, K = 2, bd = 1 and MB = Nd = 4

using the naive Max-SINR method in Algorithm 4.1 to obtain the results in Fig.

4.3, and a system with G = K = bd = 2, MB = 4 and Nd = 6 using the Min-LI

technique from Algorithm 4.2 to obtain the results in Fig. 4.4.

Considering Fig. 4.3, the full DoF achievable with perfect CSI are equal to

GKb = 6. Theorem 4.2 predicts no DoF loss for values of α ≥ 1, which can

easily be verified by focusing on the α = 1.5 and α = 1 results in Fig. 4.3,

since the slope for both is exactly equal to the one achieved with perfect CSI.

One important difference between the α = 1.5 and α = 1 curves is the fact at

high SNR the former is exactly in line with the perfect CSI result, while the

latter runs parallel to it achieving lower sum rate values overall. This behaviour

is expected from the bound in Theorem 4.1. For α > 1, no sum rate loss is

expected at high SNR, which is exactly what happens for α = 1.5. However, at

α = 1 the same theorem indicates there should be a finite asymptotic sum rate

loss upper bounded by GKbd log2 (1 + β(GKbd − 1)) ≈ 34.03 bits per channel

use for β = 10. Measuring the actual loss from Fig. 4.3 at SNR = 60 dB we

obtain a value of 33.26 bits per channel use; this approaches the derived value

closely, verifying that the upper bound it is not too loose.

When it comes to the α < 1 range, from Theorem 4.1 we expect the sum rate

loss to be unbounded. This can be confirmed via the α = 0.75 and α = 0 curves

in Fig. 4.3. All three diverge from the perfect CSI result, indicating that the

sum rate loss grows with increasing SNR. Within the same α range, a DoF loss is
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Figure 4.3: Average sum rates achieved by Max-SINR algorithm (Algorithm 4.1)
under various imperfect CSI conditions for system with G = 3, K = 2, bd = 1 and
MB = Nd = 4.

expected from Theorem 4.2. For example, at α = 0.75 DoF equal to 3
4
GKbd = 4.5

may be achieved, this can be easily verified from the slope of the curve itself at

high SNR. Theorem 4.2 also indicates that 0 DoF are achievable at α = 0, which

is directly reflected in the flatness of the corresponding results in the high SNR

region of Fig. 4.3.

Comparing the two α = 0 results in Fig. 4.3 provides an insight into the

impact of the β parameter. While for asymptotic analysis its effect is limited and

does not determine the general sum rate performance trend, it can be noticed

that at α = 0, β has a heavier impact. In such situations the error variance η is

no longer inversely proportional to SNR. Thus, for any fixed β, α = 0 represents

the worst case scenario, where the error variance is equal to β itself. In the lower

SNR region (up to around 30 dB for β = 0.001 and 20 dB for β = 0.05) the

power of the leakage is reasonably small, since the power levels we are dealing

with are low, allowing for performance improvement in this range. However,

once power levels increase, the performance starts to degrade until it eventually

settles to a steady state value; this is due to the higher power levels of leakage

interference. For the two α = 0 results in Fig. 4.3, at β = 0.05 there is a

much larger error variance than at β = 0.001, which is why the latter settles

at a significantly higher rate value. The larger the level of the CSI mismatch,

the more inaccurate are the derived IA beamformers with respect to the actual
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Figure 4.4: Average sum rates achieved by Min-LI algorithm (Algorithm 4.2) under
various imperfect CSI conditions for system with G = K = bd = 2, MB = 4 and
Nd = 6.

channel value, resulting in a higher level of residual leakage interference and sum

rate loss. This behaviour does not improve with increasing SNR; since all users

are allocated equal power, increasing the desired signal power inherently increases

the power of the interfering signals and results in a more significant amount of

interference leakage. Thus, the network becomes interference limited, causing

sum rate saturation and leading to no advantage overall.

Similar rate and DoF behaviour can also be noticed in Fig. 4.4. Results

for α ≥ 1 all have the same slope as the perfect CSI curve, indicating that

full DoF equal to 8 are achieved as expected from Theorem 4.2. Additionally,

at asymptotically high SNR for the α = 1.5 result there is no asymptotic sum

rate loss as expected from Theorem 4.1. For α = 1, β = 10 the same theorem

indicates that the asymptotic sum rate loss should be upper bounded by 49.19

bits per channel use. Measuring the actual gap from Fig. 4.4 a value of 37.38

bits per channel use is obtained. Finally Theorem 4.1 states that the asymptotic

sum rate loss is unbounded for the range of α < 1; this can be confirmed from

the α = 0.75 and α = 0 curves in Fig. 4.4, both of which diverge from the perfect

CSI result. Within the same α range we expect the achievable DoF to be equal

to αGKb. Thus, at α = 0.75 DoF equal to 6 are achievable, as verified from the

slope of the curve in Fig. 4.4. Similarly, both α = 0 results saturate at high SNR,

denoting that αGKb = 0 DoF are obtained.
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4.7.2 Results for Max-SINR-SKCE algorithm

Here we compare the novel Max-SINR-SKCE algorithm proposed in Algorithm

4.3 to the standard one outlined in Algorithm 4.1. A system configuration with

G = 3, K = 3, bd = 1 and MB = Nd = 5 is used to produce the sum rate and bit

error rate (BER) results in Fig. 4.5 and Fig. 4.6 respectively. We focus on the

range α ≤ 1, since both Theorem 4.1 and Theorem 4.2 indicate that the system

becomes asymptotically equivalent to the perfect CSI case for α > 1.

As can be seen from Fig. 4.5 and Fig. 4.6, the Max-SINR-SKCE algorithm

outperforms the standard one, both in terms of sum rate and BER. In fact Max-

SINR-SKCE achieves higher sum rates throughout, for example at α = 1, β = 10

we obtain a 10.1 bits per channel use gain at an SNR of 30 dB, while for α =

0.75, β = 10 the gain is equal to 11.83 bits per channel use at the same SNR.

When it comes to the α = 0, β = 0.1 case we observe that as SNR increases,

the sum rate achievable by both versions of the algorithm settles at a steady

value. This value is approximately 14 bits per channel use higher for the Max-

SINR-SKCE algorithm in comparison to the standard one. As observed earlier in

Section 4.7.1, at α = 0 we have the highest level of channel uncertainty for any

given β; for such a significant CSI mismatch the network becomes interference

limited and increasing transmission power provides no advantage. This effect

is also mirrored into the BER results in Fig. 4.6, where the results for α = 0

both start to flatten out for increasing SNR. However, the result obtained using

Max-SINR-SKCE settles at lower a BER value than that obtained using standard

Max-SINR, indicating the superior performance of the former. For larger α values,

the Max-SINR-SKCE algorithm still achieves a lower BER than the standard

one. For example, at α = 1, β = 10 the standard algorithm requires an SNR

of approximately 28.36 dB to achieve a BER of 10−2, while Max-SINR-SKCE

achieves the same BER at around 20.7 dB. Similarly, for α = 0.75, β = 10 Max-

SINR-SKCE requires 13.47 dB less than standard Max-SINR to achieve a BER

of 10−2.

4.8 Conclusion

IA is a very promising technique, and while it has been shown to provide many

benefits under a perfect CSI assumption, it is also important to consider the more
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Figure 4.5: Average sum rates achieved for system with G = 3, K = 3, bd = 1 and
MB = Nd = 5 under various imperfect CSI scenarios.

−10 −5 0 5 10 15 20 25 30 35 40 45
10

−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

Max−SINR−SKCE

Standard Max−SINR
α=0.75, β=10

α=0, β=0.1 

α=1, β=10 

Figure 4.6: BER achieved for system with G = 3, K = 3, bd = 1 and MB = Nd = 5
under various imperfect CSI scenarios, using QPSK modulation.

realistic imperfect CSI scenario. In this chapter, we analysed the performance

of linear IA under CSI mismatch for the MIMO IBC by deriving a bound on

the asymptotic mean loss in sum rate compared to the perfect CSI case and

characterising the achievable DoF under CSI mismatch. These properties are

found to be dependent on the number of cells and the amount of users per cell, in

addition to the CSI mismatch parameters themselves. Results show that the way
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error variance scales with SNR is highly significant. When the two parameters

are inversely proportional, full DoF can be achieved and the asymptotic sum

rate loss is finite. However, in cases where the error variance depends inversely

on SNR to the power of a proper fraction, full DoF cannot be achieved and

the asymptotic sum rate loss is unbounded. Additionally, inspired by the CSI

mismatch model used, we also designed a novel Max-SINR-SKCE algorithm which

exploits statistical knowledge of the CSI error in order to improve performance

over standard Max-SINR, without any additional computational costs.

Appendix 4.A

Useful Lemmas

Lemma 4.1. EΥ{|ûd Hkg Υkg ,jv̂
m
lj
|2} is equal to η/(1 + η) ∀ k, g, d, l, j,m.

Proof. From the error model definition in Section 4.2.2 we know that Ĥkg ,j and

Υkg ,j are independent. Since ûdkg and v̂mlj are calculated on Ĥkg ,j, this makes

the transmit and receive beamformers automatically independent of Υkg ,j. In

addition, Υkg ,j is Gaussian and bi-unitarily invariant [74], thereby for unitary

beamformers the product ûd Hkg Υkg ,jv̂
m
lj
∀ d, k, g,m, l, j is a Gaussian random

variable with zero mean and variance η/(1 + η). Finally, using central absolute

moments we can evaluate E{|ûd Hkg Υkg ,jv̂
m
lj
|2}, which is equal to η/(1 + η).

Lemma 4.2. If A ∈ CM×N is a Gaussian matrix whose elements are i.i.d. with

zero mean and variance ω, and b ∈ CN×1 is a unit-norm vector independent of

A, then EA{AbbHAH} = ωI.

Proof. Consider a unitary matrix B ∈ CN×N that is independent of A. Since A

is a Gaussian matrix, it is bi-unitarily invariant [74], hence the joint distribution

of the entries of AB is equal to that of the entries of A itself. Additionally, since

matrix B consists of N unit-norm vectors of size N × 1, the vector b described

in the definition of Lemma 4.2 can take the role of any column vector within B.

Thus, vector Ab can be considered as a column vector of matrix AB, implying

that the entries of Ab have zero mean and covariance ω.

Lemma 4.3. EĤ,Υ{Ĥkg ,jv
m
lj

vm H
lj

ΥH
kg ,j
}=EĤ,Υ{Υkg ,jv

m
lj

vm H
lj

ĤH
kg ,j
}=0∀ l,m, j.
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Proof. Beamforming elements are calculated using Ĥkg ,j, thus they are automat-

ically independent of Υkg ,j from the definition of the imperfect CSI model in

Section 4.2.
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Chapter 5

Weighted Sum Rate

Maximisation in Full-Duplex

Multi-User Multi-Cell MIMO

Networks

5.1 Introduction

As highlighted earlier in Chapter 2, the application of FD nodes instead of stan-

dard HD ones has significant potential to increase spectral efficiency. Therefore,

while in the prior Chapters 3 and 4 we considered completely HD systems, in the

upcoming Chapters 5 and 6 we will focus on systems with FD BSs. The network

considered is still a multi-user multi-cell network; the use of FD BSs now allows

us to serve both legacy HD DL and UL users simultaneously. For this chapter

our analysis will focus on proposing WSR maximisation algorithms to manage

the resulting complex interference scenario under both perfect and imperfect CSI.

The promise of increased spectral efficiency, alongside with the newfound abil-

ity to mitigate SI (see Section 2.5), has motivated a wide range of research into

FD communication and its possible applications. For example, the use of FD

operation in relays [76, 77] and cognitive radio systems [78, 79] has proven to be

Work in this chapter has been published in IEEE Transactions on Communications, April
2017 [75].
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highly effective. Additionally FD operation, either at the BS only [80] or at both

the users and the BS [81], has been found to be particularly suited for small

cell scenarios due to the low transmit powers and small transmission distances

involved. Different to [76–81], which consider single-cell systems, here we focus

on a more practical multi-cell scenario with FD BSs and HD users; the multi-cell

aspect introduces the additional challenge of managing CCI from nodes in other

cells. A similar network was considered in [82] where the authors focus on user

selection and power allocation methods. A stochastic geometry approach for sys-

tem performance characterisation of FD multi-cell systems has been considered

in [83–85]. In contrast to [82–85], which assume all nodes are equipped with a

single antenna, we consider a MIMO system and focus on beamformer design for

WSR maximisation.

As was hinted earlier, in this chapter we focus on a multi-cell scenario where

each BS serves multiple HD users; however unlike traditional systems, the BSs

operate in FD mode serving all of their corresponding DL and UL users simulta-

neously. The FD capability at the BSs and the inherent structure of the network

lead to a large amount of interference at the different receivers. Fig. 5.1 provides

a simple illustration of the network under consideration, having G cells and one

DL and one UL user per cell. It can be seen that, apart from the usual standard

HD network interference components, for UL communication BSs have additional

SI and BS-to-BS interference, while DL users have additional CCI from UL users

both from the same cell and from other cells. Therefore, finding ways to manage

this complex interference scenario, while still delivering good service to all users,

is a fundamental challenge that needs to be addressed for the practical realisation

of FD enabled wireless networks.

Since our main focus is on small cell networks where coverage distances are

short, and BSs and users have similar transmission powers [86], we consider the

case where none of the interference components may be ignored. This is in con-

trast to prior studies which assume that CCI can be avoided via scheduling [87],

allocating different sub-carriers [88] or assuming channels between UL and DL

users to be sufficiently weak [89]. Additionally, we also take into consideration

the effect of transmitter and receiver distortion. These hardware impairments are

a natural consequence of non-ideal amplifiers, oscillators, ADCs and digital-to-

analogue converters (DACs), and cannot be avoided in practice [77, 79,90].

Within this context, our aim is to investigate under what conditions replacing
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BS 1 UL 11
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. . .

Figure 5.1: G-cell network with an FD BS, and one DL and one UL user per cell.
Solid arrows represent desired links, while dashed ones represent interference links.

HD BSs with FD ones is beneficial. Such a multi-cell scenario has not yet been

investigated from a beamformer design perspective, here we develop filter design

algorithms for WSR maximisation. Since WSR problems are non-convex, we

map each of them to a WMMSE problem; this technique is less computationally

complex than gradient-based alternatives, is guaranteed to converge, and has

been proven to work for various types of HD networks [91–93]. The rate to

MSE relationship was also used for transceiver design in MIMO ICs with FD

nodes under a perfect CSI assumption in [90]. Unlike [90], in this chapter we

consider HD users and cater for multiple users per cell, additionally we consider

imperfect CSI under two different models. The first one is a norm-bounded error

model, particularly suited for situations where the CSI error is mainly due to

quantisation. The second one is a stochastic CSI error model, more suited to

errors occurring during the channel estimation process itself. Results show that

FD communication can indeed achieve higher rates than the baseline HD schemes

for intermediate to low distortion levels, and confirm the robust performance of

the imperfect CSI designs. Furthermore, we also extend our original design to

one which maximises the total DL rate subject to each UL user achieving a pre-

established target rate; this can be used to ensure each UL user is served in every

time slot, which is not guaranteed with the joint design.
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The rest of the chapter is organised as follows. Section 5.2 provides some pre-

liminaries, including the system model, the CSI error models and the relationship

between sum rate and MSE. In Section 5.3 we present the WSR problem under

perfect CSI. Sections 5.4 and 5.5 tackle the norm-bounded error and the stochas-

tic error problems respectively. Next, in Section 5.6 we consider the extension

to a weighted DL rate maximisation problem subject to a minimum per UL user

target rate. Simulation results are presented in Section 5.7. Section 5.8 provides

an insight on the implementation and complexity of the proposed algorithms.

Finally, Section 5.9 presents some concluding remarks. Additionally, there are

two appendices, the first includes a lemma used within this chapter, while the

second provides details for the proof of the theorem presented in Section 5.4.

5.2 Preliminaries

5.2.1 System model

We consider a G-cell system where each cell g has one FD BS, Kd
g DL users

requiring bd streams each and Ku
g UL users requiring bu streams each. A simplified

version of this network with one DL and one UL user per cell is depicted in Fig.

5.1. BSs are equipped with MB FD antennas, DL users are equipped with Nd

HD antennas and UL users are equipped with Nu HD antennas. The maximum

transmit power is given by PB at the BSs and PU at the UL users.

The signal received at user kdg , the kth DL user in cell g, and at BS g are

given by ykdg and yg, respectively defined as

ykdg =
G∑
j=1

Hkdg ,j

Kd
j∑

i=1

(Vidj
sidj + cidj ) +

G∑
j=1

Ku
j∑

i=1

Hkdg ,i
u
j
(Viuj

siuj + ciuj ) + nkdg + ekdg (5.1)

yg =
G∑
j=1

Hg,j

Kd
j∑

i=1

(Vidj
sidj + cidj ) +

G∑
j=1

Ku
j∑

i=1

Hg,iuj
(Viuj

siuj + ciuj ) + ng + eg . (5.2)

Here, Hkdg ,j
∈ CNd×MB represents the channel from BS j to DL user kdg , Hkdg ,i

u
j
∈

CNd×Nu is the channel from UL user iuj to DL user kdg , Hg,j ∈ CMB×MB is the

channel from BS j to BS g, and Hg,iuj
∈ CMB×Nu is the channel from UL user iuj

to BS g. Vidj
∈ CMB×bd is the precoder for sidj , with sidj ∈ Cbd×1 being the data

intended for the ith DL user in cell j, where E{sidj s
H
idj
} = I. Viuj

∈ CNu×bu is
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the precoder for siuj , with siuj ∈ Cbu×1 being the data transmitted by the ith UL

user in cell j, where E{siuj s
H
iuj
} = I. Moreover, nkdg and ng represent AWGN with

zero mean and variance σ2
U and σ2

B respectively. Finally, ciuj and cidj represent

transmitter distortion at the UL users and the BSs respectively, while ekdg and eg

represent receiver distortion at the DL users and the BSs respectively.

Transmitter distortion models the effect of limited transmitter dynamic range

by approximating the combined effects of additive power-amplifier noise, oscilla-

tor phase noise, and non-linearities in the DAC and the power amplifier. This

distortion is statistically independent from the transmitted signal and can be

modelled as [77]

cidj ∼ CN
(
0, κBdiag(Vidj

VH
idj

)
)

ciuj ∼ CN
(
0, κUdiag(Viuj

VH
iuj

)
)

where κU , κB � 1.

Receiver distortion models the effect of limited receiver dynamic range by cap-

turing the combined effects of oscillator phase noise, additive gain control noise,

and non-linearities in the ADC and gain-control. It is statistically independent

from the received signal itself and can be modelled as [77]

ekdg ∼ CN
(
0, ιUdiag

(
cov(ykdg − ekdg )

))
eg ∼ CN

(
0, ιBdiag

(
cov(yg − eg)

))
where ιU , ιB � 1.

Finally, since with perfect CSI Hg,g

∑Kd
g

i=1 Vidg
sidg is known at BS g, this can

be subtracted from yg resulting in (5.3) with Θ = 0 [77].1 The effect of residual

SI is then captured in the term Hg,g

∑Kd
g

i=1 cidg + eg. The parameter Θ is a binary

term used to differentiate between the perfect and imperfect CSI scenarios. For

the perfect CSI case Θ = 0, whilst for the imperfect CSI case Θ = 1 leading to

an extra residual SI term; further details for the imperfect CSI case are provided

in Section 5.2.2.

1The SI channel can be estimated using pilot signals. For SI channel estimation, the FD
node transmitting the pilot signal is also the one receiving it, this implies that the signal is
received with high power. Having a strong signal allows for accurate estimation of Hg,g [76],

which implies that Hg,g

∑Kd
g

i=1 Vidg
sidg can be considered as available at BS g under the perfect

CSI assumption.
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ỹg =
G∑
j=1
j 6=g

Hg,j

Kd
j∑

i=1

(Vidj
sidj + cidj ) +

G∑
j=1

Ku
j∑

i=1

Hg,iuj
(Viuj

siuj + ciuj ) + Hg,g

Kd
g∑

i=1

cidg

+ Θ

Kd
g∑

i=1

∆g,gVidj
sidj︸ ︷︷ ︸

extra residual SI for
imperfect CSI scenarios

+ng + eg (5.3)

Similar to the majority of literature dealing with beamforming and interfer-

ence management, our proposed algorithms require CSI knowledge in order to be

implemented. While going into exact details is beyond the scope of this thesis, it

is important to highlight the fact that all relevant channels can indeed be learned.

Channels from users to BSs, from BSs to users, and between different BSs can

be estimated using standard 3GPP LTE channel estimation protocols for HD

systems. Channels between the users themselves can be learned via neighbour

discovery methods applicable to device-to-device (D2D) communication, such as

sounding reference signals (SRS) in 3GPP LTE. See for example [76, 82, 94] and

references therein for further details on channel estimation.

5.2.2 Imperfect CSI considerations

Whilst perfect CSI formulations provide a useful baseline to highlight the advan-

tages of FD over HD, it is important to recognise that the perfect CSI assumption

is idealistic - in practice only an imperfect estimate is available. Therefore, mov-

ing on beyond the initial perfect CSI assumption, we also consider the design of

robust beamformers. The channels are modelled as

Hkdg ,i
u
j

= Ĥkdg ,i
u
j

+ ∆kdg ,i
u
j

Hkdg ,j
= Ĥkdg ,j

+ ∆kdg ,j

Hg,iuj
= Ĥg,iuj

+ ∆g,iuj

Hg,j = Ĥg,j + ∆g,j (5.4)

where H indicates the perfect channel, Ĥ is the imperfect channel and ∆ is the

CSI error. For the imperfect CSI case, only Ĥg,g

∑Kd
g

i=1 Vidg
sidg is known at BS g.

This can be subtracted from yg resulting in (5.3) with Θ = 1, where there is an

extra residual SI component compared to the perfect CSI case.
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In this chapter the CSI error will be modelled in two different ways. First, we

consider a norm-bounded error model, outlined in Section 5.2.2.1, which is more

suited to cases where the CSI imperfection is due to quantisation errors; here we

adopt an approach that can handle all errors as long their norm does not exceed a

pre-established threshold, resulting in a more complex semi-definite programming

(SDP) / determinant maximisation (Max-Det) based approach (see Section 5.4).

Second, we consider a stochastic error model, outlined in Section 5.2.2.2, which

is more suited to situations where the CSI error is due to estimation issues; this

results in a simpler to implement closed form solution approach (see Section 5.5).

5.2.2.1 Norm-bounded error model

For the deterministic norm-bounded error model, the Frobenius norm of the CSI

errors cannot exceed a pre-established upper bound, and the CSI error is ex-

pressed as

{∆kdg ,i
u
j

: ||∆kdg ,i
u
j
||F ≤ εkdg ,iuj } ∀ k, g, i, j

{∆kdg ,j
: ||∆kdg ,j

||F ≤ εkdg ,j} ∀ k, g, j

{∆g,iuj
: ||∆g,iuj

||F ≤ εg,iuj } ∀ g, i, j

{∆g,j : ||∆g,j||F ≤ εg,j} ∀ g, j (5.5)

where ε represents the upper limit on the Frobenius norm of the error. This

model considers the case where the imperfect CSI is allowed to fall anywhere

within an uncertainty region around the perfect CSI value, and is particularly

suited to situations where quantisation errors dominate the imperfection in the

available CSI. It is well established in literature and has been considered for

beamformer design in a variety of systems, for example MIMO relay networks [95],

MIMO IBCs [96], DL multi-user MIMO systems [97] and point-to-point MIMO

communication [98,99].

5.2.2.2 Stochastic error model

For the stochastic error model, the CSI errors are assumed to be independent of

the perfect channel, H, and distributed as

vec(∆kdg ,i
u
j
) ∼ CN (0, ηUUI)

vec(∆kdg ,j
) ∼ CN (0, ηUBI)
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vec(∆g,iuj
) ∼ CN (0, ηBUI)

vec(∆g,j) ∼ CN (0, ηBBI) (5.6)

where η represents the variance of the CSI error, and the subscripts B and U

indicate the BS and user respectively. This type of error model is suitable for

cases where the channel error is mainly due to estimation inaccuracies. The

parameter η can be assumed to be known a priori depending on the channel

dynamics and the channel estimation scheme applied. It may be viewed either as

a whole [68], or modelled as [67]

ηrt = βρ−αrt

where r, t ∈ {B,U}, ρ represents the SNR and parameters α and β capture a

variety of CSI acquisition scenarios. More details are available in Section 4.2.2

for the corresponding parameters in (4.3).

