4 research outputs found

    Implementing SDN into Computer Network Lessons

    Get PDF
    This paper describes the issue of introducing SDN to students of computer networks. The most important theoretical knowledge is summarized in the form of key points, students should know about. Practical experience is presented in the area of deployment of SDN in data centers with aim on connecting the existing knowledge from traditional computer networks. This connection is explained on problems of traditional networks in data centers and mitigation of these problems by using SDN. Learned information is then extended by presenting a practical demo application in Mininet environment. The application shows possible usage of SDN for making a data center more power-efficient. This application is put in context by the theory of power consumption of data center devices which can be significantly reduced if SDN are used. Purpose of the application is to motivate students to continue in research of SDN area

    Next generation control of transport networks

    Get PDF
    It is widely understood by telecom operators and industry analysts that bandwidth demand is increasing dramatically, year on year, with typical growth figures of 50% for Internet-based traffic [5]. This trend means that the consumers will have both a wide variety of devices attaching to their networks and a range of high bandwidth service requirements. The corresponding impact is the effect on the traffic engineered network (often referred to as the “transport network”) to ensure that the current rate of growth of network traffic is supported and meets predicted future demands. As traffic demands increase and newer services continuously arise, novel network elements are needed to provide more flexibility, scalability, resilience, and adaptability to today’s transport network. The transport network provides transparent traffic engineered communication of user, application, and device traffic between attached clients (software and hardware) and establishing and maintaining point-to-point or point-to-multipoint connections. The research documented in this thesis was based on three initial research questions posed while performing research at British Telecom research labs and investigating control of transport networks of future transport networks: 1. How can we meet Internet bandwidth growth yet minimise network costs? 2. Which enabling network technologies might be leveraged to control network layers and functions cooperatively, instead of separated network layer and technology control? 3. Is it possible to utilise both centralised and distributed control mechanisms for automation and traffic optimisation? This thesis aims to provide the classification, motivation, invention, and evolution of a next generation control framework for transport networks, and special consideration of delivering broadcast video traffic to UK subscribers. The document outlines pertinent telecoms technology and current art, how requirements I gathered, and research I conducted, and by which the transport control framework functional components are identified and selected, and by which method the architecture was implemented and applied to key research projects requiring next generation control capabilities, both at British Telecom and the wider research community. Finally, in the closing chapters, the thesis outlines the next steps for ongoing research and development of the transport network framework and key areas for further study

    Doctor of Philosophy

    Get PDF
    dissertationThe next generation mobile network (i.e., 5G network) is expected to host emerging use cases that have a wide range of requirements; from Internet of Things (IoT) devices that prefer low-overhead and scalable network to remote machine operation or remote healthcare services that require reliable end-to-end communications. Improving scalability and reliability is among the most important challenges of designing the next generation mobile architecture. The current (4G) mobile core network heavily relies on hardware-based proprietary components. The core networks are expensive and therefore are available in limited locations in the country. This leads to a high end-to-end latency due to the long latency between base stations and the mobile core, and limitations in having innovations and an evolvable network. Moreover, at the protocol level the current mobile network architecture was designed for a limited number of smart-phones streaming a large amount of high quality traffic but not a massive number of low-capability devices sending small and sporadic traffic. This results in high-overhead control and data planes in the mobile core network that are not suitable for a massive number of future Internet-of-Things (IoT) devices. In terms of reliability, network operators already deployed multiple monitoring sys- tems to detect service disruptions and fix problems when they occur. However, detecting all service disruptions is challenging. First, there is a complex relationship between the network status and user-perceived service experience. Second, service disruptions could happen because of reasons that are beyond the network itself. With technology advancements in Software-defined Network (SDN) and Network Func- tion Virtualization (NFV), the next generation mobile network is expected to be NFV-based and deployed on NFV platforms. However, in contrast to telecom-grade hardware with built-in redundancy, commodity off-the-shell (COTS) hardware in NFV platforms often can't be comparable in term of reliability. Availability of Telecom-grade mobile core network hardwares is typically 99.999% (i.e., "five-9s" availability) while most NFV platforms only guarantee "three-9s" availability - orders of magnitude less reliable. Therefore, an NFV-based mobile core network needs extra mechanisms to guarantee its availability. This Ph.D. dissertation focuses on using SDN/NFV, data analytics and distributed system techniques to enhance scalability and reliability of the next generation mobile core network. The