5.2.3 Relationship between achievable rate and MSE

While we are ultimately interested in WSR maximisation, our approach is based

on minimising the MSE, therefore we start by establishing a link between the

achievable rate and the MSE covariance matrix. Starting with the DL users, the

general DL MSE matrix is given by

Ekdg
= E{(Ukdg

ykdg − skdg )(Ukdg
ykdg − skdg )

H}

= (I−UH
kdg

Hkdg ,g
Vkdg

)(I−UH
kdg

Hkdg ,g
Vkdg

)H + Ukdg
Φkdg

UH
kdg

(5.7)

where the expectation is taken with respect to s and n under an independence

assumption, and Ukdg
∈ Cbd×Md is the receiver applied by user kdg . Here, Φkdg

represents the DL interference-plus-noise covariance matrix, expressed as

Φkdg
=

G∑
j=1

Kd
j∑

i=1

(i,j 6=k,g)

Hkdg ,j
Vidj

VH
idj

HH
kdg ,j

+
G∑
j=1

Ku
j∑

i=1

Hkdg ,i
u
j
Viuj

VH
iuj

HH
kdg ,i

u
j

+ Fkdg
+ σ2

UI

with Fkdg
, defined in (5.8), representing the combined contribution of the trans-

mitter and receiver distortion. The approximation is obtained by omitting terms

involving the multiplication of κB, κU and ιU with each other since their product

is negligibly small.
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Fkdg
≈

G∑
j=1

Kd
j∑

i=1

κBHkdg ,j
diag(Vidj

VH
idj

)HH
kdg ,j

+
G∑
j=1

Ku
j∑

i=1

κUHkdg ,i
u
j
diag(Viuj

VH
iuj

)HH
kdg ,i

u
j

+
G∑
j=1

Kd
j∑

i=1

ιUdiag(Hkdg ,j
Vidj

VH
idj

HH
kdg ,j

) +
G∑
j=1

Ku
j∑

i=1

ιUdiag(Hkdg ,i
u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
) + ιUσ

2
UI

(5.8)

Fixing all the precoders, the optimal DL receiver is an MMSE one, defined as

Ūkdg
= arg min

U
Tr(Ekdg

)

= VH
kdg

HH
kdg ,g

[ G∑
j=1

Kd
j∑

i=1

Hkdg ,j
Vidj

VH
idj

HH
kdg ,j

+
G∑
j=1

Ku
j∑

i=1

Hkdg ,i
u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
+Fkdg

+σ2
UI

]−1

.

(5.9)

Using (5.9) in (5.7) allows us to express the DL MSE matrix when using an

MMSE receiver as

Ēkdg
= I−VH

kdg
HH
kdg ,g

(Hkdg ,g
Vkdg

VH
kdg

HH
kdg ,g

+ Φkdg
)−1Hkdg ,g

Vkdg

= (I + VH
kdg

HH
kdg ,g

Φ−1
kdg

Hkdg ,g
Vkdg

)−1 . (5.10)

Under Gaussian signalling, the rate achieved by user kdg is given by

Rkdg
= log2 det

(
I + Φ−1

kdg
VH
kdg

HH
kdg ,g

Hkdg ,g
Vkdg

)
(a)
= log2 det

(
I + VH

kdg
HH
kdg ,g

Φ−1
kdg

Hkdg ,g
Vkdg

)
(b)
= log2 det

(
Ē
−1
kdg

)
. (5.11)

where (a) follows from Sylvester’s determinant theorem and (b) comes from (5.10).

The rate achieved by user kug is given by

Rkug = log2 det
(
I + Φ−1

kug
VH
kug

HH
g,kug

Hg,kugVkug

)
where Φkug is the UL interference-plus-noise covariance matrix, expressed as

Φkug =
G∑
j=1
(j 6=g)

Kd
j∑

i=1

Hg,jVidj
VH
idj

HH
g,j +

G∑
j=1

Ku
j∑

i=1

(i,j 6=k,g)

Hg,iuj
Viuj

VH
iuj

HH
g,iuj

+ Fg + σ2
BI

with Fg, defined in (5.12), representing the effect of transmitter and receiver

distortion.
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Fg ≈
G∑
j=1

Kd
j∑

i=1

κBHg,jdiag(Vidj
VH
idj

)HH
g,j +

G∑
j=1

∑Ku
j

i=1
κUHg,iuj

diag(Viuj
VH
iuj

)HH
g,iuj

+
G∑
j=1

Kd
j∑

i=1

ιBdiag(Hg,jVidj
VH
idj

HH
g,j) +

G∑
j=1

∑Ku
j

i=1
ιBdiag(Hg,iuj

Viuj
VH
iuj

HH
g,iuj

) + ιBσ
2
BI

(5.12)

Using a process similar to the one outlined for the DL, we can relate the UL rate

to the UL MSE covariance matrix as

Rkug = log2 det
(
Ē
−1
kug

)
(5.13)

where Ēkug = E{(Ūkug ỹkug − skug )(Ūkug ỹkug − skug )H} is the UL MSE matrix when

using the optimal MMSE receiver given by

Ūkug = arg min
U

Tr(Ekug )

= VH
kug

HH
g,kug

 G∑
j=1
j 6=g

Kd
j∑

i=1

Hg,jVidj
VH
idj

HH
g,j +

G∑
j=1

Ku
j∑

i=1

Hg,iuj
Viuj

VH
iuj

HH
g,iuj

+ Fg + σ2
BI


−1

.

(5.14)

5.3 Weighted sum rate maximisation

Starting with the perfect CSI case, we want to find the optimal precoders that

maximise the WSR subject to transmit power constraints, i.e.

max
V

G∑
g=1

Kd
g∑

k=1

µkdgRkdg
+

G∑
g=1

Ku
g∑

k=1

µkugRkug

s.t. Tr(VkugV
H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g . (5.15)

where µkdg and µkug ∀ k, g denote pre-defined weights.

Theorem 5.1. The WSR problem in (5.15) is equivalent to the WMMSE prob-

lem in (5.16), such that the global optimal solution for the precoders of the two

problems are identical.
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min
U,W,V

G∑
g=1

Kd
g∑

k=1

[
Tr(Wkdg

Ekdg
)− µkdg log2 det

(
ln2

µkdg
Wkdg

)
−
µkdg
ln2

bd

]

+
G∑
g=1

Ku
g∑

k=1

[
Tr(WkugEkug )− µkug log2 det

(
ln2

µkug
Wkug

)
−
µkug
ln2

bu

]
s.t. Tr(VkugV

H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g (5.16)

Proof. First we define the metrics Tr(Wkdg
Ekdg

) and Tr(WkugEkug ) used in (5.16) as

in (5.17) and (5.18). Here, Bkdg
comes from the decomposition of Wkdg

as Wkdg
=

BH
kdg

Bkdg
, and Bkug comes from the decomposition of Wkug as Wkug = BH

kug
Bkug .

(Note that while the weight decomposition is not exploited in this theorem, we

introduce the notation here for conformity, since it is necessary at a number of

points later in this chapter.)

Tr
(
Wkdg

Ekdg

)
= Tr

(
Bkdg

(Ukdg
Hkdg ,g

Vkdg
− I)(Ukdg

Hkdg ,g
Vkdg
− I)HBH

kdg

)
+

G∑
j=1

Kd
j∑

i=1

Tr
(
κBBkdg

Ukdg
Hkdg ,j

diag(Vidj
VH
idj

) HH
kdg ,j

UH
kdg

BH
kdg

)

+
G∑
j=1

Ku
j∑

i=1

Tr
(
κUBkdg

Ukdg
Hkdg ,i

u
j

diag(Viuj
VH
iuj

)HH
kdg ,i

u
j
UH
kdg

BH
kdg

)

+
G∑
j=1

Kd
j∑

i=1

Tr
(
ιUBkdg

Ukdg
diag(Hkdg ,j

Vidj
VH
idj

HH
kdg ,j

)UH
kdg

BH
kdg

)

+
G∑
j=1

Ku
j∑

i=1

Tr
(
ιUBkdg

Ukdg
diag(Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
)UH

kdg
BH
kdg

)

+
G∑
j=1

Ku
j∑

i=1

Tr
(
Bkdg

Ukdg
Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
UH
kdg

BH
kdg

)

+
G∑
j=1

Kd
j∑

i=1

(i,j 6=k,g)

Tr
(
Bkdg

Ukdg
Hkdg ,j

Vidj
VH
idj

HH
kdg ,j

UH
kdg

BH
kdg

)

+ (σ2
U + ιUσ

2
U)Tr

(
Bkdg

Ukdg
UH
kdg

BH
kdg

)
(5.17)
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Tr
(
WkugEkug

)
= Tr

(
Bkug (UkugHg,kugVkug − I)(UkugHg,kugVkug − I)BH

kug

)
+

G∑
j=1

Ku
j∑

i=1

(i,j 6=k,g)

Tr
(
BkugUkugHg,iuj

Viuj
VH
iuj

HH
g,iuj

UH
kug

BH
kug

)

+
G∑
j=1
(j 6=g)

Kd
j∑

i=1

Tr
(
BkugUkugHg,jVidj

VH
idj

HH
g,jU

H
kug

BH
kug

)

+
G∑
j=1

Kd
j∑

i=1

Tr
(
κBBkugUkugHg,jdiag(Vidj

VH
idj

)HH
g,jU

H
kug

BH
kug

)

+
G∑
j=1

Ku
j∑

i=1

Tr
(
κUBkugUkugHg,iuj

diag(Viuj
VH
iuj

)HH
g,iuj

UH
kug

BH
kug

)

+
G∑
j=1

Kd
j∑

i=1

Tr
(
ιBBkugUkug diag(Hg,jVidj

VH
idj

HH
g,j)U

H
kug

BH
kug

)

+
G∑
j=1

Ku
j∑

i=1

Tr
(
ιBBkugUkug diag(Hg,iuj

Viuj
VH
iuj

HH
g,iuj

)UH
kug

BH
kug

)
+ (σ2

B + ιBσ
2
B)Tr

(
BkugUkugU

H
kug

BH
kug

)
+ Θ

Kd
j∑

i=1

Tr
(
BkugUkug∆g,gVidg

VH
idg

∆H
g,gU

H
kug

BH
kug

)
(5.18)

Considering (5.16), it can be seen that the optimal U are the standard MMSE

receivers Ūkdg
and Ūkug in (5.9) and (5.14) respectively. Next, fixing U and V we

can derive expressions for the weights. Ignoring all parts that do not contain W,

since these have no effect on the resultant weights, the Lagrangian of (5.16) can

be written as

LW =
G∑
g=1

Kd
g∑

k=1

Tr
(
Wkdg

Ekdg

)
− µkdg log2 det

(
ln2

µkdg
Wkdg

)

+
G∑
g=1

Ku
g∑

k=1

Tr
(
WkugEkug

)
− µkug log2 det

(
ln2

µkug
Wkug

)
.

Taking partial derivatives of LW and setting them to zero, we obtain the optimal

weights as

W̄kdg
=
µkdg
ln2

Ē
−1
kdg

and W̄kug =
µkug
ln2

Ē
−1
kug
. (5.19)
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Finally, substituting for optimal U and W in (5.16), results in

min
V

G∑
g=1

Kd
g∑

k=1

−µkdg log2 det
(
Ē
−1
kdg

)
+

G∑
g=1

Ku
g∑

k=1

−µkug log2 det
(
Ē
−1
kug

)
s.t. Tr(VkugV

H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g

which considering (5.11) and (5.13) is the same as the original problem in (5.15).

Since (5.16) is only separately convex in U, V and W, we apply an alternating

minimisation approach to solve the problem as outlined in Algorithm 5.1.

Algorithm 5.1: Alternating optimisation process for WMMSE problems

1 Initialise Vkdg
and Vkug ∀ k, g.

2 Calculate Ukdg
and Ukug ∀ k, g.

3 Calculate Wkdg
and Wkug ∀ k, g.

4 Compute Vkdg
and Vkug ∀ k, g.

5 Repeat from Step 2 until convergence or for a fixed number of iterates.

Having closed form expressions for U and W, we need to focus on obtaining

V. Fixing U and W, (5.16) can be expressed as

min
V

G∑
g=1

Kd
g∑

k=1

Tr(Wkdg
Ekdg

) +
G∑
g=1

Ku
g∑

k=1

Tr(WkugEkug )

s.t. Tr(VkugV
H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g . (5.20)

With respect to V, the Lagrange dual objective function of (5.20) is given by

LV =
G∑
g=1

∑Kd
g

k=1
Tr(Wkdg

Ekdg
) +

G∑
g=1

Ku
g∑

k=1

Tr(WkugEkug )

+
G∑
g=1

Ku
g∑

k=1

$kug

[
Tr(VkugV

H
kug

)− PU
]

+
G∑
g=1

%g

[ Kd
g∑

k=1

Tr(Vkdg
VH
kdg

)− PB
]
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where $kug and %g are the Lagrange multipliers associated with the transmit power

constraints. Taking the partial derivatives of LV and setting them to zero, we

obtain closed form solutions for the optimal precoders as

V̄kdg
= [Xg + %gI]−1HH

kdg ,g
UH
kdg

Wkdg

V̄kug = [Xkug +$kug I]−1HH
g,kug

UH
kug

Wkug (5.21)

where Xg and Xkug are defined in (5.22) and (5.23) respectively.

Xg =
G∑
j=1

Kd
j∑

i=1

HH
idj ,g

UH
idj

Widj
Uidj

Hidj ,g
+

G∑
j=1
j 6=g

Ku
j∑

i=1

HH
j,gU

H
iuj

Wiuj
Uiuj

Hj,g

+
G∑
j=1

Kd
j∑

i=1

κBSdiag(HH
idj ,g

UH
idj

Widj
Uidj

Hidj ,g
) +

G∑
j=1

Ku
j∑

i=1

κBSdiag(HH
j,gU

H
iuj

Wiuj
Uiuj

Hj,g)

+
G∑
j=1

Kd
j∑

i=1

ιusH
H
idj ,g

diag(UH
idj

Widj
Uidj

)Hidj ,g
+

G∑
j=1

Ku
j∑

i=1

ιBSHH
j,gdiag(UH

iuj
Wiuj

Uiuj
)Hj,g

(5.22)

Xkug =
G∑
j=1

Kd
j∑

i=1

HH
idj ,k

u
g
UH
idj

Widj
Uidj

Hidj ,k
u
g

+
G∑
j=1

Ku
j∑

i=1

HH
j,kug

UH
iuj

Wiuj
Uiuj

Hj,kug

+
G∑
j=1

Kd
j∑

i=1

κusdiag(HH
idj ,k

u
g
UH
idj

Widj
Uidj

Hidj ,k
u
g
) +

G∑
j=1

Ku
j∑

i=1

κusdiag(HH
j,kug

UH
iuj

Wiuj
Uiuj

Hj,kug )

+
G∑
j=1

Kd
j∑

i=1

ιusH
H
idj ,k

u
g
diag(UH

idj
Widj

Uidj
)Hidj ,k

u
g

+
G∑
j=1

Ku
j∑

i=1

ιBSHH
j,kug

diag(UH
iuj

Wiuj
Uiuj

)Hj,kug

(5.23)

The Lagrange multipliers $kug and %g should be either zero, or positive num-

bers that satisfy the following equations

Tr
(
Vkug ($kug )VH

kug
($kug )

)
= PU ∀ k, g

Kd
g∑

k=1

Tr
(
Vkdg

(%g)V
H
kdg

(%g)
)

= PB ∀ g . (5.24)

100



5.4. Robust design with norm-bounded error model

The equalities in (5.24) can alternatively be expressed as

Mu∑
m=1

[Gkug ]m

([Dkug ]m +$kug )2
= PU ∀ k, g

MB∑
m=1

[Gg]m
([Dg]m + %g)2

= PB ∀ g

where Dkug comes from the decomposition Xkug = CkugDkugC
H
kug

, Gkug = CH
kug

HH
g,kug

UH
kug

WkugW
H
kug

UkugHg,kugCkug , Dg comes from the decomposition Xg = CgDgC
H
g and

Gg =
∑Kd

g

k=1 CH
g HH

kdg ,g
UH
kdg

Wkdg
WH

kdg
Ukdg

Hkdg ,g
Cg. These can be respectively solved

for νkug and µg using linear search techniques, such as the bisection method [92].

Therefore to solve (5.16), we can follow the process in Algorithm 5.1, where

in Step 2 we use (5.9) and (5.14) to calculate the receivers as Ukdg
= Ūkdg

and

Ukug = Ūkug . The weights in Step 3 are calculated as Wkdg
= W̄kdg

and Wkug = W̄kug

using (5.19). Finally, (5.21) is used to calculate Vkdg
= V̄kdg

and Vkug = V̄kug in

Step 4.

Remark 5.1. The alternating minimisation process used to solve the WMMSE

problem decreases the cost function monotonically with each step. Since the cost

function is lower bounded, then the algorithm is guaranteed to converge. Addi-

tionally, using an argument parallel to the one in [92, Appendix C], convergence

to a stationary point of the original WSR problem can also be proven.

5.4 Robust design with norm-bounded error model

Next, we want to solve the WSR problem from the prior section with additional

considerations for norm-bounded CSI errors, i.e.

max
V

min
∆

G∑
g=1

Kd
g∑

k=1

µkdgRkdg
+

G∑
g=1

Ku
g∑

k=1

µkugRkug

s.t. Tr(VkugV
H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g

{∆kdg ,i
u
j

: ‖∆kdg ,i
u
j
‖F ≤ εkdg ,iuj } ∀ k, g, i, j

{∆kdg ,j
: ‖∆kdg ,j

‖F ≤ εkdg ,j} ∀ k, g, j
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5.4. Robust design with norm-bounded error model

{∆g,iuj
: ‖∆g,iuj

‖F ≤ εg,iuj } ∀ g, i, j

{∆g,j : ‖∆g,j‖F ≤ εg,j} ∀ g, j . (5.25)

We apply an iterative approach to solve our non-convex optimisation problem,

this involves solving a convex sub-problem at each iteration step and has been

proven to converge [96, 97]. Having already established an equivalence between

(5.15) and (5.16) for the perfect CSI case, it directly follows that the cost function

of (5.25) can be mapped to

max
V

min
∆

max
U,W

G∑
g=1

Kd
g∑

k=1

[
−Tr(Wkdg

Ekdg
) + µkdg log2 det

(
ln2

µkdg
Wkdg

)
+
µkdg
ln2

bd

]

+
G∑
g=1

Ku
g∑

k=1

[
−Tr(WkugEkug ) + µkug log2 det

(
ln2

µkug
Wkug

)
+
µkug
ln2

bu

]
.

(5.26)

By applying the max-min inequality, which states that for any function f(w, z)

then min
w

max
z

f(w, z) ≥ max
z

min
w
f(w, z), rather than using the cost function in

(5.26), we can instead focus on solving the following problem

max
V,U,W

min
∆

G∑
g=1

Kd
g∑

k=1

[
−Tr(Wkdg

Ekdg
) + µkdg log2 det

(
ln2

µkdg
Wkdg

)
+
µkdg
ln2

bd

]

+
G∑
g=1

Ku
g∑

k=1

[
−Tr(WkugEkug ) + µkug log2 det

(
ln2

µkug
Wkug

)
+
µkug
ln2

bu

]
s.t. Tr(VkugV

H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g

{∆kdg ,i
u
j

: ‖∆kdg ,i
u
j
‖F ≤ εkdg ,iuj } ∀ k, g, i, j

{∆kdg ,j
: ‖∆kdg ,j

‖F ≤ εkdg ,j} ∀ k, g, j

{∆g,iuj
: ‖∆g,iuj

‖F ≤ εg,iuj } ∀ g, i, j

{∆g,j : ‖∆g,j‖F ≤ εg,j} ∀ g, j . (5.27)

The cost function of (5.27) is not equivalent to the original one in (5.26), how-

ever the ensuing formulation is still a valid one. Firstly, the new cost function
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5.4. Robust design with norm-bounded error model

is a lower bound on (5.26), implying that the resultant rate is surely achievable.

Secondly, the formulation in (5.27) ensures that none of the optimisation vari-

ables depend on perfect CSI, which is the ultimate aim of a robust beamforming

approach.

Theorem 5.2. The optimisation problem in (5.27) is equivalent to the reformu-

lation in (5.28) such that the optimal U, V and W = BHB for the two problems

are identical.

max
V,U,B,m,ν

G∑
g=1

Kd
g∑

k=1

[
−

G∑
j=1

Ku
j∑

i=1

m1,kgij −
G∑
j=1

m2,kgj − (σ2
U + ιUσ

2
U)||Bkdg

Ukdg
||2F

+ µkdg log2 det

(
ln2

µkdg
BH
kdg

Bkdg

)
+
µkdg
ln2

bd

]

+
G∑
g=1

[
−

G∑
j=1

Ku
j∑

i=1

m3,gij −
G∑
j=1

m4,gj +

Ku
g∑

k=1

(
− (σ2

B + ιBσ
2
B)||BkugUkug ||

2
F

+ µkug log2 det

(
ln2

µkug
BH
kug

Bkug

)
+
µkug
ln2

bu

)]
s.t. Tr(VkugV

H
kug

) ≤ PU ∀ k, g

Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g
m1,kgij − ν1,kgij ωH1,kgij 0

ω1,kgij I −εkdg ,iuj Ω1,kgij

0 −εkdg ,iuj Ω
H
1,kgij

ν1,kgijI

 � 0 ∀ k, g, i, j

 m2,kgj − ν2,kgj ωH2,kgj 0

ω2,kgj I −εkdg ,jΩ2,kgj

0 −εkdg ,jΩ
H
2,kgj

ν2,kgjI

 � 0 ∀ k, g, j

 m3,gij − ν3,gij ωH3,gij 0

ω3,gij I −εg,iuj Ω3,gij

0 −εg,iuj Ω
H
3,gij

ν3,gijI

 � 0 ∀ g, i, j

 m4,gj − ν4,gj ωH4,gj 0

ω4,gj I −εg,jΩ4,gj

0 −εg,jΩH
4,gj ν4,gjI

 � 0 ∀ g, j

ν1,kgij ≥ 0, ν2,kgj ≥ 0, ν3,gij ≥ 0, ν4,gj ≥ 0 ∀ k, g, i, j (5.28)
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5.4. Robust design with norm-bounded error model

In (5.28), m and ν represent additional scalar variables introduced during the

reformulation, and the ω and Ω terms are defined as

ω1kg ,ij =


vec(Bkdg

Ukdg
Ĥkdg ,i

u
j
Viuj

)

(κU)
1
2

⌊(
(SnViuj

)T ⊗ (Bkdg
Ukdg

)
)
vec(Ĥkdg ,i

u
j
)
⌋
n=1...Mu

(ιU)
1
2 b
(
VT
iuj
⊗
(
(UH

kdg
BH
kdg

)TSn
))

vec(Ĥkdg ,i
u
j
)cn=1...Md



ω2,kgj =



⌊
vec(Bkdg

Ukdg
Ĥkdg ,j

Vidj
− δk,gi,j Bkdg

)
⌋
i=1...Kd

j⌊
(κB)

1
2

⌊(
(SnVidj

)T ⊗ vec(Bkdg
Ukdg

)
)
vec(Ĥkdg ,j

)
⌋
n=1...MB

⌋
i=1...Kd

j⌊
(ιU)

1
2

⌊(
VT
idj
⊗
(
(UH

kdg
BH
kdg

)TSn
))

vec(Ĥkdg ,j
)
⌋
n=1...Md

⌋
i=1...Kd

j



ω3,gij =



⌊
vec(BkugUkug Ĥg,iuj

Viuj
− δk,gi,j Bkdg

)
⌋
k=1...Ku

g⌊
(κU)

1
2

⌊(
(SnViuj

)T ⊗ (BkugUkug )
)
vec(Ĥg,iuj

)
⌋
n=1...Mu

⌋
k=1...Ku

g⌊
(ιB)

1
2

⌊(
VT
iuj
⊗
(
(UH

kug
BH
kug

)TSn
))

vec(Ĥg,iuj
)
⌋
n=1...MB

⌋
k=1...Ku

g



ω4,gj =



⌊
ϑgjvec(BkugUkug Ĥg,jVidj

)
⌋
k=1...Kug

i=1...Kd
j⌊

(κB)
1
2

⌊(
(SnVidj

)T ⊗ (BkugUkug )
)
vec(Ĥg,j)

⌋
n=1...MB

⌋
k=1...Kug

i=1...Kd
j⌊

(ιB)
1
2

⌊(
VT
idj
⊗
(
(UH

kug
BH
kug

)TSn
))

vec(Ĥg,j)
⌋
n=1...MB

⌋
k=1...Kug

i=1...Kd
j



Ω1kg ,ij =


(
VT
iuj
⊗Bkdg

Ukdg

)
(κU)

1
2

⌊
(SnViuj

)T ⊗ (Bkdg
Ukdg

)
⌋
n=1...Mu

(ιU)
1
2

⌊
VT
iuj
⊗
(
(UH

kdg
BH
kdg

)TSn
)⌋

n=1...Md
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Ω2,kgj =



⌊(
VT
idj
⊗Bkdg

Ukdg

)⌋
i=1...Kd

j⌊
(κB)

1
2

⌊
(SnVidj

)T ⊗ vec(Bkdg
Ukdg

)
⌋
n=1...MB

⌋
i=1...Kd

j⌊
(ιU)

1
2

⌊
VT
idj
⊗
(
(UH

kdg
BH
kdg

)TSn
)⌋

n=1...Md

⌋
i=1...Kd

j



Ω3,gij =


b
(
VT
iuj
⊗BkugUkug

)
ck=1...Ku

g⌊
(κU)

1
2 b(SnViuj

)T ⊗ (BkugUkug )cn=1...Mu

⌋
k=1...Ku

g⌊
(ιB)

1
2

⌊
VT
iuj
⊗
(
(UH

kug
BH
kug

)TSn
)⌋

n=1...MB

⌋
k=1...Ku

g



Ω4,gj =



⌊(
VT
idj
⊗BkugUkug

)⌋
k=1...Kug

i=1...Kd
j⌊

(κB)
1
2

⌊
(SnVidj

)T ⊗ (BkugUkug )
⌋
n=1...MB

⌋
k=1...Kug

i=1...Kd
j⌊

(ιB)
1
2

⌊
VT
idj
⊗
(
(UH

kug
BH
kug

)TSn
)⌋

n=1...MB

⌋
k=1...Kug

i=1...Kd
j


where Sn is a selection matrix consisting of all zeros except for the nth element

along the diagonal which is equal to 1,

δk,gi,j =

{
1 if (k, g) = (i, j)

0 otherwise
and ϑgj =

{
0 if g = j

1 otherwise
.

Proof. The problem formulation in (5.28) is based on finding an equivalent form

for the inner maximisation of (5.27). Note that Tr(Wkdg
Ekdg

) and Tr(WkugEkug ) are

given by (5.17) and (5.18) where Θ = 1 since we are dealing with imperfect CSI.

Also the CSI error, ∆, appears in these terms when we replace H with Ĥ + ∆

from (5.4).

Next, it can be noticed that the problem is separable over each occurrence of

the different types of CSI error [96]. Therefore, we can separate the problem over

∆kdg ,i
u
j
, ∆kdg ,j

, ∆g,iuj
and ∆g,j, and focus on one of them at a time to obtain a more

useful formulation. Starting with ∆kdg ,i
u
j
, this only appears in terms containing

Hkdg ,i
u
j
, since Hkdg ,i

u
j

= Ĥkdg ,i
u
j

+ ∆kdg ,i
u
j
. Thus, from the overall cost function of

(5.27), from the perspective of each ∆kdg ,i
u
j
, we are only concerned with
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T1,kgij = Tr
(
Bkdg

Ukdg
Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
UH
kdg

BH
kdg

)
+ Tr

(
κUBkdg

Ukdg
Hkdg ,i

u
j

diag(Viuj
VH
iuj

)HH
kdg ,i

u
j
UH
kdg

BH
kdg

)
+ Tr

(
ιUBkdg

Ukdg
diag(Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
)UH

kdg
BH
kdg

)
= Tr

(
Bkdg

Ukdg
Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
UH
kdg

BH
kdg

)
+

Mu∑
n=1

Tr
(
κUBkdg

Ukdg
Hkdg ,i

u
j
SnViuj

VH
iuj

SHn HH
kdg ,i

u
j
UH
kdg

BH
kdg

)
+

Md∑
n=1

Tr
(
ιUBkdg

Ukdg
SnHkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
SHn UH

kdg
BH
kdg

)
.

Using, Tr(XXH) = ‖vec(X)‖2 and vec(XYZ) = (ZT ⊗X)vec(Y), and intro-

ducing slack variable m1,kgij , this can be expressed as

T1,kgij = ‖ω1,kgij + Ω1,kgijvec(∆kdg ,i
u
j
)‖2 ≤ m1,kgij . (5.29)

Thus, the inner minimisation in (5.27) from the perspective of each occurrence

of ∆kdg ,i
u
j

is given by

max
m
−m1,kgij

s.t. ‖ω1,kgij + Ω1,kgijvec(∆kdg ,i
u
j
)‖2 ≤ m1,kgij

∀{∆kdg ,i
u
j

: ||vec(∆kdg ,i
u
j
)|| ≤ εkdg ,iuj } . (5.30)

Next, representing the inequality in (5.29) as

m1,kgij −
(
ω1,kgij + Ω1,kgijvec(∆kdg ,i

u
j
)
)H

I
(
ω1,kgij + Ω1,kgijvec(∆kdg ,i

u
j
)
)
≥ 0

we can apply the Schur Complement Lemma, to formulate the constraints of

(5.30) as[
m1,kgij ωH1,kgij
ω1,kgij I

]
+

[
0 vec(∆kdg ,i

u
j
)HΩH

1,kgij

Ω1,kgijvec(∆kdg ,i
u
j
) 0

]
� 0 .

Additionally, applying Lemma 5.1 from Appendix 5.A with ξ = εkdg ,iuj , B =

[0 ΩH
1,kgij

], C = [−1 0], D = vec(∆kdg ,i
u
j
) and

A =

[
m1,kgij ωH1,kgij
ω1,kgij I

]
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this can be further represented as

ν1,kgij ≥ 0,


m1,kgij − ν1,kgij ωH1,kgij 0

ω1,kgij I −εkdg ,iuj Ω1,kgij

0 −εkdg ,iuj Ω
H
1,kgij

ν1,kgijI

 � 0. (5.31)

Using the same separation of variables principle we can also treat the re-

maining norm-bounded errors ∆kdg ,j
, ∆g,iuj

and ∆g,j in an analogous manner, and

reformulate the problem for each one in terms of the corresponding m, ν, ω and

Ω parameters. Details on these processes are provided in Appendices 5.B.1, 5.B.2

and 5.B.3 respectively. After going through this procedure, we can express the

original cost function from (5.27) as a summation of the slack variables and some

additional terms in order to obtain the final problem formulation in (5.28).

Since problem (5.28) is not jointly convex in U, V and B we apply the al-

ternating optimisation approach in Algorithm 5.1 to solve it [96]2. In Step 2, to

compute U, we fix V and B and solve the resulting SDP problem. In Step 3,

instead of finding W, we now want to find B where W = BHB. Therefore, after

replacing terms of the form µ log2| (ln2/µ) BHB| with 2µ log2| (ln2/µ)
1
2 B|, we fix

V and U, and solve the resulting Max-Det problem [100]. Finally, in Step 4, to

compute V we fix U and B and solve the resulting SDP problem. All problems

may be solved using standard convex optimisation solvers.

Note that the alternating maximisation approach applied here to solve (5.27)

converges. This follows because each step of the iterations leads to a monotonic

increase of the objective function, since the objective function is upper bounded,

convergence is guaranteed.

5.5 Robust design with stochastic error model

For the stochastic CSI error model, all nodes have access to Ĥ instead of H.

Therefore, instead of focusing on the actual achievable DL and UL rates, we

consider their lower bounds RS
kdg

and RS
kug

(defined later in (5.37)), where channel

estimation errors are treated as noise [69].

2Note that some additional minor reformulations are required when solving for U and B.
In particular, we introduce slack variables to handle terms of the form ‖BU‖2F , similar to the
process applied to (5.29).
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Starting with the DL rate, under Gaussian signalling, RS
kdg

= log2 det
(
I +

Φ̂−1
kdg

Ĥkdg ,g
Vkdg

VH
kdg

ĤH
kdg ,g

)
, where Φ̂kdg

is given by

Φ̂kdg
=

G∑
j=1

Kd
j∑

i=1

(i,j 6=k,g)

Ĥkdg ,j
Vidj

VH
idj

ĤH
kdg ,j

+
G∑
j=1

Ku
j∑

i=1

Ĥkdg ,i
u
j
Viuj

VH
iuj

ĤH
kdg ,i

u
j

+ F̂kdg
+ (σ2

U + fkdg )I.

Here, F̂kdg
is defined similarly to (5.8) but has all instances of H replaced by Ĥ.

Additionally, fkdg reflects the effect of the imperfect CSI and is given by

fkdg ≈ ηUB(1 + κB + ιU)
G∑
j=1

Kd
j∑

i=1

Tr
(
Vidj

VH
idj

)
+ ηUU(1 + κU + ιU)

G∑
j=1

Ku
j∑

i=1

Tr
(
Viuj

VH
iuj

)
.

For the UL rate, assuming Gaussian signalling, we have RS
kug

= log2 det
(
I +

Φ̂−1
kug

Ĥg,kugVkug VH
kug

ĤH
g,kug

)
, where Φ̂kug is defined as

Φ̂kug =
G∑
j=1
(j 6=g)

Kd
j∑

i=1

Ĥg,jVidj
VH
idj

ĤH
g,j +

G∑
j=1

Ku
j∑

i=1

(i,j 6=k,g)

Ĥg,iuj
Viuj

VH
iuj

ĤH
g,iuj

+ F̂g + (σ2
B + fg)I.

Here, F̂g is defined parallel to (5.12) with H replaced by Ĥ, and fg is given by

fg ≈ ηBB(1 + κB + ιB)
G∑
j=1

Kd
j∑

i=1

Tr
(
Vidj

VH
idj

)
+ ηBU(1 + κU + ιB)

G∑
j=1

Ku
j∑

i=1

Tr
(
Viuj

VH
iuj

)
.

Therefore, for the stochastic CSI error model, our problem is given by

max
V

G∑
g=1

Kd
g∑

k=1

µkdgR
S
kdg

+
G∑
g=1

Ku
g∑

k=1

µkugR
S
kug

s.t. Tr(VkugV
H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g . (5.32)

Similar to the perfect CSI case, we solve this problem by transforming it into

a WMMSE one. To obtain the MSE matrices, we start with Ekdg
= E{(Ukdg

ykdg −
skdg )(Ukdg

ykdg − skdg )
H} and Ekug = E{(Ukugyg − skug )(Ukugyg − skug )H} and replace

H with Ĥ + ∆ from (5.4). Taking the expectation over s, n and ∆ under an

independence assumption, we obtain ES
kdg

in (5.33) for the DL and ES
kug

in (5.34)

for the UL.
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ES
kdg

= Ukdg

G∑
j=1

Kd
j∑

i=1

Ĥkdg ,j
Vidj

VH
idj

ĤH
kdg ,j

UH
kdg

+ Ukdg

G∑
j=1

Ku
j∑

i=1

Ĥkdg ,i
u
j
Viuj

VH
iuj

ĤH
kdg ,i

u
j
UH
kdg

−Ukdg
Ĥkdg ,g

Vkdg
−VH

kdg
ĤH
kdg ,g

UH
kdg

+ (σ2
U + fkdg )Ukdg

UH
kdg

+ Ukdg
F̂kdg

UH
kdg

+ I

(5.33)

ES
kug

= Ukug

G∑
j=1
j 6=g

Kd
j∑

i=1

Ĥg,jVidj
VH
idj

ĤH
g,jU

H
kug

+ Ukug

G∑
j=1

Ku
j∑

i=1

Ĥg,iuj
Viuj

VH
iuj

ĤH
g,iuj

UH
kug

−Ukug Ĥg,kugVkug −VH
kug

ĤH
g,kug

UH
kug

+ (σ2
B + fg)UkugU

H
kug

+ Ukug F̂gU
H
kug

+ I

(5.34)

The MMSE receivers can be obtained by solving Ū
S
kdg

= arg min
U

Tr(ES
kdg

) and

Ū
S
kug

= arg min
U

Tr(ES
kug

), resulting in (5.35) and (5.36) respectively.

Ū
S
kdg

=VH
kdg

ĤH
kdg ,g

 G∑
j=1

Kd
j∑

i=1

Ĥkdg ,j
Vidj

VH
idj

ĤH
kdg ,j

+ F̂kdg
+ (σ2

U + fkdg )I

+
G∑
j=1

Ku
j∑

i=1

Ĥkdg ,i
u
j
Viuj

VH
iuj

ĤH
kdg ,i

u
j

−1

(5.35)

Ū
S
kug

=VH
kug

ĤH
g,kug

 G∑
j=1
j 6=g

Kd
j∑

i=1

Ĥg,jVidj
VH
idj

ĤH
g,j + F̂g + (σ2

B + fg)I

+
G∑
j=1

Ku
j∑

i=1

Ĥg,iuj
Viuj

VH
iuj

ĤH
g,iuj

−1

(5.36)

Applying the MMSE receivers from (5.35) and (5.36), the MSE matrices in

(5.33) and (5.34) can respectively be expressed as Ē
S
kdg

= (I + VH
kdg

ĤH
kdg ,g

Φ̂−1
kdg

Ĥkdg ,g

Vkdg
)−1 and Ē

S
kug

= (I + Ĥg,kugVkug Φ̂
−1
kug

VH
kug

ĤH
g,kug

)−1. Finally, using an argument

parallel to the one applied in the perfect CSI case, it can easily be shown that

RS
kdg

= log2 det
((

Ē
S
kdg

)−1
)

and RS
kug

= log2 det
((

Ē
S
kug

)−1
)
. (5.37)

This rate to MSE relationship allows us to establish the following theorem.

109



5.5. Robust design with stochastic error model

Theorem 5.3. The stochastic CSI error WSR problem in (5.32) is equivalent

to the WMMSE problem in (5.38), such that the global optimal solution for the

precoders of the two problems are identical.

min
U,W,V

G∑
g=1

Kd
g∑

k=1

[
Tr(Wkdg

ES
kdg

)− µkdg log2 det

(
ln2

µkdg
Wkdg

)
−
µkdg
ln2

bd

]

+
G∑
g=1

Ku
g∑

k=1

[
Tr(WkugE

S
kug

)− µkug log2 det

(
ln2

µkug
Wkug

)
−
µkug
ln2

bu

]
s.t. Tr(VkugV

H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g . (5.38)

Proof. It can be noticed that the optimal U for (5.38) are the MMSE receivers

Ū
S
kdg

and Ū
S
kug

in (5.35) and (5.36) respectively. Secondly, for fixed U and V,

checking the first order optimality conditions for the weights we obtain

W̄
S
kdg

=
µkdg
ln2

(
Ē
S
kdg

)−1

and W̄
S
kug

=
µkug
ln2

(
Ē
S
kug

)−1

. (5.39)

Substituting for optimal U and W in (5.38) results in

min
V

G∑
g=1

Kd
g∑

k=1

−µkdg log2 det
((

Ē
S
kdg

)−1
)

+
G∑
g=1

Ku
g∑

k=1

−µkug log2 det
((

Ē
S
kug

)−1
)

s.t. Tr(VkugV
H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g

which considering (5.37) is the same as (5.32).

Since (5.38) is not jointly convex in V, U and W the alternating optimisation

process from Algorithm 5.1 is applied to solve it. For Step 2, we use (5.35) and

(5.36) to calculate the optimal receivers as Ukdg
= Ū

S
kdg

and Ukug = Ū
S
kug

. In Step

3, the weights are calculated as Wkdg
= W̄

S
kdg

and Wkug = W̄
S
kug

using (5.39).

The optimal precoders can be obtained similar to the perfect CSI case using the

Lagrangian method. Therefore, in Step 4, we calculate the precoders Vkdg
= V̄

S
kdg

and Vkug = V̄
S
kug

using
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V̄
S
kdg

= [XS
g +$S

g I]−1ĤH
kdg ,g

UH
kdg

Wkdg

V̄
S
kug

= [XS
kug

+ %Skug I]−1ĤH
g,kug

UH
kug

Wkug (5.40)

where XS
gd

and XS
kug

are defined in (5.41) and (5.43). Here, $S
g and %Skug are the

Lagrange multipliers, and X̂g and X̂kug are defined similar to Xg and Xkug from

(5.22) and (5.23) respectively but with H replaced by Ĥ.

(5.41)XS
g = X̂g + ηUB(1 + κB + ιU)

G∑
j=1

Kd
j∑

i=1

Tr
(
Uidj

UH
idj

Widj

)

+ ηBB(1 + κB + ιB)
G∑
j=1

Ku
j∑

i=1

Tr
(
Uidj

UH
iuj

Wiuj

)
(5.42)

XS
kug

= X̂kug + ηUU(1 + κU + ιU)
G∑
j=1

Kd
j∑

i=1

Tr
(
Uidj

UH
idj

Widj

)

+ ηBU(1 + κU + ιB)
G∑
j=1

Ku
j∑

i=1

Tr
(
Uidj

UH
iuj

Wiuj

)
(5.43)

Note that the convergence considerations in Remark 5.1 are also applicable to

the alternating minimisation approach applied to solve the stochastic CSI error

problem in (5.38).

5.6 Weighted DL rate maximisation subject to

a per UL user target rate

In addition to the total rate maximisation design we also consider sum DL rate

maximisation subject to each UL user achieving a target rate of RUL. The moti-

vation behind this design is due to the fact that even if FD outperforms HD, this

does not guarantee that all UL users are served evenly in every time slot. In some

instances a UL user may achieve a lower rate in order to reduce the amount of

interference present in the system. Therefore, we consider the following problem

max
V

G∑
g=1

Kd
g∑

k=1

µkdgRkdg

s.t. Rkug ≥ RUL ∀ k, g
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5.6. Weighted DL rate maximisation subject to a per UL user target rate

Tr(VkugV
H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g . (5.44)

Similar to the total rate problems from the previous sections, we exploit the rate

to MSE relationship to obtain an equivalent WMMSE problem as in (5.45) for the

WSR one in (5.44). To our knowledge the use of this property in the constraint

of a problem (rather than in the cost function) has not been applied in prior

literature.

Theorem 5.4. The WSR problem in (5.44) is equivalent to the WMMSE prob-

lem in (5.45), such that the global optimal solutions for the precoders of the two

problems are identical.

min
U,W,V

G∑
g=1

Kd
g∑

k=1

[
Tr(Wkdg

Ekdg
)− µkdg log2 det

(
ln2

µkdg
Wkdg

)
−
µkdg
ln2

bd

]

s.t.

[
Tr(WkugEkug )− log2 det

(
ln2 Wkug

)
− 1

ln2
bu

]
≤ −RUL ∀ k, g

Tr(VkugV
H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g . (5.45)

Proof. Firstly, it can be seen that the optimal U for (5.45) are the standard

MMSE receivers Ūkdg
and Ūkug in (5.9) and (5.14) respectively. Secondly, fixing

U and V and checking the first order optimality conditions for the weights we

obtain their optimal values as

W̄
c
kdg

=
µkdg
ln2

Ē
−1
kdg

and W̄
c
kug

=
1

ln2
Ē
−1
kug
. (5.46)

Substituting for optimal U and W in (5.45) results in

min
V

G∑
g=1

Kd
g∑

k=1

−µkdg log2 det
(
Ē
−1
kdg

)
s.t. − log2 det

(
Ē
−1
kug

)
≤ −RUL ∀ k, g

Tr(VkugV
H
kug

) ≤ PU ∀ k, g
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Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g (5.47)

which considering (5.11) and (5.13) is the same as (5.44).

Since (5.45) is not jointly convex in U, V and W, but is separately convex

in each variable, it can be solved via alternating maximisation. Having already

obtained closed form expressions for optimal U and W, we focus on obtaining

V. For fixed U and W, we can express (5.45) as

min
V

G∑
g=1

Kd
g∑

k=1

Tr(Wkdg
Ekdg

)

s.t. Tr(WkugEkug ) ≤ Ψkug ∀ k, g

Tr(VkugV
H
kug

) ≤ Pu ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PBS ∀ g . (5.48)

where Ψkug = −RUL + log2 det
(
ln2 Wkug

)
+ bu/ln2.

Next, using Tr(AAH) = ‖vec(A)‖2 and vec(ABC) = (CT ⊗ A)vec(B), we

can rewrite Tr(Wkdg
Ekdg

) and Tr(WkugEkug ) as ‖φkdg‖
2 in (5.50) and ‖φkug ‖

2 in

(5.51) respectively (see definitions on next page). This reformulation allows us to

introduce slack variable t, such that ‖φkdg‖
2 ≤ tkdg , and cast (5.48) as the following

problem

min
V,t

G∑
g=1

Kd
g∑

k=1

tkdg

s.t. ‖φkdg‖
2 ≤ tkdg ∀ k, g

‖φkug ‖
2 ≤ Ψkug ∀ k, g

Tr(VkugV
H
kug

) ≤ Pu ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PBS ∀ g (5.49)

which after additional minor reformulations can be transformed into a second-

order cone programming (SOCP) problem, and then solved using standard convex

optimisation solvers.
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‖φkdg‖
2 = Tr(Wkdg

Ekdg
) =∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(I⊗Bkdg
Ukdg

Hkdg ,g
)vec(Vkdg

)− vec(Bkdg
)

b(I⊗Bkdg
Ukdg

Hkdg ,j
)vec(Vidj

)c∀ j=1...G,i=1...Kd
j ,(i,j 6=k,g)

b(I⊗Bkdg
Ukdg

Hkdg ,i
u
j
)vec(Viuj

)c∀ j=1...G,i=1...Ku
j

κ
1
2
Bb
(
I⊗

(
diag(HH

kdg ,j
UH
kdg

BH
kdg

Bkdg
Ukdg

Hkdg ,j
)
) 1

2

)
vec(Vidj

)c∀ j=1...G

i=1...Kd
j

κ
1
2
Ub
(
I⊗

(
diag(HH

kdg ,i
u
j
UH
kdg

BH
kdg

Bkdg
Ukdg

Hkdg ,i
u
j
)
) 1

2

)
vec(Viuj

)c∀ j=1...G
i=1...Ku

j

ι
1
2
Ub
(
I⊗

[(
diag(UH

kdg
BH
kdg

Bkdg
Ukdg

)
) 1

2 Hkdg ,j

])
vec(Vidj

)c∀ j=1...G

i=1...Kd
j

ι
1
2
Ub
(
I⊗

[(
diag(UH

kdg
BH
kdg

Bkdg
Ukdg

)
) 1

2 Hkdg ,i
u
j

])
vec(Viuj

)c∀ j=1...G
i=1...Ku

j

(σ2
U + ιUσ

2
U)

1
2 Tr(Bkdg

Ukdg
UH
kdg

BH
kdg

)
1
2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(5.50)

‖φkug ‖
2 = Tr(WkugEkug ) =∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(I⊗BkugUkugHg,kug )vec(Vkug )− vec(Bkug )

b(I⊗BkugUkugHg,j)vec(Vidj
)c∀ j=1...G,i=1...Kd

g ,(j 6=g)

b(I⊗BkugUkugHg,iuj
)vec(Viuj

)c∀ j=1...G,i=1...Ku
g ,(i,j 6=k,g)

κ
1
2
Bb
(
I⊗

(
diag(HH

g,jU
H
kug

BH
kug

BkugUkugHg,j)
) 1

2

)
vec(Vidj

)c∀ j=1...G

i=1...Kd
j

κ
1
2
Ub
(
I⊗

(
diag(HH

g,iuj
UH
kug

BH
kug

BkugUkugHg,iuj
)
) 1

2

)
vec(Viuj

)c∀ j=1...G
i=1...Ku

j

ι
1
2
Bb
(
I⊗

[(
diag(UH

kug
BH
kug

BkugUkug )
) 1

2 Hg,j

])
vec(Vidj

)c∀ j=1...G

i=1...Kd
j

ι
1
2
Bb
(
I⊗

[(
diag(UH

kug
BH
kug

BkugUkug )
) 1

2 Hg,iuj

])
vec(Viuj

)c∀ j=1...G
i=1...Ku

j

(σ2
B + ιBσ

2
B)

1
2 Tr(BkugUkugU

H
kug

BH
kug

)
1
2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(5.51)

Therefore to solve (5.45) we apply the alternating optimisation process from

Algorithm 5.1. The optimal weights in Step 2 are calculated as Ukdg
= Ūkdg

and

Ukug = Ūkug using (5.9) and (5.14). In Step 3, the optimal weights Wkdg
= W̄

c
kdg

and Wkug = W̄
c
kug

are found using (5.46). In Step 4, the optimal precoders Vkdg

and Vkug are found by solving (5.49).

Proposition 5.1. The alternating optimisation process applied to solve (5.45)

produces a convergent monotonically decreasing objective value sequence.

Proof. Defining the following parameters

Ckdg (U,W,V) = Tr(Wkdg
Ekdg

)− µkdg log2 det

(
ln2

µkdg
Wkdg

)
−
µkdg
ln2

bd
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5.6. Weighted DL rate maximisation subject to a per UL user target rate

Ckug (U,W,V) = Tr(WkugEkug )− log2 det
(
ln2 Wkug

)
− bu

ln2

we can express (5.45) as

min
U,W,V

G∑
g=1

Kd
g∑

k=1

Ckdg (U,W,V)

s.t. Ckug (U,W,V) ≤ −RUL ∀ k, g

Tr(VkugV
H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g . (5.52)

Assume that for (5.52) we have feasible solution {U(i),W(i),V(i)} at the

end of the (i)th iterate, and feasible solution {U(i+1),W(i+1),V(i+1)} at the

end of the (i+ 1)th iterate. At the beginning of the (i+ 1)th iterate, to perform

Step 2 of Algorithm 5.1, we fix the weights and precoders to W(i) and V(i) in

order to obtain the updated receivers U(i+ 1). Since these receivers are MMSE

ones, they are unique optimisers, therefore

Ckdg
(
U(i+ 1),W(i),V(i)

)
≤ Ckdg

(
U(i),W(i),V(i)

)
∀ k, g (5.53)

Ckug
(
U(i+ 1),W(i),V(i)

)
≤ Ckug

(
U(i),W(i),V(i)

) (a)

≤ −RUL ∀ k, g (5.54)

where (a) follows since {U(i),W(i),V(i)} is feasible.

Next, in Step 3, we fix the receivers and precoders to U(i + 1) and V(i) in

order to obtain the new weights W(i+ 1). The weights are updated using (5.46),

which are unique optimisers, therefore

Ckdg
(
U(i+ 1),W(i+ 1),V(i)

)
≤ Ckdg

(
U(i+ 1),W(i),V(i)

)
)

(a)

≤ Ckdg
(
U(i),W(i),V(i)

)
∀ k, g (5.55)

Ckug
(
U(i+ 1),W(i+ 1),V(i)

)
≤ Ckug

(
U(i+ 1),W(i),V(i)

)
(b)

≤ Ckug
(
U(i),W(i),V(i)

)
≤ −RUL ∀ k, g

where (a) follows from (5.53) and (b) follows from (5.54).

At this stage we have intermediate solution {U(i+ 1),W(i+ 1),V(i)} which

is a feasible point, and the value of the cost function is given by
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G∑
g=1

Kd
g∑

k=1

Ckdg
(
U(i+ 1),W(i+ 1),V(i)

) (a)

≤
G∑
g=1

Kd
g∑

k=1

Ckdg
(
U(i),W(i),V(i)

)
where (a) follows from (5.55). Next, in Step 4 we fix the receivers and weights

to U(i+ 1) and W(i+ 1) and solve (5.52) to obtain the new precoders V(i+ 1).

Since with {U(i + 1),W(i + 1),V(i)} the problem is known to be feasible, it

follows that

G∑
g=1

Kd
g∑

k=1

Ckdg
(
U(i+ 1),W(i+ 1),V(i+ 1)

)
≤

G∑
g=1

Kd
g∑

k=1

Ckdg
(
U(i+ 1),W(i+ 1),V(i)

)
.

As can be seen from the above process, the alternating optimisation method

applied to solve (5.45) produces a convergent monotonically decreasing objective

value sequence.

5.7 Simulation results

Our simulations follow the 3GPP LTE [86] specifications for multi-cell pico sce-

narios outlined in Table 5.1, with all channel gains assumed to be i.i.d. Channel

gains between BSs and users, and between the BSs themselves, are modelled

as Hr,t =
√
%H̃r,t, where r represents the receiver, t represents the transmitter,

H̃r,t has elements distributed as CN (0, 1) and % = 10−PL/10 with PL being the

pathloss calculated according to Table 5.1, depending on r and t. The SI chan-

nel, Hg,g, is modelled as CN
(√

KH/(1 +KH)H̄g,g, (1/(1 +KH))IMB
⊗ IMB

)
[22],

where KH is the Rician factor and H̄g,g is a deterministic matrix3.

Throughout all simulations we fix µkdg = µkug = 1 ∀ k, g. We also set κB = κU =

κ and ιB = ιU = ι. Parameters κ and ι jointly reflect the amount of transmitter

and receiver distortion, and more importantly they reflect the amount of residual

SI at the FD BS as can be seen from (5.3). The larger their value, the larger both

distortion and residual SI. Additionally, for all algorithms we consider random

precoder initialisation and average the rate results in a Monte Carlo fashion over

a number of randomly generated scenario realisations.

3Without loss of generality, we set KH = 1 and H̄g,g to be a matrix of all ones similar
to [79,90].
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Table 5.1: Parameter settings for simulations [86].

Parameter Setting
Cell radius 40 m
Bandwidth 10 MHz
Thermal noise density 174 dBm/Hz
Noise figure BS: 13 dB, user: 9 dB
Maximum transmit power PB = 24 dBm, PU = 23 dBm
Minimum distance rBS,BS−min = 40 m

rBS,user−min = 10 m
BS to BS pathloss LOS if r < 2/3: 98.4 + 20log10(r)
(in dB, r in km) LOS if r ≥ 2/3: 101.9 + 40log10(r)

NLOS: 101.9 + 40log10(r)
BS to user pathloss LOS: 103.8 + 20.9log10(r)
(in dB, r in km) NLOS: 145.4 + 37.5log10(r)
User to user pathloss if r ≤ 50 m: 98.45 + 20log10(r)
(in dB, r in km) if r > 50 m: 175.78 + 40log10(r)
Shadowing standard deviation between BS & users, LOS: 3, NLOS: 4
(in dB) between cells: 6
LOS probability 0.5−min(0.5, 5 exp(−0.156/r))
(r in km) + min(0.5, 5 exp(−r/0.003))

5.7.1 Perfect CSI results

The aim of this section is to compare results obtained by FD and HD beam-

former design under perfect CSI, in order to understand under what conditions

FD operation provides performance advantages. We set G = 2, Kd
g = Ku

g = 1

∀g, bd = bu = 1, MB = 4, Nd = Nu = 2 to obtain the results in Fig. 5.2 and Fig.

5.3. Fig. 5.2 compares the sum rates achieved by the FD beamformer design

from Section 5.3 with HD operation. For HD we consider the case where the

BSs serve their corresponding DL and UL users separately in alternate channel

uses, with the aim in each case being to maximise either the DL rate or the UL

rate accordingly. As can be seen from Fig. 5.2 for κ = ι = −50 dB both HD

and FD systems obtain similar rates, however FD outperforms HD for values of

κ = ι < −50 dB. The amount of gain achieved varies with the κ = ι value. This

is mainly due to the fact that the higher the distortion, κ = ι, the more residual

SI there is. The residual SI is a limiting factor for the UL rate, which contributes

a smaller portion of the total rate for larger κ = ι.
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Figure 5.2: Total sum rates achieved for scenario with G = 2, Kd
g = Ku

g = 1 ∀g,
bd = bu = 1, MB = 4 and Nd = Nu = 2.
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Figure 5.3: Total sum rates achieved for scenario with G = 2, Kd
g = Ku

g = 1 ∀g,
bd = bu = 1, MB = 4, Nd = Nu = 4 and rBS,BS = 100 m.

The effect of κ and ι separately can be understood from Fig. 5.4 and 5.5,

where we plot the sum rate results for fixed κ and varying ι, and vice-versa.

Considering first the results in Fig. 5.4, it can be noticed that the FD total rate

at ι = −120 dB are relatively close to each other in value ∀ κ ∈ {−60,−90,−120}
dB, even though the initial starting points at ι = −50 dB vary significantly.

Similar behaviour can also be noticed when varying κ from −50 dB to −120 dB
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∀ ι ∈ {−60,−90,−120} dB in Fig. 5.5. This indicates that it is not necessary to

have both κ and ι smaller than −50 dB for FD to obtain significant gains over

HD; having either one or the other low is sufficient. For example, from Fig. 5.4

at ι = −50 dB we have a gain of 1.35 for κ = −90 dB and a gain of 1.54 for

κ = −120 dB, also from Fig. 5.5 at κ = −50 dB we have a gain of 1.44 at ι = −90

dB and a gain of 1.69 at ι = −120 dB.
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Figure 5.4: Total sum rates achieved for varying ι for scenario with G = 2, Kd
g =

Ku
g = 1 ∀g, bd = bu = 1, MB = 4, Nd = Nu = 2 and rBS,BS = 100 m.
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Figure 5.5: Total sum rates achieved for varying κ for for scenario with G = 2,
Kd
g = Ku

g = 1 ∀g, bd = bu = 1, MB = 4, Nd = Nu = 2 and rBS,BS = 100 m.

119



5.7. Simulation results

40 60 80 100 120 140 160 180 200 220 240
10

15

20

25

30

35

40

45

50

55

rBS,BS in m

S
um

 r
at

e 
in

 b
its

 p
er

 c
ha

nn
el

 u
se

 

 

Total
DL
UL

FD

HD

Figure 5.6: Total sum rates achieved for scenario with G = 2, Kd
g = Ku

g = 1 ∀g,
bd = bu = 1, MB = 4, Nd = Nu = 2 and κ = ι = −90 dB.

Considering Fig. 5.2 to Fig.5.5 it can be noticed that as the value of κ and/or

ι decreases the gain of FD over HD starts to increase significantly. In particular,

for Fig. 5.2 at κ = ι = −120 dB there is a gain of 1.92 for rBS,BS = 200 m

and a gain of 1.85 for rBS,BS = 40 m. For FD the rate drop between achievable

rates at rBS,BS = 200 m and at rBS,BS = 40 m is larger than the rate drop

experienced by HD. This is due to the fact that when the BSs operate in FD

there are more interference links than for HD, thus the negative impact of closer

proximity between the cells affects FD more than HD.

The impact of inter-cell CCI on FD operation can be understood more clearly

from Fig. 5.6, where we set G = 2, Kd
g = Ku

g = 1 ∀g, bd = bu = 1, MB =

4, Nd = Nu = 2 and κ = ι = −90, and plot sum rate against the distance

between BSs, rBS,BS. As rBS,BS increases, inter-cell CCI decreases, thus the total

achievable rate increases. An interesting effect can be noticed by looking at the

separate FD DL and UL rate results in the range of 40 m to 80 m. The UL rate

within this range remains approximately the same, however the DL rate has a

significant increase. DL users experience inter-cell CCI from both BSs and UL

users in other cells, thus a small increase in the distance between BSs contributes

to a significant decrease in inter-cell CCI, allowing DL users to achieve higher

rates. For this rBS,BS range, the BS to BS channel is very strong, implying that

it is not advantageous in terms of the overall achievable rate to promote UL rate

gain, hence the resulting small change in UL rate between 40 m and 80 m. A
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Figure 5.7: Scenarios with same inter-cell CCI. Black circles represent the BSs, blue
squares are UL users and red triangles are DL users.

rBS,BS of around 100 m or more is sufficient to overcome this issue, leading to a

marked increase in UL rate at 100 m.

Having seen the effect of inter-cell CCI, next we investigate the effect of intra-

cell CCI. In order to do so, we have devised two scenarios with G = 2, Kd
g =

Ku
g = 1 ∀g, bd = bu = 1, MB = 4, Nd = Nu = 2 and rBS,BS = 100 m where we fix

the location of the BSs and the users, as shown in Fig. 5.7. For both scenarios

A and B, the BSs are 100 m apart and the distance between different cell DL

and UL users is approximately 100 m (100.5 m for Scenario A and 100.32 m for

Scenario B), implying that the effect of inter-cell CCI is the same. However, the

distance between same cell DL and UL users is only 10 m for Scenario A and a

much larger 56.49 m for Scenario B. Fig. 5.8 provides some simulation results. As

can be seen, scenario B achieves higher rates throughout; this is expected since

Scenario B represents the lower interference case. Considering Scenario A and

looking at the separate DL and UL rates, it can be noticed that for example at

κ = ι = −50 dB the DL rate is around 27.5 bits per channel use and the UL rate

is nearly zero. At this κ = ι value the SI component is very high, making UL

communication very difficult, thus DL communication is given priority. However
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Figure 5.8: Total sum rates achieved for scenario with G = 2, Kd
g = Ku

g = 1 ∀g,
bd = bu = 1, MB = 4, Nd = Nu = 2 and rBS,BS = 100 m.

as SI decreases, the UL rate starts to increase. This increase in UL rate in the

lower SI region comes at the expense of a slight decrease in the DL rate, due to

the higher intra-cell CCI component. For scenario B, same cell UL and DL users

are much further apart, thus the effect of intra-cell CCI is considerably reduced

and this UL/DL rate trade-off does not occur.

5.7.2 Imperfect CSI results

After establishing the gains of FD systems over HD ones, our next goal is to show

how the FD imperfect CSI designs fare. Starting with the norm-bounded error

design from Section 5.4 we set G = 2, Kd
g = Ku

g = 1 ∀g, bd = bu = 1, MB = 4,

Nd = Nu = 2, rBS,BS = 100 m and εkdg ,iuj = εkdg ,j = εg,iuj = εg,j = ε ∀ k, g, i, j
to obtain the results in Fig. 5.9. Note that channel strengths generated using

the 3GPP LTE model from [86] are in the order of −30 dB or lower, which is

why for ε = −30 dB achievable rates are close to zero. This also highlights why

in the range of ε = −30 dB to ε = −35 dB, there is only a small difference in

the rates achieved for different κ = ι values. Within this region the CSI error

is considerably large, varying from being of the same order of magnitude as the

strongest channels at −30 dB to a third at −35 dB; with CSI errors being so

large, the error is more of a limiting factor on rate performance than transmitter

and receiver distortion. The converse is true for lower ε regions. As the norm
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Figure 5.9: Total sum rates achieved for different norm-bounded errors for scenario
with G=2, Kd

g =Ku
g =1 ∀g, bd=bu=1, MB=4, Nd=Nu=2 and rBS,BS =100 m.

of the CSI error starts to decrease, the curves achieved for different κ = ι values

become more distinct, indicating that distortion effects are more of a rate limiting

factor than the CSI error. Naturally, the curve for the lowest κ = ι settles at the

highest rate value, which is expected since this corresponds to the least amount

of distortion and residual SI.

For the stochastic CSI error model, in Fig. 5.10 we set G = 2, Kd
g = Ku

g = 1

∀g, bd = bu = 1, MB = 4, Nd = Nu = 4, rBS,BS = 100 m and κ = ι = −90

dB, and plot the achievable rate for varying values of β and α, where β = 0

corresponds to perfect CSI for any α. The robust design from Section 5.5 is

compared with a naive version obtained by using the available imperfect CSI as

if it were perfect, i.e. without any robustness considerations. For fixed α, rate

decreases as β increases; this is expected since larger β values correspond to larger

CSI errors. Additionally, it can be noticed that the lower the α the sharper is the

rate decrease for varying β, and the larger is the gain between the rate achieved

by the robust beamformer versus the naive one. For α = 1, there is only a small

difference between the performance of the robust and the naive designs, and the

rate decrease for varying β is also small. This behaviour is a reflection of the fact

that previous studies with a similar error model show that α = 1 corresponds to

perfect CSI from a DoF perspective. (Note that this has already been proven for

HD systems in Chapter 4, and will also be shown for this specific type of system

with FD BSs and HD users later on in Chapter 6).
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Figure 5.10: Total sum rates achieved for different stochastic errors for scenario with
G = 2, Kd

g = Ku
g = 1 ∀g, bd = bu = 1, MB = 4, Nd = Nu = 4, rBS,BS = 100 m and

κ = ι = −90 dB.

Looking at both Fig. 5.9 and Fig. 5.10, it can be noticed that for both types of

error the FD results deteriorate more than the HD ones for the same decrease in

CSI quality. When using FD BSs there are more channel links between the various

nodes than for the corresponding HD system. Having an increased amount of links

with imperfect knowledge results in a sharper rate decrease, thereby stressing the

added importance of channel estimation and robust beamformer design for FD

systems.

5.7.3 Results for target UL rate problem

For the problem from Section 5.6, which considers weighted DL rate maximisation

subject to a per UL user target rate, we set G = 2, Kd
g = Ku

g = 1 ∀g, bu = bd = 1,

MB = 4 and Nd = Nu = 4 to obtain the results in Table 5.2. This table

provides a comparison between the DL rates achieved by the constraint design

and the corresponding HD system which maximises the total DL rate. Values

written in the form of (a)∗b% indicate that the problem is not always feasible for

the considered target rate RUL. Here, b% represents the percentage of scenarios

for which the problem was found to be feasible, and a represents the average

rate achieved over these feasible scenarios. UL rate results are not included,

since provided that the chosen target is feasible, a total UL rate of GKRUL is

achievable.

124



5.7. Simulation results

The gains of FD DL rates over HD DL rates range from 1.89 to 1.98 in Table

5.2. On the other hand for the joint problem in Fig. 5.3, which considers the

same system with rBS,BS = 100 m, there is a gain of 1.83 at κ = ι = −100 dB and

1.40 at κ = ι = −70 dB. Such a difference is mainly due to the fact that for FD κ

and ι are not only related to distortion, but also to residual SI, which makes UL

communication more difficult. Constricting both FD and HD to achieve the same

target UL rate removes the latter factor, thereby leading to higher gains over HD

for the target UL rate problem as opposed to the joint UL and DL maximisation

one.

With respect to the feasibility of the chosen target rate, it can be noticed that

for a fixed RUL, the lower the distortion the more likely is the problem always

feasible. For example at rBS,BS = 100 m and RUL = 2.5, feasibility goes from

12% at κ = ι = −70 dB to 100% at κ = ι = −90 dB. Such behaviour is expected

because the higher the distortion, the stronger the SI and the more difficult it

is to communicate in the UL. For the lowest distortion value of κ = ι = −100

dB, RUL of up to around 8 is generally always feasible for rBS,BS = 100 m,

this decreases to RUL of up to around 5.5 for rBS,BS = 40 m. Naturally, for

rBS,BS = 100 m higher RUL can be achieved than for rBS,BS = 40 m, this is

due to the stronger interference present in the latter scenario. This trend can be

confirmed by comparing all rBS,BS = 100 m and rBS,BS = 40 m results across

Table 5.2.

Table 5.2: Sum DL rates achieved in bits per channel use for scenario with G = 2,
Kd
g = Ku

g = 1 ∀g, bu = bd = 1, MB = 4 and Nd = Nu = 4.

rBS,BS = 40 m
κ = ι FD HD

(in dB) RUL = 0.5 RUL = 1.5 RUL = 2.5
−100 32.01 31.96 31.87 16.67
−90 31.81 31.66 31.60 16.66

−80 31.60 31.50 (31.44)∗92% 16.66

−70 (31.38)∗99% (31.02)∗48% (30.48)∗7% 16.64

rBS,BS = 100 m
κ = ι FD HD

(in dB) RUL = 0.5 RUL = 1.5 RUL = 2.5
−100 33.68 33.62 33.57 17.00
−90 33.50 33.42 33.40 16.98

−80 33.38 33.34 (33.29)∗98% 16.98

−70 33.23 (32.94)∗64% (33.28)∗12% 16.96
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5.7.4 Convergence results

Fig. 6.9 illustrates the convergence behaviour of the proposed algorithms. For

each algorithm we plot a randomly selected instance. In each case we set κ = ι =

−90 dB and run for 30 iterations. For the perfect CSI problem we consider the

system setup from Fig. 5.3. For the norm-bounded error problem we simulate the

system from Fig. 5.9 with ε = −45 dB. For the stochastic CSI error problem we

consider the system from Fig. 5.10 with α = 0.85 and β = 0.5. For the constraint

problem from Section 5.6 we simulate the system in Table 5.2 at rBS,BS = 100 m

with RUL = 1.5. As can be seen all algorithms converge monotonically within a

few steps.
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Figure 5.11: Convergence behaviour of the proposed algorithms.

5.8 Implementation and complexity analysis

In order to simplify the notation in our analysis, throughout this section we fix

MB = Nd = Nu = M , Kd = Ku = K̄ and bd = bu = b.

5.8.1 Implementation

All proposed algorithms can be implemented in a centralised manner, where a

central processing site (CPS) collects all the required CSI, computes the required

variables, and then distributes them to the respective nodes. For this implemen-

tation a total of M2G2(K̄2+2K̄+1) CSI elements need to be made available at the
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CPS to implement the algorithm. The CPS must then distribute the calculated

precoders, resulting in 2GK̄Mb matrix elements for all of Vkdg
and Vkug .

Additionally, the closed-form solution algorithms from Sections 5.3 and 5.5

may also be applied in a distributed manner. Similar to the implementations

in [90, 92] and references therein, this requires all nodes to have knowledge of

the channels directly linked to them, i.e. local CSI, and also assumes all re-

ceiving nodes can provide additional feedback information to transmitting nodes.

Each receiving node locally estimates its interference-plus-noise covariance ma-

trix, Φ. This metric is related to the MSE matrix which, when using an MMSE

receiver, is given by Ēkdg
= (I + VH

kdg
HH
kdg ,g

Φ−1
kdg

Hkdg ,g
Vkdg

)−1 for the DL and Ēkug =

(I + VH
kug

HH
g,kug

Φ−1
kug

Hg,kugVkug )−1 for the UL. Therefore, Φ can be used to calculate

U and W, which can then be made available to the transmitting nodes to cal-

culate V. Thus, for a distributed implementation each node requires local CSI

knowledge, resulting in a total of 2GK̄M2 elements across all users. Addition-

ally, 2GK̄(Mb+b2) elements per iteration need to be fedback to the transmitting

nodes to account for all of U and W.

5.8.2 Complexity analysis

Starting with the closed-form solutions, we evaluate the order of the number of

flops required to calculate the optimisation variables using [101] which provides

the number of flops required to perform standard mathematical operations. Tak-

ing (5.9) as an example, computing all receivers, U, requires O
(
4G2K̄2(6M3 +

2Mb2)
)

flops for multiplications inside the inverse if Φ is unavailable or O
(
2GK̄

(4M3 + 2Mb2)
)

flops if Φ is available, O(2GK̄M3) flops for the inverse and

O(8GK̄M2b) flops for multiplying the inverse with the rest of the outside terms.

To compute the weights, W, we need to calculate the MSE. The interference-plus-

noise covariance matrix, Φ, is already available since it was previously used in the

calculation of U, therefore we only need O(2GK̄M3) flops to calculate its inverse,

and O
(
2GK̄(4M3 + 2M2b+ 2Mb2)

)
flops for multiplication. Taking (5.21) as an

example, the calculation of each precoder, V, requires O
(
4G2K̄2(6M3 + 2M2b+

2Mb2)
)

flops for multiplications inside the inverse to compute X, O(2GK̄M3)

flops for the inverse, and O
(
2GK̄(4M2b + 2Mb2)

)
flops for multiplying the in-

verse with the rest of the outside terms.

For the norm-bounded error model we solve a number of SDP problems, the
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complexity of which is given by O(n2
∑I

i m
2
i ) [102]. Here, n represents the total

size of the variables being solved for and I is the total number of constraints,

with each constraint i being of dimension mi. In our case the complexity can be

expressed as O
(
(x1 + x2)2(z1 + z2)

)
, where x2 = 8G2K̄2 and z2 = 4G2K̄2(1 +

M2 + b2 + 2Mb)2. When solving for V, x1 = 2GK̄Mb and z1 = (GK̄ + K̄)(Mb)2.

When solving for U, x1 = 2GK̄Mb and z1 = 0. When solving for B we have

a Max-Det problem. This is of higher complexity than SDP, however using the

SDP complexity as a lower bound we have x1 = 2GK̄b2 and z1 = 0.

In Section 5.6 we solve an SOCP problem to obtain V. The complexity of

solving a general SOCP problem is given by O(n2
∑I

i mi) [102], where the signif-

icance of the terms is the same as for the SDP complexity expression. Applying

this to our problem we have O
(
(2GK̄Mb+GK̄)2(GK̄Mb+K̄Mb+8G2K̄2Mb3 +

4G2K̄2M2b2 + 2)
)
.

5.9 Conclusion

In this chapter we have addressed filter design for WSR maximisation in multi-

user multi-cell MIMO networks with FD BSs and HD users, taking into consid-

eration CCI, and transmitter and receiver distortion. Since WSR problems are

non-convex, we transformed them into WMMSE problems and proposed alternat-

ing optimisation algorithms that are guaranteed to converge. Using the perfect

CSI design as a starting point, we also considered robust beamformer design un-

der two types of CSI error, namely norm-bounded error and stochastic CSI error.

Simulation results for small cell scenarios show that replacing standard HD BSs

with FD ones within this context can indeed increase achievable sum rate for low

to intermediate distortion levels, and also confirm the robustness of the imperfect

CSI designs. Additionally, we also proposed a DL rate maximisation problem

subject to each UL user achieving a desired target rate, which can be used in

cases where it is important for each UL user to be equally served in every time

slot.

Appendix 5.A

Useful Lemma

Lemma 5.1. [103] Let A, B and C be given matrices, with A = AH . Then,

the relation A � BHDC + CHDHB ∀ D : ‖D‖ ≤ ξ is valid if, and only if, there
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exists ν ≥ 0 such that

[
A− νCHC −ξBH

−ξB νI

]
� 0 .

Appendix 5.B

Additional details for proof of Theorem 5.2

5.B.1 Handling ∆kdgj
terms

Considering the cost function in (5.27) from the perspective of ∆kdg ,j
, we only

need to focus on

T2,kgj =

Kd
j∑

i=1

[
Tr
(
Bkdg

(Ukdg
Hkdg ,j

Vidj
− δk,gi,j I)(Ukdg

Hkdg ,j
Vidj
− δk,gi,j I)HBH

kdg

)
+ Tr

(
κBBkdg

Ukdg
Hkdg ,j

diag(Vidj
VH
idj

)HH
kdg ,j

UH
kdg

BH
kdg

)
+ Tr

(
ιUBkdg

Ukdg
diag(Hkdg ,j

Vidj
VH
idj

HH
kdg ,j

)UH
kdg

BH
kdg

)]

=

Kd
j∑

i=1

[
Tr
(
Bkdg

(Ukdg
Hkdg ,j

Vidj
− δk,gi,j I)(Ukdg

Hkdg ,j
Vidj
− δk,gi,j I)HBH

kdg

)
+

MB∑
n=1

Tr
(
κBBkdg

Ukdg
Hkdg ,j

SnVidj
VH
idj

SHn HH
kdg ,j

UH
kdg

BH
kdg

)
+

Md∑
n=1

Tr
(
ιUBkdg

Ukdg
SnHkdg ,j

Vidj
VH
idj

HH
kdg ,j

SHn UH
kdg

BH
kdg

)]
.

This can be rewritten as

T2,kgj = ‖ω2,kg ,j + Ω2,kg ,jvec(∆kdgj
)‖2 ≤ m2,kgj (5.56)

where ω2,kg ,j and Ω2,kg ,j are defined in Theorem 5.2, and m2,kgj is a slack variable.

The introduction of m2,kgj, allows to express the inner minimisation in (5.27) from

the perspective of each ∆kdg ,j
as
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max
m

−m2,kgj

s.t. ‖ω2,kg ,j + Ω2,kg ,jvec(∆kdgj
)‖2 ≤ m2,kgj

∀{∆kdg ,j
: ‖vec(∆kdgj

)‖ ≤ εkdg ,j} . (5.57)

Representing (5.56) as

m2,kgj −
(
ω2,kg ,j + Ω2,kg ,jvec(∆kdgj

))
)H

I(ω2,kg ,j + Ω2,kg ,jvec(∆kdgj
)) ≥ 0

we can use the Schur Complement Lemma, to rewrite the constraints of (5.57) as[
m2,kgj ωH2,kg ,j
ω2,kg ,j I

]
+

[
0 vec(∆kdgj

)HΩH
2,kg ,j

Ω2,kg ,jvec(∆kdgj
) 0

]
� 0 .

Additionally, applying Lemma 5.1 from Appendix 5.A with ξ = εkdg ,j, B =

[0 ΩH
2,kgj

], C = [−1 0], D = vec(∆kdg ,j
) and

A =

[
m2,kgj ωH2,kgj
ω2,kgj I

]

this can be further represented as

ν2,kgj ≥ 0,

 m2,kgj − ν2,kgj ωH2,kgj 0

ω2,kgj I −εkdg ,jΩ2,kgj

0 −εkdg ,jΩ
H
2,kgj

ν2,kgjI

 � 0 .

5.B.2 Handling ∆g,iuj terms

From the perspective of ∆g,iuj
we only need focus on

T3,gij =

Ku
g∑

k=1

[
Tr
(
Bkug (UkugHg,iuj

Viuj
− δk,gi,j I)(UkugHg,iuj

Viuj
− δk,gi,j I)BH

kug

)
+ Tr

(
κUBkugUkugHg,iuj

diag(Viuj
VH
iuj

)HH
g,iuj

UH
kug

BH
kug

)
+ Tr

(
ιBBkugUkug diag(Hg,iuj

Viuj
VH
iuj

HH
g,iuj

)UH
kug

BH
kug

)]

=

Ku
g∑

k=1

[
Tr
(
Bkug (UkugHg,iuj

Viuj
− δk,gi,j I)(UkugHg,iuj

Viuj
− δk,gi,j I)BH

kug

)
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+
Mu∑
n=1

Tr
(
κUBkugUkugHg,iuj

SnViuj
VH
iuj

SHn HH
g,iuj

UH
kug

BH
kug

)
+

MB∑
n=1

Tr
(
ιBBkugUkugSnHg,iuj

Viuj
VH
iuj

HH
g,iuj

SHn UH
kug

BH
kug

)]

from the the cost function of (5.27). This can be expressed as

T3,gij = ‖ω3,g,ij + Ω3,g,ijvec(∆g,iuj
)‖2 ≤ m3,gij (5.58)

where ω3,gij and Ω3,gij are defined in Theorem 5.2, and m3,gij is a slack variable.

Thus, from the perspective of each ∆g,iuj
, we can represent the inner minimisation

in (5.27) as

max
m

−m3,gij

s.t. ‖ω3,gij + Ω3,gijvec(∆g,iuj
)‖2 ≤ m3,gij

∀{∆g,iuj
: ‖vec(∆g,iuj

)‖ ≤ εg,iuj } . (5.59)

Additionally, expressing (5.58) as

m3,gij −
(
ω3,gij + Ω3,gijvec(∆g,iuj

))
)H

I
(
ω3,gij + Ω3,gijvec(∆g,iuj

))
)
≥ 0

we can use the Schur Complement Lemma to represent the constraints of (5.59)

as [
m3,gij ωH3,gij
ω3,gij I

]
+

[
0 vec(∆g,iuj

)HΩH
3,gij

Ω3,gijvec(∆g,iuj
) 0

]
� 0 .

Applying Lemma 5.1 from Appendix 5.A with ξ = εg,iuj , B = [0 ΩH
3,gij

], C =

[−1 0], D = vec(∆g,iuj
) and

A =

[
m3,gij ωH3,gij
ω3,gij I

]

this constraint can be represented as

ν3,gij ≥ 0,

 m3,gij − ν3,gij ωH3,gij 0

ω3,gij I −εg,iuj Ω3,gij

0 −εg,iuj Ω
H
3,gij

ν3,gijI

 � 0.
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5.B.3 Handling ∆g,j terms

Considering the cost function of (5.27), from the perspective of ∆g,j we are only

concerned with

T4,gj =

Ku
g∑

k=1

Kd
j∑

i=1

[
ϑgjTr

(
BkugUkugHg,jVidj

VH
idj

HH
g,jU

H
kug

BH
kug

)
+ (1− ϑgj )

(
BkugUkug∆g,jVidj

VH
idj

∆H
g,jU

H
kug

BH
kug

)
+ Tr

(
κBBkugUkugHg,jdiag(Vidj

VH
idj

)HH
g,jU

H
kug

BH
kug

)
+ Tr

(
ιBBkugUkug diag(Hg,jVidj

VH
idj

HH
g,j)U

H
kug

BH
kug

)]

=

Ku
g∑

k=1

Kd
j∑

i=1

[
ϑgjTr

(
BkugUkugHg,jVidj

VH
idj

HH
g,jU

H
kug

BH
kug

)
+ (1− ϑgj )

(
BkugUkug∆g,jVidj

VH
idj

∆H
g,jU

H
kug

BH
kug

)
+

MB∑
n=1

Tr
(
κBBkugUkugHg,jSnVidj

VH
idj

SHn HH
g,jU

H
kug

BH
kug

)
+

MB∑
n=1

Tr
(
ιBBkugUkugSnHg,jVidj

VH
idj

HH
g,jS

H
n UH

kug
BH
kug

)]
.

This can be further expressed as

T4,gj = ‖ω4,gj + Ω4,gjvec(∆g,j)‖2 ≤ m4,gj (5.60)

where ω4,g,j and Ω4,g,j are defined in Theorem 5.2, and m4,gj is a slack variable.

The use of this slack variable allows to represent the inner minimisation in (5.27)

from the perspective of each ∆g,j as

max
m

−m4,gj

s.t. ‖ω4,gj + Ω4,gjvec(∆g,j)‖2 ≤ m4,gj

∀{∆g,j : ‖vec(∆g,j)‖ ≤ εg,j} . (5.61)

Next, representing (5.60) as

m4,gj −
(
ω4,gj + Ω4,gjvec(∆g,j)

)H
I
(
ω4,gj + Ω4,gjvec(∆g,j)

)
≥ 0
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and applying the Schur Complement Lemma, the constraints of (5.61) can be

expressed as[
m4,gj ωH4,gj

ω4,gj I

]
+

[
0 vec(∆g,j)

HΩH
4,gj

Ω4,gjvec(∆g,j) 0

]
� 0 .

Finally, using Lemma 5.1 from Appendix 5.A with ξ = εg,j, B = [0 ΩH
4,gj],

C = [−1 0], D = vec(∆g,j) and

A =

[
m4,gj ωH4,gj

ω4,gj I

]

this constraint can be represented as

ν4,gj ≥ 0,

 m4,gj − ν4,gj ωH4,gj 0

ω4,gj I −εg,jΩ4,gj

0 −εg,jΩH
4,gj ν4,gjI

 � 0 .
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Chapter 6

Interference Alignment for

Full-Duplex MIMO Networks

with Imperfect CSI

6.1 Introduction

This chapter merges the use of IA and FD operation in order to provide a dual

approach solution to address the spectrum demand problem in future generation

wireless networks. The system considered is the multi-cell multi-user network

with FD BSs and HD DL and UL users from Chapter 5, however, for the pur-

pose of this chapter we consider the use of linear IA to manage the resultant

interference under imperfect CSI.

There have been a number of information-theoretic studies with the aim of

understanding the fundamental capacity limits of FD systems, particularly the

characterisation of achievable DoF. These DoF studies exploit a variety of inter-

ference management solutions in order to maximise capacity. For example, [105]

studies the DoF region for single-cell systems with one multi-antenna FD BS and

K single antenna FD users, and proposes an achievable scheme based on ergodic

IA. The DoF regions for an FD BS communicating with HD users [106,107] and

a point-to-point MIMO FD link [107] have also been studied, with the authors

proposing achievable schemes based on asymptotic IA for each scenario. A simi-

Work from this chapter has been presented at IEEE ICC 2017 [104].
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lar study was carried out in [108], where systems with an FD BS and either FD

or HD users are considered; for each case the sum DoF are characterised, and

achievable schemes based on a combination of interference nulling and asymptotic

IA are proposed.

While the ergodic and asymptotic IA techniques exploited in the FD literature

mentioned so far are beneficial from a theoretical standpoint, they are difficult

to implement in practice as highlighted earlier in Section 2.4.1.1. Therefore, here

we consider the use of linear IA which offers a more practical alternative [5]. The

application of linear IA in FD enabled networks has previously been considered for

single-cell MIMO systems with FD BSs and HD users in [8], where IA feasibility

conditions are derived. Additionally, in [109] the authors derive a scaling law

for the multiplexing gain of FD over HD in a multi-cell setting with network

MIMO capability between the BSs, allowing for the BS-to-BS interference to be

ignored. Different to [8,105–109] we consider an imperfect CSI scenario; moreover,

moving beyond the no BS-to-BS interference assumption in the only multi-cell

study available so far [109], we consider a fully connected multi-cell multi-user

network, which leads to a more complex interference scenario.

Within this context, work in this chapter seeks to characterise the impact of

imperfect CSI on system performance, and propose linear IA algorithms appli-

cable to networks equipped with FD BSs serving HD users (both single-cell and

multi-cell), since none are available in literature so far. Using the CSI error model

previously applied in Chapter 4, in the first part of this chapter we derive bounds

on the sum rate loss and achievable DoF. Results show that when the CSI error

variance depends on SNR to the power of a proper fraction, full DoF cannot be

achieved and the asymptotic sum rate loss is unbounded. Additionally, when the

error is exactly inversely proportional to SNR, full DoF are achievable and the

asymptotic rate loss is bounded by a fixed value dependent on the number of

cells, UL users, DL users, required streams and the CSI error parameters.

In the second part of the chapter we propose two novel linear IA algorithms

applicable to the FD network being considered. The proposed algorithms are

inspired by techniques originally proposed for the HD IC, namely the MMSE al-

gorithm from [11] and the Max-SINR algorithm from [10]. The resultant solutions

are not straightforward extensions of the original HD ones; they are based on spe-

cific design criteria that separate the various interference components amongst

the different available beamformers, and exploit statistical knowledge of the CSI
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error leading to a more robust design. Moreover, they are designed to produce

unitary beamformers. The use of unitary beamformers has gained significant at-

tention in recent years due to its role in codebook design for limited feedback

scenarios [110]. Additionally, it has been shown to lower complexity for MMSE

based algorithms [111], and improve performance for Max-SINR based ones [66].

The algorithms are first derived for the single-cell case, since the feasibility of lin-

ear IA in such networks is already known [8], and later extended to the multi-cell

case. Furthermore, we show that the two proposed algorithms produce equiva-

lent beamformers under certain conditions. For the multi-cell case, we also derive

the proper condition for IA feasibility. This condition, along with the multi-cell

version of the algorithms, can serve as tools to help future efforts into the deter-

mination of a full set of linear IA feasibility conditions for multi-cell FD enabled

systems.

The rest of this chapter is organised as follows. Section 6.2 presents some

preliminaries, including the system model, the performance of IA with perfect

CSI and the CSI error model. Section 6.3 deals with the performance of IA

under imperfect CSI, presenting two theorems that characterise the sum rate

and DoF loss. Next, in Section 6.4, we derive the MMSE and Max-SINR based

algorithms for the single-cell context, and establish an equivalence between the

two. Section 6.5 deals with multiple cell considerations, here we derive a proper

condition for multi-cell systems and also present the multi-cell extensions for the

IA algorithms. Section 6.6 presents simulation results, and finally conclusions are

provided in Section 6.7. Additionally, there is an appendix which includes some

lemmas used wtihin this chapter.

6.2 Preliminaries

6.2.1 System model

We consider a G-cell scenario, where each cell g has one FD BS, Kd DL users

requiring bd streams each and Ku UL users requiring bu streams each. A simplified

version of this network with one DL and one UL user per cell is depicted in Fig.

6.1. BSs are equipped with MB FD antennas, DL users are equipped with Nd

HD antennas and UL users are equipped with Nu HD antennas.

The signal received at user kdg , the kth DL user in cell g, and at BS g are
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BS 1 UL 11

DL 11

BS G
UL 1G

DL 1G

. . .

. . .

Figure 6.1: G-cell network with an FD BS, and one DL and one UL user per cell.
Solid arrows represent desired links, while dashed ones represent interference links.

given by (6.1) and (6.2) respectively.

ykdg =
G∑
j=1

Kd∑
i=1

Hkdg ,j
Vidj

sidj +
G∑
j=1

Ku∑
i=1

Hkdg ,i
u
j
Viuj

siuj + nkdg (6.1)

yg =
G∑
j=1

Ku∑
i=1

Hg,iuj
Viuj

siuj +
G∑
j=1

Kd∑
i=1

Hg,jVidj
sidj + ng (6.2)

Here, Hkdg ,j
∈ CNd×MB represents the channel from BS j to DL user kdg , Hkdg ,i

u
j
∈

CNd×Nu is the channel from UL user iuj to DL user kdg , Hg,j ∈ CMB×MB is the

channel from BS j to BS g, and Hg,iuj
∈ CMB×Nu is the channel from UL user

iuj to BS g. All channel elements are drawn from a complex normal distribution

with zero mean and variance one. Vidj
∈ CMB×bd is the precoder for sidj , with

sidj ∈ Cbd×1 being the data intended for the ith DL user in cell j, such that

E{sidj s
H
idj
} = P I. Viuj

∈ CNu×bu is the precoder for siuj ∈ Cbu×1, with siuj being

the data transmitted by the ith UL user in cell j, such that E{siuj s
H
iuj
} = P I.

Moreover, nkdg and ng represent AWGN with zero mean and variance σ2.

The estimated DL and UL received signals are given by

ŝkdg =
G∑
j=1

Kd∑
i=1

UH
kdg

Hkdg ,j
Vidj

sidj +
G∑
j=1

Ku∑
i=1

UH
kdg

Hkdg ,i
u
j
Viuj

siuj + UH
kdg

nkdg (6.3)
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ŝkug =
G∑
j=1

Ku∑
i=1

UH
kug

Hg,iuj
Viuj

siuj +
G∑
j=1
j 6=g

Kd∑
i=1

UH
kug

Hg,jVidj
sidj + UH

kug
ng

+ Θ

Kd∑
i=1

UH
kug

Υg,gVidg
sidg︸ ︷︷ ︸

residual SI for imperfect
SI cancellation scenarios

(6.4)

where Ukdg
∈ CNd×bd is the receive beamformer applied at DL user kdg and Ukug ∈

CMB×bu is the receive beamformer applied at BS g to extract the data transmitted

by UL user kug . Here, (6.3) is obtained as UH
kdg

ykdg . For the perfect CSI case

Hg,g

∑Kd
i=1 Vidg

sidg is known at BS g, thus we obtain (6.4) with Θ = 0 as UH
kug

(yg −
Hg,g

∑Kd
i=1 Vidg

sidg). The parameter Θ is a binary term used to differentiate between

perfect SI cancellation and imperfect SI cancellation. For perfect CSI, similar to

other FD DoF studies [8, 105–108, 112], we assume that SI is always perfectly

cancelled, therefore Θ = 0. For imperfect CSI, perfect SI cancellation is not

guaranteed leading to a residual SI term, further details are provided in Section

6.2.3.

6.2.2 Achievable sum rate and DoF with perfect CSI

Whilst our analysis is concerned with imperfect CSI, since our aim is to charac-

terise performance loss, it is useful to first define achievable sum rate and DoF

with perfect CSI. The linear IA conditions for a multi-cell FD system with HD

users are given by

|un Hkdg Hkdg ,g
vnkdg | > 0 ∀ n, k, g

|un Hkug Hg,kugv
n
kug
| > 0 ∀ n, k, g

un Hkdg Hkdg ,j
vmidj

= 0 ∀ n,m, k, i, g, j, (n, k, g 6= m, i, j)

un Hkug Hg,jv
m
idj

= 0 ∀ n,m, k, i, g, j, (g 6= j)

un Hkdg Hkdg ,i
u
j
vmiuj = 0 ∀ n,m, k, i, g, j

un Hkug Hg,iuj
vmiuj = 0 ∀ n,m, k, i, g, j, (n, k, g 6= m, i, j) (6.5)

where un
kdg

, unkug , vn
kdg

and vnkug refer to the nth column of Ukdg
, Ukug , Vkdg

and Vkug

respectively.

Considering i.i.d. Gaussian inputs, and the fact that there is no interference

leakage for perfect CSI, the achievable sum rate across the whole network is
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R FD TOT = R FD DL +R FD UL

=
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

P |un H
kdg

Hkdg ,g
vn
kdg
|2

σ2

)

+
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

P |un Hkug Hg,kugv
n
kug
|2

σ2

)
. (6.6)

Assuming that the system configuration is such that IA is feasible, we can use

the rate to DoF relationship in (4.10) to calculate the total achievable DoF with

perfect CSI as

D FD TOT = G(Kdbd +Kubu) . (6.7)

6.2.3 Imperfect CSI considerations

In this chapter we are concerned with the effect of imperfect CSI on IA per-

formance, thus analogous to the CSI error model used for the HD MIMO IBC

outlined in Section 4.2.2, we apply the following model for the CSI mismatch

Ĥ = H + E (6.8)

where Ĥ represents the available imperfect CSI, vec(H) ∼ CN (0, I) is the perfect

channel matrix and E is the error matrix representing the degree of inaccuracy in

the available CSI. Matrix E is assumed to be independent of H and is modeled

as vec(E) ∼ CN (0, ηI), where η = βρ−α with ρ = P
σ2 representing the nominal

SNR, α ≥ 0 and β > 0.

Conditioned on Ĥ, H is Gaussian distributed with mean Ĥ/(1 + η) and sta-

tistically independent elements of variance η/(1 + η) [72], allowing us to express

H =
1

1 + η
Ĥ + Υ (6.9)

where Υ is independent of Ĥ and distributed as vec(Υ) ∼ CN
(

0, η
1+η

I
)

.

Generally for DoF and IA related studies perfect SI cancellation is assumed

[8, 105–109, 112]. This can also be applied to our scenario, where it may be as-

sumed that each BS has perfect knowledge of its SI channel and imperfect CSI

for the remaining channels. However, if the SI channel is also known imper-
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fectly, then only Ĥg,g is available at BS g instead of Hg,g, implying that only
1

1+η
Ĥg,g

∑Kd
i=1 Vidg

sidg is subtracted from (6.2). This results in a residual SI com-

ponent, with the estimated UL data ŝkug , being given by (6.4) with Θ = 1.

6.3 Performance under imperfect CSI

For imperfect CSI scenarios, only Ĥ is available for beamformer calculation.

Therefore, instead of the original IA conditions in (6.5) the alignment conditions

observed are

|ûn Hkdg Ĥkdg ,g
v̂nkdg | > 0 ∀ n, k, g

|ûn Hkug Ĥg,kug v̂
n
kug
| > 0 ∀ n, k, g

ûn Hkdg Ĥkdg ,j
v̂midj

= 0 ∀ n,m, k, i, g, j, (n, k, g 6= m, i, j)

ûn Hkug Ĥg,jv̂
m
idj

= 0 ∀ n,m, k, i, g, j, (g 6= j)

ûn Hkdg Ĥkdg ,i
u
j
v̂miuj = 0 ∀ n,m, k, i, g, j

ûn Hkug Ĥg,iuj
v̂miuj = 0 ∀ n,m, k, i, g, j, (n, k, g 6= m, i, j) (6.10)

where ûn
kdg

, ûnkug , v̂n
kdg

and v̂nkug refer to the nth column of the beamformers calculated

with imperfect CSI, namely Ûkdg
, Ûkug , V̂kdg

and V̂kug respectively.

Satisfying the IA conditions in (6.10) instead of those in (6.5) leads to residual

leakage interference, given by (6.11) for the DL and (6.12) for the UL.

Ĵkdg =
G∑
j=1

Kd∑
i=1

bd∑
m=1

(j,i,m)6=(g,k,n)

P |ûn Hkdg Hkdg ,j
v̂midj
|2 +

G∑
j=1

Ku∑
i=1

bu∑
m=1

P |ûn Hkdg Hkdg ,i
u
j
v̂miuj |

2 (6.11)

Ĵkug =
G∑
j=1

Ku∑
i=1

bu∑
m=1

(j,i,m)6=(g,k,n)

P |ûn Hkug Hg,iuj
v̂miuj |

2 +
G∑
j=1

j 6=g

Kd∑
i=1

bd∑
m=1

P |ûn Hkug Hg,jv̂
m
idj
|2

+ Θ

Kd∑
i=1

bd∑
m=1

P |ûn Hkug Υg,gv̂
m
idg
|2 (6.12)

Residual leakage has an adverse effect on achievable sum rate and DoF. Under-

standing the extent of this negative impact is crucial in order to obtain a more
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realistic characterisation of the system performance. Here, we present two theo-

rems that quantify this effect in terms of asymptotic sum rate loss and decrease

in achievable DoF.

6.3.1 Sum rate loss

The mean sum rate loss, ∆R FD, is defined as the difference between the expected

value for the sum rate achievable with perfect CSI from (6.6) and the expected

value for the sum rate achievable with imperfect CSI defined as

R̂ FD TOT = R̂ FD DL + R̂ FD UL

=
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

P |ûn H
kdg

Hkdg ,g
v̂n
kdg
|2

Ĵkdg + σ2

)

+
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

P |ûn Hkug Hg,kug v̂
n
kug
|2

Ĵkug + σ2

)
. (6.13)

Given this definition we can now refer to the following theorem.

Theorem 6.1. Consider a G-cell system where each cell has one FD BS, Kd DL

users requiring bd streams each and Ku UL users requiring bu streams each. For

this system, under imperfect CSI with error variance η = βρ−α, at asymptotically

high SNR: ∆R FD tends to zero for α > 1, tends to infinity for 0 ≤ α < 1 and

for α = 1 is finite and upper bounded by Ω, defined as

Ω = GKdbd

(
log2

(
1 + β(GKdbd +GKubu − 1)

))
+GKubu

(
log2

(
1 + β(GKdbd +GKubu − 1− Θ̄Kdbd)

))
where Θ̄ = not(Θ), such that Θ̄ = 1 for perfect SI cancellation and Θ̄ = 0

for imperfect SI cancellation. Thus, the overall asymptotic sum rate loss can be

summarised as

lim
SNR→∞

∆R FD


= 0 α > 1

≤ Ω α = 1

→∞ 0 ≤ α < 1 .

(6.14)

142



6.3. Performance under imperfect CSI

Proof. Considering that

∆RFD = EH{R FD TOT} − EĤ{EH|Ĥ{R̂ FD TOT}} (6.15)

we can replace R FD TOT with (6.6) and R̂ FD TOT with (6.13) to obtain

∆R FD = EH

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

P |un H
kdg

Hkdg ,g
vn
kdg
|2

σ2

)}

− EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

P |ûn H
kdg

Hkdg ,g
v̂n
kdg
|2

Ĵkdg + σ2

)}}

+ EH

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

P |un Hkug Hg,kugv
n
kug
|2

σ2

)}

− EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

P |ûn Hkug Hg,kug v̂
n
kug
|2

Ĵkug + σ2

)}}
. (6.16)

After some algebraic manipulations, this can be further represented as

∆R FD = EH

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

P |un H
kdg

Hkdg ,g
vn
kdg
|2

σ2

)}

+ EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

Ĵkdg
σ2

)}}

− EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

Ĵkdg + P |ûn H
kdg

Hkdg ,g
v̂n
kdg
|2

σ2

)}}

+ EH

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

P |un Hkug Hg,kugv
n
kug
|2

σ2

)}

+ EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

Ĵkug
σ2

)}}

− EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

Ĵkug + P |ûn Hkug Hg,kug v̂
n
kug
|2

σ2

)}}
.

(6.17)

Additionally, since for unitary beamformers, analogous to [73, Lemma 2] it can

be shown that |un H
kdg

Hkdg ,g
vn
kdg
|2, |un Hkug Hg,kugv

n
kug
|2, |ûn H

kdg
Hkdg ,ĝ

vn
kdg
|2 and |ûn Hkug Hg,kugv̂

n
kug
|2

are exponentially distributed with both mean and variance one, we can establish

the following inequalities.
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EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

Ĵkdg + P |ûn H
kdg

Hkdg ,g
v̂n
kdg
|2

σ2

)}}

≥ EH

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

P |un H
kdg

Hkdg ,g
vn
kdg
|2

σ2

)}
(6.18)

EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

Ĵkug + P |ûn Hkug Hg,kug v̂
n
kug
|2

σ2

)}}

≥ EH

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

P |un Hkug Hg,kugv
n
kug
|2

σ2

)}
(6.19)

Considering the expression from (6.17), taking into account (6.18) and (6.19),

and applying Jensen’s inequality, we can express the sum rate loss as

∆R FD ≤
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

EĤ{EH|Ĥ{Ĵkdg}}
σ2

)

+
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

EĤ{EH|Ĥ{Ĵkug }}
σ2

)
. (6.20)

Therefore to quantify ∆R FD we need to find expressions for EĤ{EH|Ĥ{Ĵkdg}}
and EĤ{EH|Ĥ{Ĵkug }}. Starting with EĤ{EH|Ĥ{Ĵkdg}}, having already defined Ĵkdg
in (6.12), we can combine it with the channel model from (6.9) to obtain

EĤ{EH|Ĥ{Ĵkdg}} =
G∑
j=1

Kd∑
i=1

bd∑
m=1

(j,i,m)6=(g,k,n)

PEĤ,Υ

{∣∣∣∣ûn Hkdg (
1

1 + η
Ĥkdg ,j

+ Υkdg ,j

)
v̂midj

∣∣∣∣2
}

+
G∑
j=1

Ku∑
i=1

bu∑
m=1

PEĤ,Υ

{∣∣∣∣ûn Hkdg (
1

1 + η
Ĥkdg ,i

u
j

+ Υkdg ,i
u
j

)
v̂miuj

∣∣∣∣2
}
.

Using the IA conditions for imperfect CSI in (6.10), particularly the fact that[
ûn H
kdg

Ĥkdg ,j
v̂m
idj

= 0 ∀ n,m, k, i, g, j (n, k, g 6= m, i, j)
]

and
[
ûn H
kdg

Ĥkdg ,i
u
j
v̂miuj = 0

∀ n,m, k, i, g, j
]
, this can be further simplified as

EĤ{EH|Ĥ{Ĵkdg}} =
G∑
j=1

Kd∑
i=1

bd∑
m=1

(j,i,m)6=(g,k,n)

PEΥ

{ ∣∣∣ûn Hkdg Υkdg ,j
v̂midj

∣∣∣2 }
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+
G∑
j=1

Ku∑
i=1

bu∑
m=1

PEΥ

{ ∣∣∣ûn Hkdg Υkdg ,i
u
j
v̂miuj

∣∣∣2 }
(a)
= P

η

1 + η
(GKdbd − 1 +GKubu) (6.21)

where (a) follows by integrating the result of Lemma 6.1 from Appendix 6.A.

Using a similar process, the expected value for the UL interference leakage

can be expressed as

EĤ{EH|Ĥ{Ĵkug }} = P
η

1 + η

(
GKubu − 1 + (G− Θ̄)Kdbd

)
. (6.22)

Applying the results from (6.21) and (6.22) into (6.20), we obtain

∆R FD ≤
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

P

σ2

η

1 + η
(GKdbd − 1 +GKubu)

)

+
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

P

σ2

η

1 + η

(
GKubu − 1 + (G− Θ̄)Kdbd

))

which after evaluating the summations and replacing η with βρ−α, becomes

∆R FD ≤ GKdbd

[
log2

(
1 + (GKdbd +GKubu − 1)

βρ1−α

1 + βρ−α

)]
+GKubu

[
log2

(
1 + (GKdbd +GKubu − 1− Θ̄Kdbd)

βρ1−α

1 + βρ−α

)]
.

Finally, taking a high SNR approximation of this inequality, the asymptotic sum

rate loss can be defined as in (6.14), proving Theorem 6.1 as originally stated.

6.3.2 DoF loss

The DoF loss, ∆D FD, is defined as the difference between the DoF achievable

with perfect CSI and the DoF achievable under imperfect CSI, expressed as

D̂ FD TOT = lim
P→∞

EĤ{EH|Ĥ{R̂ FD DL}}
log2P

+ lim
P→∞

EĤ{EH|Ĥ{R̂ FD UL}}
log2P

. (6.23)

Given this definition we can now refer to the following theorem.

Theorem 6.2. Consider a G-cell system where each cell has one FD BS, Kd DL
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users requiring bd streams each and Ku UL users requiring bu streams each. For

this system, under imperfect CSI with error variance η = βρ−α, full DoF can be

achieved for α ≥ 1, while for 0 ≤ α < 1 achievable DoF are equal to a fraction α

of the full DoF, i.e. the overall DoF loss is given by

∆D FD =

{
0 α ≥ 1

(1− α)G (Kdbd +Kubu) 0 ≤ α < 1 .
(6.24)

Proof. The imperfect CSI DoF expression (6.23) can be transformed into (6.25)

by replacing R̂ FD DL and R̂ FD UL with the corresponding expressions from (6.13)

and performing some additional algebraic manipulations.

D̂ FD TOT = lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
Ĵkdg + σ2 + P

∣∣∣ûn Hkdg Hkdg ,g
v̂nkdg

∣∣∣2)}}
log2P︸ ︷︷ ︸

A

+ lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
Ĵkug + σ2 + P

∣∣∣ûn Hkug Hg,kug v̂
n
kug

∣∣∣2)}}
log2P︸ ︷︷ ︸

B

− lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
Ĵkdg + σ2

)}}
log2P︸ ︷︷ ︸

C

− lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
Ĵkug + σ2

)}}
log2P︸ ︷︷ ︸

D

(6.25)

Next, discarding the interference-plus-noise noise terms in parts A and B, and

applying Jensen’s inequality to parts C and D, results in

D̂ FD TOT ≥ lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
P
∣∣∣ûn Hkdg Hkdg ,g

v̂nkdg

∣∣∣2)}}
log2P

− lim
P→∞

G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
EĤ{EH|Ĥ{Ĵkdg}}+ σ2

)
log2P
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+ lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
P
∣∣∣ûn Hkug Hg,kug v̂

n
kug

∣∣∣2)}}
log2P

− lim
P→∞

G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
EĤ{EH|Ĥ{Ĵkug }}+ σ2

)
log2P

. (6.26)

Additionally, the DoF expression from (6.26) can be transformed into (6.27).

This follows since for unitary beamformers, analogous to [73, Lemma 2] it can

be shown that |ûn H
kdg

Hkdg ,g
v̂n
kdg
|2 and |ûn Hkug Hg,kug v̂

n
kug
|2 are exponentially distributed

with both mean and variance one, and also by replacing EĤ{EH|Ĥ{Ĵkdg}} and

EĤ{EH|Ĥ{Ĵkug }} with (6.21) and (6.22) respectively.

D̂ FD TOT = GKdbd − lim
P→∞

G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
P

η

1 + η
(GKdbd − 1 +GKubu) + σ2

)
log2P

+GKubu − lim
P→∞

G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
P

η

1 + η

(
GKubu − 1 + (G− Θ̄)Kdbd

)
+ σ2

)
log2P

(6.27)

Finally, replacing η with βρ−α = βP−ασ2α in (6.27) and taking P → ∞, the

achievable DoF with imperfect CSI can be characterised as

D̂ FD TOT =

{
G(Kdbd +Kubu) α ≥ 1

αG(Kdbd +Kubu) 0 ≤ α < 1.
(6.28)

Noting that ∆D FD = D FD TOT − D̂ FD TOT, and having already established

that D FD TOT = G(Kdbd + Kubu) in (6.7), we can use (6.28) to obtain (6.24),

proving that the DoF loss is as originally stated in Theorem 6.2.

6.4 Linear IA algorithms

While the bounds derived so far provide an understanding of the expected be-

haviour of linear IA within the system model considered, it is also necessary

to have algorithms that work within this context. Such algorithms are not yet

available in literature for systems with FD BSs and HD users, therefore here
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we propose two different approaches: (a) an MMSE based solution, and (b) a

Max-SINR based one.

The proposed algorithms are not straightforward extensions of the original

HD ones from [11] and [10]; (a) they separate the various interference components

amongst the different available beamformers rather than treating all interference

equivalently, i.e. they are based on design principles that are specifically catered

to the new system model, (b) they exploit statistical knowledge of the CSI error

to provide added robustness, and (c) they result in unitary beamformers. The

use of unitary beamformers has gained significant attention in recent years due to

its role in codebook design for limited feedback scenarios. It has been selected for

both single-user and multi-user mode operation for evolved universal terrestrial

radio access, with advantages that include added simplicity of application and

improved robustness to channel estimation errors [110]. Additionally, it has been

shown to lower complexity for MMSE based algorithms [111] by avoiding the need

for an extra linear search to enforce transmit power constraints when generating

precoders, and also improve performance for Max-SINR based ones in multi-

stream applications [66].

The interference that needs to be handled by our IA solutions can be classified

into four main categories:

(i) Intra-DL interference - interference caused by undesired DL data for other

users in the same cell;

(ii) Intra-UL interference - interference caused by undesired UL data for other

users in the same cell;

(iii) CCI-OC - co-channel interference caused by nodes located in other cells

(includes both DL and UL data);

(iv) R-SI - residual self-interference at the BSs due to imperfect CSI knowledge.

While it is possible to create beamformers that handle all the interference jointly,

prior results for HD systems [62, 63] indicate that this approach is not suited to

interference scenarios that are more complex than the initially studied HD IC.

Similar behaviour has also been noted for our FD system, thus we base our IA

algorithms on specific design principles.

Focus in this section will be on the derivation of the algorithms for a single-cell

system, since the feasibility of such configurations has already been explored in
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current literature [8], and also due to the relevant compactness of the correspond-

ing expressions in comparison to multi-cell ones. The results for the multi-cell

extensions are presented later in Section 6.5.2. Note that when considering the

single-cell case, where by definition G = 1, we drop the use of index g to indi-

cate which cell a user belongs to, i.e. we use ku to indicate the kth UL user in

the cell and kd to represent the kth DL user. However, the notation g is still

used in channel related indices to represent the BS. The single-cell versions of the

algorithms follow Design Principle 1, outlined below.

Design Principle 1. Intra-UL interference is only handled by the receivers.

Intra-DL interference is only handled by the precoders. R-SI is handled by both

the transmit and receive beamformers at the BS.

6.4.1 MMSE based design for single-cell systems

This algorithm focuses on minimising the mean squared error, and designs beam-

formers which aim to find a balance between aligning the interference and ensuring

that the signal level is suitably above noise. It was originally proposed for the IC

with perfect CSI and a single-stream per user in [11], and later generalized to the

multi-stream case in [113]. The designs in [11, 113] carry out a separate linear

search (using techniques such as for example the bisection method) to enforce

transmit power contraints for each of the precoders generated. The added com-

putional cost incurred by the numerical search can be avoided by ensuring that

the beamformers produced are unitary [111]. Our MMSE design incorporates this

lower complexity feature, and produces unitary beamformers via the inclusion of

QR decomposition stages (see Steps 4 and 6 in Algorithm 6.1).

Starting with UL communication in the intended direction, with fixed V̂ and

in accordance to Design Principle 1, the optimisation problem to find the BS

receivers, Ûku , is given by

min
Ûku

E
{
‖fku − sku‖2

}
∀ k

where

fku =ÛH
ku

Ku∑
i=1

Hg,iuV̂iusiu + ΘÛH
ku

Kd∑
i=1

Υg,gV̂idsid + ÛH
kung .
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The optimisation function can be defined as

Fku = E
{
‖fku − sku‖2

}
= E

{
Tr

((
ÛH

Ku∑
i=1

Hg,iuV̂iusiu + ΘÛH
ku

Kd∑
i=1

Υg,gV̂idsid + ÛH
kung − sku

)
(

ÛH
ku

Ku∑
i=1

Hg,iuV̂iusiu + ΘÛH
ku

Kd∑
i=1

Υg,gV̂idsid + ÛH
kung − sku

)H)}
(a)
= Tr

(
P ÛH

ku

Ku∑
i=1

Hg,iuV̂iuV̂
H
iuH

H
g,iuÛku + σ2ÛH

kuÛku − P ÛH
kuHg,kuV̂ku

− P V̂H
kuH

H
g,kuÛku + ΘP ÛH

ku

Kd∑
i=1

Υg,gV̂idV̂
H
idΥ

H
g,gÛku

)
+ Pbu

where (a) follows since the transmitted data consists of i.i.d symbols, allowing us

to use E
{
skus

H
iu

}
= E

{
skds

H
id

}
= 0 ∀ k, i, (k 6= i), E

{
skus

H
id

}
= E

{
skds

H
iu

}
= 0

∀ k, i and E
{
skus

H
ku

}
= E

{
skds

H
kd

}
= P I ∀ k. Differentiating with respect to Ûku

and replacing H by (6.9) results in

∂Fku

∂Ûku
= P ÛH

ku

Ku∑
i=1

(
1

1 + η
Ĥg,iu + Υg,iu

)
V̂iuV̂

H
iu

(
1

1 + η
Ĥg,iu + Υg,iu

)H

+ σ2ÛH
ku − P V̂H

ku

(
1

1 + η
Ĥg,ku + Υg,ku

)H

+ ΘP ÛH
ku

Kd∑
i=1

Υg,gV̂idV̂
H
idΥ

H
g,g .

This can be made dependent on the imperfect CSI, Ĥ, only by using the statistical

knowledge we have of the error. Thus, taking expectations with respect to Υ and

using Lemmas 4.2 and 6.2, we obtain

EΥ

{
∂Fku

∂Ûku

}
=

P

(1 + η)2
ÛH
ku

Ku∑
i=1

Ĥg,iuV̂iuV̂i
uHĤH

g,iu + σ2ÛH
ku −

P

(1 + η)
V̂H
kuĤ

H
g,ku

+
Pη

(1 + η)
ÛH
ku(Kubu + ΘKdbd) . (6.29)

The receiver which minimises the UL mean squared error is obtained by setting

(6.29) equal to zero, resulting in

Ûku =

(
Ku∑
i=1

Ĥg,iuV̂iuV̂
H
iuĤ

H
g,iu + γkuI

)−1

(1 + η) Ĥg,kuV̂ku (6.30)

150



6.4. Linear IA algorithms

where

γu =
σ2(1 + η)2

P
+ η(1 + η)(Kubu + ΘKdbd) . (6.31)

Using a similar process for DL communication in the intended direction, with

fixed V̂ and in accordance to Design Principle 1, we solve

min
Û
kd

E
{
‖fkd − skd‖2

}
∀ k

where

fkd = ÛkdHkd,gV̂kdskd + Ûkd

Ku∑
i=1

Hkd,iuV̂iusiu + Ûkdnkd .

This results in

Ûkd =

(
Ĥkd,gV̂kdV̂

H
kdĤ

H
kd,g +

Ku∑
i=1

Ĥkd,iuV̂iuV̂
H
iuĤ

H
kd,iu + γkdI

)−1

× (1 + η) Ĥkd,gV̂kd (6.32)

with

γd =
σ2(1 + η)2

P
+ η(1 + η)(bd +Kubu) . (6.33)

Considering the reciprocal network we can also apply a similar method to

solve for V̂ with fixed Û. In the reciprocal network we assume that all directions

of communication are reversed, i.e. UL users want to receive data from the BS,

while DL users want to transmit data to the BS. Additionally, V̂ now act as

receive beamformers and Û act as precoders. We use channel notations of the

form
←−
Hx,y = HH

y,x to represent the channel going from y to x in the reciprocal

network.

For communication by UL users in the reciprocal channel, we solve

min
V̂ku

E{‖
←−
f ku − sku‖2} ∀ k

where

←−
f ku = V̂ku

←−
Hku,gÛkusku + V̂ku

Kd∑
i=1

←−
Hkd,iuÛidsid + V̂ku

←−n ku
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to obtain

V̂ku =

(
←−
Ĥku,gÛkuÛ

H
ku

←−
ĤH

ku,g +

Kd∑
i=1

←−
Ĥku,idÛidÛ

H
id

←−
ĤH

ku,id +←−γ kuI

)−1

× (1 + η)
←−
Ĥku,gÛku (6.34)

with

←−γ u =
σ2(1 + η)2

P
+ η(1 + η)(bu +Kdbd) . (6.35)

For communication by DL users in the reciprocal network, we solve

min
V̂
kd

E{‖
←−
f kd − skd‖2} ∀ k

where

←−
f kd =

Kd∑
i=1

V̂kd
←−
Hg,idÛidsid + ΘV̂kd

Ku∑
i=1

←−
Υg,gÛiusiu + V̂kd

←−n g

to obtain

V̂kd =

(
Kd∑
i=1

←−
Ĥg,idÛidÛ

H
id

←−
ĤH

g,id +←−γ kdI

)−1

(1 + η)
←−
Ĥg,kdÛkd (6.36)

with

←−γ d =
σ2(1 + η)2

P
+ η(1 + η)(Kdbd + ΘKubu) . (6.37)

Having derived expressions for all beamformers, the resulting FD MMSE al-

gorithm with statistical knowledge of the CSI error, which we refer to as FD-

MMSE-SKCE, is as outlined in Algorithm 6.1.

6.4.2 Max-SINR based design for single-cell systems

In the design of our Max-SINR algorithm we take advantage of statistical knowl-

edge with respect to the CSI mismatch. This results in the calculation of more

accurate interference-plus-noise covariance matrices when compared to the naive

approach, which would simply assume that the available CSI is perfect and take
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Algorithm 6.1: FD-MMSE-SKCE algorithm for FD system

1 Set γu, γd,
←−γ u and ←−γ d according to (6.31), (6.33), (6.35) and (6.37).

2 Initialise V̂ku and V̂kd as random unitary matrices ∀ k.

3 Obtain the receive filters Ûku and Ûkd using (6.30) and (6.32) ∀ k.

4 Set Ûku = QR(Ûku) and Ûkd = QR(Ûkd) ∀ k.

5 Obtain the precoders V̂kug and V̂kdg
using (6.34) and (6.36) ∀ k.

6 Set V̂ku = QR(V̂ku) and V̂kd = QR(V̂kd) ∀ k.
7 Repeat the process from Step 2 until convergence or for a fixed number of

iterates.

no additional measures in order to counter the effect of channel imperfections.

Note that in addition to following Design Principle 1, our interference-plus-noise

covariance matrices also take into account inter-stream interference for the data

required at each node.

Starting with UL communication in the intended direction, the interference-

plus-noise covariance matrix is given by (6.38), where (a) follows by replacing H

with (6.9).

Qn
ku =

Ku∑
i=1

bu∑
m=1

(i,m)6=(k,n)

PHg,iuv̂
m
iuv̂

mH
iu HH

g,iu + Θ

Kd∑
i=1

bd∑
m=1

PΥg,gv̂
m
id v̂

mH
id ΥH

g,g + σ2I

(a)
=

Ku∑
i=1

bu∑
m=1

(i,m)6=(k,n)

P

[
1

(1 + η)2
Ĥg,iuv̂

m
iuv̂

mH
iu ĤH

g,iu +
Ku∑
i=1

bu∑
m=1

(i,m)6=(k,n)

Υg,iuv̂
m
iuv̂

mH
iu ΥH

g,iu︸ ︷︷ ︸
A

+
1

(1 + η)

(
Ĥg,iuv̂

m
iuv̂

mH
iu ΥH

g,iu + ΥH
g,iuv̂

m
iuv̂

mH
iu Ĥg,iu

)
︸ ︷︷ ︸

B

]

+ Θ

Kd∑
i=1

bd∑
m=1

P Υg,gv̂
m
id v̂

mH
id ΥH

g,g︸ ︷︷ ︸
C

+σ2I (6.38)

Since statistical information is available with respect to the channel uncertainty,

we can simplify (6.38) further by replacing all the elements that contain Υ by

their expected values. Using Lemma 6.2 from Appendix 6.A EĤ,Υ{B} = 0. Also

from Lemma 4.2 EΥ{A} = EΥ{C} = η/(1 + η)I. Thus, instead of using (6.38),

we can represent the UL interference-plus-noise covariance matrix in the intended

direction as
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Q̂n
ku =

Ku∑
i=1

bu∑
m=1

(i,m) 6=(k,n)

τĤg,iuv̂
m
iuv̂

mH
iu ĤH

g,iu + ξuI (6.39)

where

τ =
P

(1 + η)2
(6.40)

and

ξu = σ2 +
Pη

(1 + η)
(Kubu − 1 + ΘKdbd) . (6.41)

Applying a method similar to the one used to derive (6.39), for DL communi-

cation in the intended direction we obtain the interference-plus-noise covariance

matrix as

Q̂n
kd =

Ku∑
i=1

bu∑
m=1

τĤkd,iuv̂
m
iuv̂

mH
iu ĤH

kd,iu +

bd∑
m=1
m6=n

τĤkd,gv̂
m
kdv̂

mH
kd ĤH

kd,g + ξdI (6.42)

where

ξd = σ2 +
Pη

(1 + η)
(Kubu + bd − 1) . (6.43)

Next, reversing the direction of communication, we calculate the interference-

plus-noise covariance matrices for the reciprocal network. Starting with communi-

cation by UL users in the reciprocal network, we obtain the following interference-

plus-noise covariance matrix

←−
Q̂n
ku =

Kd∑
i=1

bd∑
m=1

τ
←−
Ĥku,idû

m
id û

mH
id

←−
ĤH

ku,id +
bu∑
m=1
m 6=n

τ
←−
Ĥku,gû

m
kuû

mH
ku

←−
Ĥku,g +

←−
ξ uI (6.44)

where
←−
ξ u = σ2 +

Pη

(1 + η)
(Kdbd + bu − 1) . (6.45)

For communication by DL users in the reciprocal network, we obtain

←−
Q̂n
kd =

Kd∑
i=1

bd∑
m=1

(i,m)6=(k,n)

τ
←−
Ĥg,idû

m
id û

mH
id

←−
ĤH

g,id +
←−
ξ dI (6.46)
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where
←−
ξ d = σ2 +

Pη

(1 + η)
(Kdbd − 1 + ΘKubu) . (6.47)

The resulting Max-SINR algorithm which exploits statistical knowledge of

the CSI error (Max-SINR-SKCE) is as outlined in Algorithm 6.2. Note that

the original Max-SINR IA based algorithm from [10] does not contain a QR

decomposition stage, but instead normalises the per-stream beamformers. Having

unitary beamformers was later shown to improve performance for multi-stream

applications [66]. By including a QR decomposition stage in Steps 5 and 8 of

Algorithm 6.2 we produce unitary beamformers, thereby ensuring we obtain the

multi-stream advantages, and also eliminating the need for separate normalisation

steps since the resultant beamformers inherently consist of unit-norm vectors.

Algorithm 6.2: FD-Max-SINR-SKCE algorithm for FD system

1 Set τ , ξu, ξd,
←−
ξ u and

←−
ξ d according to (6.41), (6.40), (6.43), (6.45) and (6.47).

2 Initialise v̂nku and v̂n
kd

as random unit-norm vectors ∀ n, k.

3 Calculate Q̂n
ku and Q̂n

kd
using (6.39) and (6.42) ∀ n, k.

4 Obtain the receive filters as ûnku = (Q̂n
ku)−1Ĥg,kuv̂

n
ku and ûn

kd
=

(Q̂n
kd

)−1Ĥkd,gv̂
n
kd
∀ n, k.

5 Set Ûku = QR(Ûku) and Ûkd = QR(Ûkd) ∀ k.

6 Compute
←−
Q̂n
ku and

←−
Q̂n
kd

using (6.44) and (6.46) ∀ n, k.

7 Obtain the precoders as v̂nku = (
←−
Q̂n
ku)−1

←−
Ĥku,gû

n
ku and v̂n

kd
= (
←−
Q̂n
kd

)−1
←−
Ĥg,kdû

n
kd

∀ n, k.

8 Set V̂ku = QR(V̂ku) and V̂kd = QR(V̂kd) ∀ k.
9 Repeat the process from Step 2 until convergence or for a fixed number of

iterates.

Remark 6.1. In case of perfect CSI or for imperfect CSI situations where sta-

tistical knowledge of the CSI error is unavailable, a naive version of Algorithms

6.1 and 6.2 can be implemented. For such situations we have η = 0 in the ex-

pressions for beamformer calculation. Thus, for FD-MMSE-Naive we set γu =

γd = ←−γ u = ←−γ d = σ2

P
in Step 1. While, for FD-Max-SINR-Naive we set τ = P

and ξu = ξd =
←−
ξ u =

←−
ξ d = σ2 in Step 1. Additionally, for the perfect CSI case

H is used in place of Ĥ throughout, and the resulting beamformers are U and V

instead of Û and V̂. Note that the naive versions of the algorithms have the same

computational complexity as those originally presented in Algorithms 6.1 and 6.2.
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6.4.3 Equivalence between MMSE and Max-SINR designs

Under certain conditions the beamformers obtained by the proposed MMSE and

Max-SINR algorithms are equivalent, in the sense that at each iteration both

result in identical precoders and receivers.

Starting with the expression for the UL receiver in the intended direction from

Step 4 of Algorithm 6.2, and defining Q̂n
ku , An

ku
P

(1+η)2
, we can express

ûnku = (An
ku)−1Ĥg,kuv̂

n
ku

(1 + η)2

P
.

Additionally, An
ku may be represented as

An
ku = Bku − Ĥg,kuv̂

n
kuv̂

nH
ku ĤH

g,ku

where

Bku =
Ku∑
i=1

Ĥg,iuV̂iuV̂
H
iuĤ

H
g,iu + ξu

(1 + η)2

P
I .

Applying Lemma 6.3 to (An
ku)−1Ĥg,kuv̂

n
ku we obtain

(An
ku)−1Ĥg,kuv̂

n
g,ku =

(Bku)−1Ĥg,kuv̂
n
ku

1− v̂nHku ĤH
g,ku(Bku)−1Ĥg,kuv̂nku

.

Letting λnku = 1− v̂nHku ĤH
g,ku(Bku)−1Ĥg,kuv̂

n
ku , we can represent the receiver as

ûnku = (Bku)−1Ĥg,kuv̂
n
ku

(1 + η)2

P

1

λnku
.

Next, ûnku ∀ n = 1 . . . bu can be horizontally concatenated to obtain the receiver

across all streams as

Ûku = (Bku)−1Ĥg,kuV̂kuΛku (6.48)

where

Λku =
(1 + η)2

P


1

λ1
ku

. . . 0

...
. . .

...

0 . . .
1

λbuku

 .
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Comparing (6.48) with the MMSE derived expression for the same beam-

former in (6.30), it can be noticed that they are very similar. For the naive and

perfect CSI versions of the algorithms, where η is set to 0, the term inside the

inverse for (6.48) and (6.30) is equivalent. The only difference is an additional

post-multiplication by Λku in (6.48); this matrix essentially multiplies each col-

umn vector with a scalar and thus has no effect on the resultant unitary part after

the QR decomposition, therefore both algorithms obtain the same Ûku . A similar

argument can be made for each of Ûkd , V̂ku and V̂kd . Thus, for the case where η

is equal to zero, or unknown and assumed to be zero, (i.e. FD-Max-SINR-Naive

and FD-MMSE-Naive) the two algorithms are equivalent.

Remark 6.2. Note that even in cases where the Max-SINR/MMSE equivalence

holds, the MMSE algorithm is less computationally complex than the Max-SINR

algorithm, since the former operates on a per-user basis whilst the latter operates

on a per-stream basis. Consider for example the number of matrix inverses in-

volved; the MMSE algorithm requires a total of 2(Ku +Kd) inverses per iteration

to compute the beamformers in Steps 3 and 5, while the Max-SINR algorithm

requires a total of 2(Kubu +Kdbd) inverses in Steps 4 and 7.

6.4.4 Convergence of the proposed algorithms

Firstly, it is important to note that the convergence of Max-SINR based algo-

rithms to achieve IA cannot be proven analytically, not even for the simplest

case of the HD IC [10]. Considering that the Max-SINR algorithm proposed in

this paper is based in principle on the original one from [10], but with increased

complexity in the resultant expressions (due to the more complex system model),

it follows by extension that the convergence of our Max-SINR based approach

cannot be analytically proven. However, the overall consensus in literature is that

Max-SINR algorithms for IA generally seem to converge to a constant value, as

shown numerically in [114], and proven for sufficiently high SNR in [115]. Fi-

nally, it is also important to note that these convergence remarks also apply to

our MMSE based algorithm, due to the equivalence established in Section 6.4.3.

6.5 Multi-cell considerations

A significant body of literature related to linear IA focuses on the analytic deriva-

tion of feasibility conditions, for example, [6] studies this issue for the IC, [7, 62]

157



6.5. Multi-cell considerations

consider IBCs and [8] derives feasibility conditions for linear IA in single-cell

systems with an FD BS communicating with both DL and UL users. However,

no feasibility conditions are available in literature so far for multi-cell multi-user

systems with FB BSs and HD users. Here we look into this issue by deriving the

proper condition for this type of network, and also by extending the linear IA al-

gorithms proposed in Sections 6.4.1 and 6.4.2 to the multi-cell case. The derived

proper condition, along with the proposed algorithms, can aid future work in this

direction by serving as starting point that provides insight into the theoretical

feasibility of linear IA for different antenna configurations and DoF requirements.

6.5.1 Proper condition

The proper condition relates the feasibility of IA to the issue of determining the

resolvability of a system represented by multivariate polynomial equations. A

system of equations is classified as proper if the number of equations, Ne, does

not exceed the number of variables, Nv, i.e. if Nv ≥ Ne. Prior studies [6, 7]

show that for systems classified as improper, IA is surely infeasible. However,

classifying a system as proper is not a sufficient condition to prove IA feasibility,

i.e. systems that are proper but for which IA is infeasible may exist.

We follow the method from [6] to derive expressions for Nv and Ne, and

obtain the proper condition for the FD enabled multi-cell scenario considered in

this work. Focusing on a symmetric system where Kd = Ku = K̄, bd = bu = b

and Nd = Nu = N , we obtain

Nv = 2GK̄b(MB +N − 2b)

and

Ne = (K̄b)2(4G2 − 2−G) .

This allows us to express the proper condition as

2G(MB +N)

4G+ K̄(4G2 − 2−G)
≥ b . (6.49)

6.5.2 Multi-cell algorithm extension

Here we extend our IA algorithms to the multi-cell case. The actual method

applied to design these algorithms is analogous to the one followed for the single-
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cell case - the only difference in the derivation process is that instead of following

Design Principle 1, we follow Design Principle 2 which includes additional con-

siderations for CCI-OC which is now present.

Design Principle 2. Intra-UL interference is only handled by the receivers.

Intra-DL interference is only handled by the precoders. R-SI is handled by both

the transmit and receive beamformers at the BSs. CCI-OC is handled by all

beamformers.

6.5.2.1 Multi-cell version of MMSE algorithm

The multi-cell version of FD-MMSE-SKCE follows the general steps outlined for

the single-cell version in Algorithm 6.1, with the following differences.

• In Step 1 set γd, γu,
←−γ d and ←−γ u as follows.

γd =
σ2(1 + η)2

P
+ η(1 + η)(GKubu + (G− 1)Kdbd + bd − 1)

γu =
σ2(1 + η)2

P
+ η(1 + η)(GKubu − 1 + (G− 1 + Θ)Kdbd)

←−γ d =
σ2(1 + η)2

P
+ η(1 + η)(GKdbd − 1 + (G− 1 + Θ)Kubu)

←−γ u =
σ2(1 + η)2

P
+ η(1 + η)(GKdbd + (G− 1)Kubu + bu − 1)

• In Step 3 calculate Ûkdg
and Ûkug using (6.50) and (6.51).

Ûkdg
=

(
G∑
j=1

Ku∑
i=1

Ĥkdg ,i
u
j
V̂iuj

V̂H
iuj

ĤH
kdg ,i

u
j

+
G∑
j=1

j 6=g

Kd∑
i=1

Ĥkdg ,j
V̂idj

V̂H
idj

ĤH
kdg ,j

+ Ĥkdg ,g
V̂kdg

V̂H
kdg

ĤH
kdg ,g

+ γdI

)−1

(1 + η) Ĥkdg ,g
V̂kdg

(6.50)

Ûkug =

(
G∑
j=1

Ku∑
i=1

Ĥg,iuj
V̂iuj

V̂H
iuj

ĤH
g,iuj

+
G∑
j=1

j 6=g

Kd∑
i=1

Ĥg,jV̂idj
V̂H
idj

ĤH
g,j + γuI

)−1

× (1 + η) Ĥg,kug V̂kug (6.51)

159



6.5. Multi-cell considerations

• In Step 5 find V̂kdg
and V̂kug using (6.52) and (6.53).

V̂kug =

(
G∑
j=1

Kd∑
i=1

←−
Ĥidj ,k

u
g
Ûidj

ÛH
idj

←−
ĤH

idj ,k
u
g

+
G∑
j=1

j 6=g

Ku∑
i=1

←−
Ĥj,kug Ûiuj

ÛH
iuj

←−
ĤH

j,kug

+
←−
Ĥg,kug Ûkug Û

H
kug

←−
ĤH

g,kug
+←−γ uI

)−1

(1 + η)
←−
Ĥkug ,gÛkug (6.52)

V̂kdg
=

(
G∑
j=1

Kd∑
i=1

←−
Ĥg,idj

Ûidj
ÛH
idj

←−
ĤH

g,idj
+

G∑
j=1

j 6=g

Ku∑
i=1

←−
Ĥg,jÛiuj

ÛH
iuj

←−
ĤH

g,j +←−γ dI

)−1

× (1 + η)
←−
Ĥg,kdg

Ûkdg
(6.53)

6.5.2.2 Multi-cell version of Max-SINR algorithm

The multi-cell version of FD-Max-SINR-SKCE follows the general steps outlined

for the single-cell version in Algorithm 6.2, with the following differences.

• In Step 1 set ξd, ξu,
←−
ξ d and

←−
ξ u as follows.

ξd = σ2 +
Pη

(1 + η)
(GKubu + (G− 1)Kdbd + bd)

ξu = σ2 +
Pη

(1 + η)
(GKubu + (G− 1 + Θ)Kdbd)

←−
ξ d = σ2 +

Pη

(1 + η)
(GKdbd + (G− 1 + Θ)Kubu)

←−
ξ u = σ2 +

Pη

(1 + η)
(GKdbd + (G− 1)Kubu + bu)

• In Step 3 the forward interference-plus-noise covariances matrices Q̂n
kdg

and

Q̂n
kug

are calculated using (6.54) and (6.55).

Q̂n
kdg

=
G∑
j=1

Ku∑
i=1

bu∑
m=1

τĤkdg ,i
u
j
v̂miuj v̂

mH
iuj

ĤH
kdg ,i

u
j

+
G∑
j=1

j 6=g

Kd∑
i=1

bd∑
m=1

τĤkdg ,j
v̂midj

v̂mH
idj

ĤH
kdg ,j

+

bd∑
m=1
m6=n

τĤkdg ,g
v̂mkdg v̂

mH
kdg

ĤH
kdg ,g

+ ξdI (6.54)
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Q̂n
kug

=
G∑
j=1

Ku∑
i=1

bu∑
m=1

(j,i,m)6=(g,k,n)

τĤg,iuj
v̂miuj v̂

mH
iuj

ĤH
g,iuj

+
G∑
j=1

j 6=g

Kd∑
i=1

bd∑
m=1

τĤg,jv̂
m
idj

v̂mH
idj

ĤH
g,j + ξuI

(6.55)

• In Step 4 use ûnkug = (Q̂n
kug

)−1Ĥg,kug v̂
n
kug

and ûn
kdg

= (Q̂n
kdg

)−1Ĥkdg ,g
v̂n
kdg
∀ n, k, g.

• In Step 6 the backward interference-plus-noise covariance matrices
←−
Qn
kdg

and
←−
Q̂n
kug

are calculated using (6.56) and (6.57).

←−
Q̂n
kdg

=
G∑
j=1

Kd∑
i=1

bd∑
m=1

(j,i,m)6=(g,k,n)

τ
←−
Ĥg,idj

ûmidj
ûmH
idj

←−
ĤH

g,idj
+

G∑
j=1

j 6=g

Ku∑
i=1

bu∑
m=1

τ
←−
Ĥg,jû

m
idj

ûmH
idj

←−
ĤH

g,j

+
←−
ξ dI (6.56)

←−
Q̂n
kug

=
G∑
j=1

Kd∑
i=1

bd∑
m=1

τ
←−
Ĥkug ,i

d
j
ûmidj

ûmH
idj

←−
ĤH

kug ,i
d
j

+
G∑
j=1

j 6=g

Ku∑
i=1

bu∑
m=1

τ
←−
Ĥkug ,jû

m
iuj

ûmH
iuj

←−
ĤH

kug ,j

+
bu∑
m=1
m 6=n

τ
←−
Ĥkug ,gû

m
kug

ûmH
kug

←−
Ĥkug ,g +

←−
ξ uI (6.57)

• In Step 7 use v̂nkug = (
←−
Q̂n
kug

)−1
←−
Ĥkug ,gû

n
kug

and v̂n
kdg

= (
←−
Q̂n
kdg

)−1
←−
Ĥg,kdg

ûn
kdg
∀ n, k, g.

6.6 Simulation results

This section provides simulation results to validate the analyses presented so far.

Throughout all our simulations the noise variance, σ2, is fixed at 1 making the

transmit signal power equivalent to the SNR, and we assume that for imperfect

CSI scenarios SI cancellation is imperfect, i.e. Θ̄ = 0. Additionally, all results are

averaged in a Monte-Carlo fashion over a number of different channel realisations.

Treating all interference as noise, we calculate the achieved sum rate as

R̄ =
G∑
g=1

Kd∑
k=1

log2 det
(
I + (Xkdg

+ σ2I)−1PUH
kdg

Hkdg ,g
Vkdg

VH
kdg

HH
kdg ,g

Ukdg

)
+

G∑
g=1

Ku∑
k=1

log2 det
(
I + (Xkug + σ2I)−1PUH

kug
Hg,kugVkugV

H
kug

HH
g,kug

Ukug

)
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where

Xkug =
G∑
j=1

Ku∑
i=1

(j,i)6=(g,k)

PUH
kug

Hg,iuj
Viuj

VH
iuj

HH
g,iuj

Ukug +
G∑
j=1

j 6=g

Kd∑
i=1

PUH
kug

Hg,jVidj
VH
idj

HH
g,jUkug

+ Θ

Kd∑
i=1

PUH
kug

Υg,gVkdg
VH
kdg

ΥH
g,gUkug

and

Xkdg
=

G∑
j=1

Kd∑
i=1

(j,i) 6=(g,k)

PUH
kdg

Hkdg ,j
Vidj

VH
idj

HH
kdg ,j

Ukdg
+

G∑
j=1

Ku∑
i=1

PUH
kdg

Hkdg ,i
u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
Ukdg

.

Here, Xkdg
and Xkug represent the DL and UL interference covariance matrices

respectively. For imperfect CSI situations, in order to calculate R we replace V

with V̂ and U with Û, since the beamformers are calculated using the available

imperfect CSI. Note that calculating the rate in this manner results in a lower

bound on the actual achievable rate. In truth higher rates can be obtained via the

use of improved receivers, for example by considering the availability of perfect

CSI at the receiver to obtain more accurate beamformers, or by applying more

sophisticated receiver strategies such as maximum likelihood detectors.

6.6.1 Results for theoretically derived bounds

Here we verify the validity of the bounds derived in Theorems 6.1 and 6.2 using

the naive versions of the algorithms proposed in Section 6.4. We simulate a

system having G = 1, Kd = Ku = 2, bd = bu = 3, MB = 6 and Nd = Nu = 7

to obtain the results in Fig. 6.2 and Fig. 6.3. For this system IA is known

to be feasible [8] and the total achievable DoF under perfect CSI are given by

G(Kdbd+Kubu) = 12. For the same antenna configuration with a HD BS serving

all K = Kd + Ku users, where the number of antennas at the users, N , is given

by N = Nd = Nu, the total achievable DoF are given by min{MB, NK} = 6,

which is exactly half the DoF achievable when using an FD BS. We also simulate

another feasible system having G = 1, Kd = Ku = 4, bd = bu = 1, MB = 4 and

Nd = Nu = 3 to obtain the results in Fig. 6.4 and Fig. 6.5. For this scenario

having an FD BS allows us to achieve 8 DoF, double those obtained by the HD

counterpart.
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Figure 6.2: Average sum rates achieved by both FD-Max-SINR-Naive and FD-
MMSE-Naive algorithms under various imperfect CSI conditions for system with G = 1,
Kd = Ku = 2, bd = bu = 3, MB = 6 and Nd = Nu = 7.
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Figure 6.3: Average total, DL and UL rates achieved by both FD-Max-SINR-Naive
and FD-MMSE-Naive algorithms under various imperfect CSI conditions for system
with G = 1, Kd = Ku = 2, bd = bu = 3, MB = 6 and Nd = Nu = 7.

From Theorem 6.2 we know that full DoF are achievable for values of α ≥ 1.

This can be verified by focusing on the results for α = 1.75 and α = 1 in Fig.

6.2, both of which have the same slope as the perfect CSI curve. However, it can

be noticed that while the α = 1.75 result overlaps with the perfect CSI one at

high SNR, the α = 1 result runs parallel to it achieving lower sum rates overall.
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Such behaviour is expected from Theorem 6.1; for α > 1 there should be no sum

rate loss at high SNR, while at α = 1 the same theorem predicts a finite loss

equal to Ω. For the system under consideration with β = 10, Ω ≈ 81.5 bits per

channel use. From Fig. 6.2 it can be noticed that the perfect CSI result and the

one for α = 1 run parallel for SNR values of around 30 dB or higher, measuring

the gap at 65 dB we obtain 74.6 bits per channel use. This confirms the validity

of Theorem 6.1 and shows that the derived bound is not excessively loose.

Focusing on the results for α < 1, from Theorem 6.1 we expect the sum rate

loss to be unbounded. This is validated from the fact that the curves for α = 0.75

and α = 0 in Fig. 6.2 all diverge from the perfect CSI result, implying that the

sum rate loss grows with SNR. From a DoF perspective, in the range of α < 1

we expect a loss. For example for α = 0.75, Theorem 6.2 predicts that only

75% of the full DoF are achievable. This can be confirmed by comparing the

high SNR slopes for the perfect CSI curve, which achieves 12 DoF, and the one

for α = 0.75, which achieves 8 DoF. For α = 0 the same theorem predicts 0

DoF achievable, and indeed both α = 0 curves lie flat in the high SNR region.

Additionally comparing the result for α = 0, β = 0.01 and α = 0, β = 0.1, it can

be noticed that while the β value does not affect DoF behaviour, it still has a

significant impact on achievable rate. In fact the curve for the smallest β settles

at the highest rate, which is expected since this indicates the smallest error. Note

that for any fixed β, α = 0 represents the worst case scenario with the CSI error

being equal to β itself; this causes a huge amount of interference leakage, making

the network interference limited and eventually causing the sum rate to saturate.

For the α < 1 range, Theorem 6.2 not only shows that a fraction equal to α of

the full DoF are achievable, but it also indicates that this loss is distributed evenly

between the DL and UL users, i.e. achievable DL DOF are equal to αGKdbd and

achievable UL DOF are equal to αGKubu. This behaviour can be confirmed by

considering Fig. 6.3, which plots DL and UL rates separately. As can be seen for

the α = 1, β = 10 curves in total 12 DoF are achieved; due to the symmetry of

the simulated system where Ku = Kd and bd = bu, this amounts to 6 DoF each for

UL and DL. Focusing on the results for α = 0.75, β = 10 it can noticed that both

DL and UL results have a high SNR slope that corresponds to 4 DoF, while for

α = 0, β = 0.1 the slopes corresponds to 0 DoF. In both cases the achieved DoF

are equivalent to αGKdbd for the DL and αGKubu for the UL, which confirms

our expectations from Theorem 6.2.
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Figure 6.4: Average sum rates achieved by both FD-Max-SINR-Naive and FD-
MMSE-Naive algorithms under various imperfect CSI conditions for system with G = 1,
Kd = Ku = 4, bd = bu = 1, MB = 4 and Nd = Nu = 3.
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Figure 6.5: Average total, DL and UL rates achieved by both FD-Max-SINR-Naive
and FD-MMSE-Naive algorithms under various imperfect CSI conditions for system
with G = 1, Kd = Ku = 4, bd = bu = 1, MB = 4 and Nd = Nu = 3.

Similar rate and DoF behaviour can also be noticed for the system configu-

ration considered in Fig. 6.4. The result for α = 1.75 overlaps the perfect CSI

one for asymptotically high SNR, indicating full DoF are achieved as expected

from Theorem 6.2, and also confirming that there is no rate loss as expected from

Theorem 6.1. The latter theorem also predicts that for α = 1 the asymptotic
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sum rate loss is upper bounded by Ω ≈ 49.20 bits per channel use; measuring

the actual gap from Fig. 6.4 we obtain 47.9 bits per channel use, confirming that

the bound is not excessively loose. Additionally, for α ≤ 1 Theorem 6.2 predicts

achievable DoF of α(GKdbd + GKubu), as can be confirmed by the slopes of the

α = 0.75 and α = 0 results that obtain 6 DoF and 0 DoF respectively. The even

distribution of this DoF loss between UL and DL can be verified from Fig. 6.5.

6.6.2 Results for SKCE algorithms

We use a system having G = 1, Kd = Ku = 3, bd = bu = 2 and MB = Md =

Mu = 6, which is known to be feasible [8], to obtain Fig. 6.6 and Fig. 6.7. As

can be seen from both figures while the SKCE versions of the algorithms produce

results that are very close, the curves don’t overlap completely in the manner that

results for the naive versions do. Such behavior is expected since the Max-SINR

and MMSE equivalence established in Section 6.4.3 holds only for cases where η

is set to 0 for beamformer calculation.

As seen from Fig. 6.6 and Fig. 6.7, the SKCE versions of the algorithms

outperform the naive versions both in terms of sum rate and BER. For example

for α = 1, β = 10 at an SNR of 40 dB, MMSE-SKCE has a sum rate improvement

of 12.3 bits per channel use, while Max-SINR-SKCE has a gain of 12.1 bits per

channel. For the same α and β combination, MMMSE-SKCE achieves a BER of

1×10−2 at around 21.9 dB and Max-SINR-SKCE achieves it at 22.1 dB, while the

naive version requires approximately 23.6 dB to obtain the same performance.

Analogously, for α = 0.75, β = 10 we have a rate gain of 14.2 bits per channel use

for MMSE-SKCE and 14.1 bits per channel use for Max-SINR-SKCE. In term

of BER for α = 0.75, β = 10, MMSE-SKCE requires approximately 8.8 dB less

than the naive version to reach a BER level of 1× 10−2, whilst Max-SINR-SKCE

requires around 8.5 dB less than Max-SINR-Naive.

Considering the results for MMSE-Naive and Max-SINR-Naive with α = 0,

β = 0.1 in Fig. 6.6 and Fig. 6.7 it can be noticed that performance initially

improves in the region of −10 dB up to around 10 dB, and then starts to degrade

until it eventually settles to a steady state value for SNR ≥ 45 dB. For this

specification of α and β, the CSI error is quite significant and independent of

SNR. In the range of −10 db to 10 dB the power of the leakage is reasonably small,

since the power levels we are dealing with are low; this allows for performance
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Figure 6.6: Average sum rates achieved for system with G = 1, Kd = Ku = 3,
bd = bu = 2 and MB = Nd = Nu = 6 under various imperfect CSI scenarios.
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Figure 6.7: BER achieved for system with G = 1, Kd = Ku = 3, bd = bu = 2 and
MB = Nd = Nu = 6 under various imperfect CSI scenarios, using QPSK modulation.

improvement across the region. However, once SNR increases beyond 10 dB the

interference leakage starts to become more significant, resulting in an interference

limited system; this leads to a degradation in performance that eventually settles

to a steady state value. Such behavior is avoided by the SKCE version of the

algorithms, which also improve the overall performance. In fact for α = 0, β = 0.1

the SKCE algorithms settle at approximately 13.0 bits per channel use above
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their naive counterparts. Additionally, in terms of BER, MMSE-SKCE and Max-

SINR-SKCE both settle at around 2.3 × 10−2, while the naive versions settle at

1.3× 10−1.

6.6.3 Determining IA feasibility in multi-cell systems

Next we focus on how the proposed algorithms can be used to give an indication

of IA feasibility for FD multi-cell systems with HD users. For example, consider

a system having G = 2 and Kd = Ku = 2 with each user requiring 2 streams, i.e.

bd = bu = 2. We want to determine the antennas required at the BS, MB, and at

the users, N = Nd = Nu, to ensure that full DoF equal to G(Kdbd +Kubu) = 16

are achievable.

If all nodes have 16 antennas, i.e. {MB = N = 16}, the desired number of

streams can easily be delivered, however from an achievable DoF perspective this

leads to an unnecessarily large number of antennas; with IA we should achieve

the same DoF with less antennas. For a HD system, with MB BS antennas and

N user antennas, to deliver 2 streams each to K = 4 users per cell across two

cells (i.e achieve total DoF of 16), we need MB ≥ 2(4 + p) and N ≥ 2(5 − p)

where p ∈ {1, 2, 3, 4} [7]. With p = 1 this evaluates to MB ≥ 10 and N ≥ 8,

implying that {MB = 10, N = 8} is the minimum number of antennas required

to achieve 16 DoF in the HD system.

Moving on to our FD system, we use the proposed multi-cell algorithms from

Section 6.5 with perfect CSI to obtain the results in Fig. 6.8. As can be seen

results for {MB = N = 16}, {MB = 10, N = 8}, {MB = 10, N = 7} and

{MB = 9, N = 8} have the same slope and achieve full DoF. However for {MB =

9, N = 7}, {MB = 10, N = 6}, {MB = 9, N = 6}, {MB = 10, N = 5}, the

sum rate flattens out as SNR increases, indicating that IA is infeasible. Table 6.1

relates the feasibility of the various system configurations simulated in Fig. 6.8

with the properness of the system according to (6.49). As can be seen systems

marked as improper are always infeasible, however systems marked as proper are

not necessarily feasible. In fact for {MB = 9, N = 7} and {MB = 10, N = 6},
where the properness condition is met with equality, the resulting scenario is

proper but infeasible.

Moreover, it can be noticed that results for {MB = 10, N = 8}, {MB =

10, N = 7} and {MB = 9, N = 8} obtain very similar rates with a marginal
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Figure 6.8: Sum rate achieved using both FD-Max-SINR-Naive and FD-MMSE-Naive
under perfect CSI conditions for system with G = 2, Kd = Ku = 2, bd = bu = 2 and
varying antenna numbers.

Table 6.1: Properness and IA feasibility for systems simulated in Fig. 6.8.

MB N Properness of system IA Feasibility
16 16 Proper with Nv > Ne Feasible
10 8 Proper with Nv > Ne Feasible
10 7 Proper with Nv > Ne Feasible
9 8 Proper with Nv > Ne Feasible
9 7 Proper with Nv = Ne Infeasible
10 6 Proper with Nv = Ne Infeasible
9 6 Improper with Nv < Ne Infeasible
10 5 Improper with Nv < Ne Infeasible

increase for an increasing number of antennas. The rate for {MB = N = 16}
is the highest across the whole SNR range; however this rate advantage comes

from having a significantly larger number of antennas compared to the other

configurations where IA is also feasible.

6.6.4 Convergence results

Fig. 6.9 shows the convergence behaviour of the designed IA algorithms. For

each scenario plotted we consider an SNR of 10 dB and average the results over

200 channel realisations under perfect CSI. As can be seen for all scenarios the

proposed algorithms do indeed converge to a constant value.
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Figure 6.9: Sum rate convergence trend averaged over 200 channel realisations for
both Max-SINR and MMSE based algorithm designs at an SNR of 10 db, under perfect
CSI.

6.7 Conclusion

The combination of FD technology and IA provides a promising solution to tackle

the ever increasing resource demand problem in wireless networks. While the

performance benefits are clear under perfect CSI, it is important to consider

imperfect CSI scenarios to obtain a more practical characterisation of the system’s

behaviour. In this chapter, we considered the use of linear IA in a multi-cell

system with FD BSs and legacy HD users, and characterised the performance by

deriving a bound on the loss in sum rate and quantifying the DoF loss incurred due

to imperfect CSI. Results show that the rate loss is bounded by a derived value

when the error is exactly inversely proportional to SNR, it goes to zero when

the error scales with SNR to the power of a proper fraction, and is otherwise

unbounded. Additionally, depending on how the error scales with SNR, full DoF

are still achievable under imperfect CSI. We also proposed two novel IA algorithms

based on MMSE and Max-SINR, referred to as FD-MMSE-SKCE and FD-Max-

SINR-SKCE respectively, that are applicable to an FD multi-cell system with HD

users. Our designs exploit statistical knowledge with respect to the CSI error and

produce unitary beamformers. They are shown to be equivalent for cases where η

is set to 0, and improve performance over the naive designs both in terms of sum

rate and BER. Moreover, for the multi-cell case where the feasibility of linear IA
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is not yet explored in literature, they can help discern system feasibility.

Appendix 6.A Useful Lemmas

Lemma 6.1. EΥ{|ûn Hkdg Υkdg ,j
v̂m
idj
|2} and EΥ{|ûn Hkdg Υkdg ,i

u
j
v̂miuj |

2} are both equal to

η/(1 + η) ∀ k, g, n, i, j,m.

Proof. Let us first focus on EΥ{|ûn Hkdg Υkdg ,j
v̂m
idj
|2}. From the definition of the error

model in Section 6.2.3 we know that Ĥ and Υ are independent of each other. Since

ûn
kdg

and v̂m
idj

are calculated on Ĥ, this makes both beamformers automatically

independent of Υ. Additionally, Υ is Gaussian and bi-unitarily invariant [74],

thus for unitary beamformers the product ûn H
kdg

Υkdg ,j
v̂m
idj
∀ k, g, n, i, j,m is a

Gaussian random variable with zero mean and variance η/(1 + η). Finally, using

central absolute moments we can evaluate EΥ{|ûn Hkdg Υkdg ,j
v̂m
idj
|2} which is equal to

η/(1 + η). A similar argument based on ûn
kdg

and v̂miuj can be used to prove that

EΥ{|ûn Hkdg Υkdg ,i
u
j
v̂miuj |

2} is equal to η/(1 + η).

Lemma 6.2. EĤ,Υ{Ĥg,iuv̂
m
iuv̂

mH
iu ΥH

g,iu} = EĤ,Υ{Υg,iuv̂
m
iuv̂

mH
iu ĤH

g,iu} = 0 ∀ m, i.

Proof. Beamforming elements are calculated using Ĥ, thus they are automatically

independent of Υ from the definition of the imperfect CSI model in Section

6.2.3.

Lemma 6.3. [116] For matrix A ∈ CM×M and vector b ∈ CM×1

(A− bbH)−1b =
A−1b

1− bHA−1b
.
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Chapter 7

Conclusion

7.1 Summary of contributions

The demand for mobile wireless network resources is constantly on the rise, push-

ing for new communication technologies that are able to support unprecedented

rates. In this thesis we have addressed the issue by studying interference manage-

ment solutions in order to exploit the available RF spectrum more efficiently un-

der relaxed CSI conditions. The relaxed CSI contexts considered range from the

availability of only global topological information at the transmitters in Chapter

3, to the availability of global imperfect CSI in Chapters 4, 5 and 6. Addition-

ally, while the studies in Chapters 3 and 4 focused on current HD technology, the

latter half of the thesis in Chapters 5 and 6 considered FD capability at the BSs

as a way to further boost spectral efficiency.

Starting with the TIM framework, in Chapter 3 we studied the DoF of a

two-cell two-user-per-cell IBC with alternating inter-cell connectivity and global

topological information. We derived DoF outerbounds for both the no spatial

multiplexing case (SISO) and the case where spatial multiplexing can be ap-

plied (MISO with local CSIT and MIMO without local CSIT). After proposing

novel transmission schemes based on joint coding across states, we also obtained

achievable DoF expressions for both scenarios. The derived bounds are shown

to achievable under certain conditions, and for the best case scenario provide a

two fold increase in achievable DoF. Results from this chapter clearly show that

significant DoF gains can be obtained when transmitters are provided with global

topological information, indicating that even such a minimal level of global CSIT
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is still highly beneficial.

Moving on to the availability of global imperfect CSI, we considered the ap-

plication of linear IA in multi-user multi-cell systems, both for a HD downlink

scenario in Chapter 4, and also for systems where FD BSs communicate with

DL and UL users simultaneously in Chapter 6. Our goal in these chapters was

to obtain a more practical understanding of the impact of imperfect CSI on IA

performance. The CSI error model used allowed us to treat the error either as a

function of the SNR (ρ) or as independent of it, by representing the error vari-

ance as η = βρ−α. Based on this error model, we derived outer bounds on the

asymptotic mean loss in sum rate and characterised the DoF loss due to CSI mis-

match for the HD system in Chapter 4 and for the FD one in Chapter 6. Results

show that the SNR exponent is highly important in determining the performance

loss behaviour for both the HD and the FD systems. When the error is exactly

inversely proportional to SNR, the rate loss is upper bounded by a derived value

and no DoF losses are incurred. Additionally, both metrics go to zero when the

error scales with SNR to the power of a proper fraction. However, when they scale

to the power of an improper fraction, the rate loss is unbounded and achievable

DoF go to zero.

Moreover, in Chapters 4 and 6 we also designed a number of linear IA algo-

rithms applicable to the corresponding system mode. These take into account sta-

tistical knowledge of the CSI error for added robustness and provide performance

improvements over their naive counterparts both in terms of sum rate and BER,

without incurring any additional computational costs. For the HD system we

proposed a novel version of the Max-SINR algorithm, called Max-SINR-SKCE,

in Chapter 4. For the FD case we proposed two algorithms in Chapter 6, an

MMSE based one called FD-MMSE-SKCE, and a Max-SINR based one called

FD-Max-SINR-SKCE. These FD algorithms do not only provide numerical val-

ues for the beamformers, but can be used in conjunction with the derived proper

condition to discern IA feasibility for different system configurations, since such

theoretical knowledge is not yet available in literature so far.

When it comes to FD systems, we also considered filter design for WSR max-

imisation in multi-user multi-cell MIMO networks with FD BSs and legacy HD

users in Chapter 5. Since WSR problems are known to be non-convex, we estab-

lished a relationship between rate and MSE for both DL and UL communication,

and proposed WMMSE alternating optimisation algorithms that are proven to
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converge. These problems are solved both for perfect CSI, and imperfect CSI

under two types of error models. Furthermore, we proposed an additional design

that maximises the total DL rate subject to a per UL user target rate, suitable

for situations where it is important to ensure that each UL user is served in every

time slot. Simulation results for small cell scenarios show that replacing standard

HD BSs with FD ones within this context can indeed increase achievable sum

rate for low to intermediate transmitter and/or distortion levels, with gains of up

to 1.92 for the best case scenario. They also confirm that these advantages are

still present under imperfect CSI conditions.

Therefore, across Chapters 3 to 6 of this thesis we have contributed to further

the understanding of how the RF spectrum can be used more efficiently, and we

have shown that this is indeed possible, both via the exploitation of any available

CSI (even if it is of limited quality), and also via the introduction of FD enabled

nodes.

7.2 Future work

The work presented in this thesis opens a number of interesting areas for future

research, some of the more promising directions are listed below.

7.2.1 Topological interference management

• The TIM study in Chapter 3 shows that even such a limited amount of

global CSIT can result in significant DoF gains. However, our work is re-

stricted to the two-cell two-user-per-cell scenario, and for the MIMO setting

is only applicable to M × 2 and 2 × N configurations. Analysing a more

general G-cell K-user-per-cell M ×N system would be of great interest due

to its wider applicability. Such studies can be carried out not only within

the alternating connectivity setting considered in Chapter 3, but also for

other types of partially connected networks, including ones that use FD

nodes.

• The TIM problem can be expanded to cater for cases where the topological

knowledge is not uniform across all nodes, for example: (a) partial topo-

logical information - where the status of some links is unknown, and (b)
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mismatched topological information - where different nodes have different

knowledge with respect to the network’s structure.

• The TIM framework requires the use of a pre-established noise floor in order

to determine whether a link is classified as weak or strong. If the chosen

threshold value is too low, then the network can mistakenly be classified

as fully connected. However, if it is too high then strong interfering links

are classified as noise, affecting the operating SNR significantly. Therefore,

looking into ways on how to determine the optimal value for the noise

floor is an important research direction for the practical realisation of TIM

solutions.

7.2.2 Interference alignment

• The IA studies in Chapters 4 and 6 design IA beamformers that are appli-

cable to perfect and imperfect CSI scenarios; however, it would also be of

interest to study novel transceiver design methods that can achieve IA when

only topological information is available at the transmitters, i.e. topological

interference alignment (TIA) solutions [117]. To implement TIA, instead

of satisfying the standard IA conditions that take into account the actual

channel value, in addition to the precoder and the receiver, we need to ob-

serve a new set of conditions that are independent of the channel itself. For

example for the IC, the TIA the feasibility conditions are expressed as

UiVj = 0 ∀ i 6= j

|UiVi| > 0 ∀ i . (7.1)

This is contrast to the standard IA feasibility conditions for the IC given

by

UiHijVj = 0 ∀ i 6= j

|UiHiiVi| > 0 ∀ i .

From (7.1), it can be noticed that TIA is only applicable to cases where the

channel Hij can be expressed as hijI. For example this can occur in a slow

fading scenario with time extensions, resulting in an asymptotic IA scheme.
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• The IA study in Chapter 6 proposes algorithms that are applicable to multi-

cell networks with FD BSs and HD users, and also derives the proper condi-

tion for multi-cell systems. While these provide an insight into the possible

feasibility of various system configurations, they do not provide a com-

plete set of expressions that can be directly used to determine whether any

given system is feasible or not. Thus, a theoretical study that looks into

the derivation of all the necessary and sufficient conditions to achieve IA

for the system under consideration would be highly complementary to the

study in Chapter 6.

7.2.3 FD enabled networks

• The WSR problems in Chapter 5 consider per node sum power constraints

for transmission, however, it also possible to consider per antenna power

constraints. Such constraints are more practical since they take into account

the possibility that the transmitter may be unable to allocate power arbi-

trarily amongst its own antennas. Relevant scenarios include distributed

MIMO systems where antennas are not co-located, and also non-distributed

ones due to limitations in the individual RF chains. Considering the perfect

CSI WSR problem with sum power constraints in (5.15), we can adapt it

as follows

max
V

G∑
g=1

Kd
g∑

k=1

µkdgRkdg
+

G∑
g=1

Ku
g∑

k=1

µkugRkug

s.t. diag(VkugV
H
kug

) ≤ Pkug ∀ k, g
Kd
g∑

k=1

diag(Vkdg
VH
kdg

) ≤ Pg ∀ g . (7.2)

to consider per antenna power constraints. Here, Pkug is an all zero matrix

except for elements along the diagonal which consist of P
[1]
kug
, P

[2]
kug
, . . . , P

[MU ]
kug

consecutively, with P
[i]
kug

being the maximum transmit power at the ith an-

tenna of user kug , and Pg is an all zero matrix except for elements along the

diagonal which consist of P
[1]
g , P

[2]
g , . . . , P

[MB ]
g consecutively, with P

[i]
g being

the maximum transmit power at the ith antenna of BS g. The remaining

variables are defined as in (5.15). Similar per antenna power constraint

adjustments can be made for all of the problems considered in Chapter 5.
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• For the DL rate maximisation problem with a per UL user target rate, we

only consider perfect CSI in Section 5.6, however this problem can also be

solved for imperfect CSI scenarios. Considering the norm-bounded error

model defined in (5.5), we need to solve

max
V

min
∆

G∑
g=1

Kd
g∑

k=1

µkdgRkdg

s.t. Rkug ≥ RUL ∀ k, g

Tr(VkugV
H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g

{∆kdg ,i
u
j

: ‖∆kdg ,i
u
j
‖F ≤ εkdg ,iuj } ∀ k, g, i, j

{∆kdg ,j
: ‖∆kdg ,j

‖F ≤ εkdg ,j} ∀ k, g, j

{∆g,iuj
: ‖∆g,iuj

‖F ≤ εg,iuj } ∀ g, i, j

{∆g,j : ‖∆g,j‖F ≤ εg,j} ∀ g, j (7.3)

where variable definitions follow those originally specified for (5.25). For a

stochastic error model as defined in (5.6), we need to consider

max
V

G∑
g=1

Kd
g∑

k=1

µkdgR
S
kdg

s.t. RS
kug
≥ RUL ∀ k, g

Tr(VkugV
H
kug

) ≤ PU ∀ k, g
Kd
g∑

k=1

Tr(Vkdg
VH
kdg

) ≤ PB ∀ g (7.4)

where the variable definitions follow those specified for (5.32).

• The FD scenario analysed in this thesis (Chapters 5 and 6) focuses on a

system with FD BSs and legacy HD users. This setting is chosen since

it is more foreseeably realisable in the near future; however, once the cur-

rent HD infrastructure is replaced by FD enabled devices, FD technology

is expected to proliferate to user devices as well. Therefore, studying inter-

ference management solutions for multi-cell multi-user networks equipped
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with FD nodes at both BS and user ends is of great interest for the more

distant future. Work in this direction can focus both on a variety of op-

timisation problems, and also the application and theory of IA and TIM

techniques.

7.2.4 Relaxed CSI conditions

With respect to relaxed CSI conditions, this thesis has considered either the

availability of global topological information (Chapter 3) or the availability of

imperfect CSI (Chapters 4, 5 and 6); however, CSI may have a number of addi-

tional impairments. Some issues considered in BC and IC literature include:

• delayed CSI - where at time (t) transmitters only have perfect knowledge

of the CSI up to time (t− 1) [16];

• mixed delayed and current CSI - where at time (t) transmitters have perfect

knowledge of the CSI up to time (t − 1) and also imperfect knowledge of

the CSI at time (t) [118];

• partial CSI - where transmitters have access to only a subset of the global

CSI [19], this may either be different for each transmitter or the same across

all.

The aforementioned CSI contexts are as of yet relatively unexplored for the

IBC/IMAC and FD cellular systems. Since such network models provide a bet-

ter representation of both present day (IBC/IMAC) and future (FD enabled

networks) practical communication systems, extending the study of such relaxed

CSI settings to these more complex system models is highly relevant.
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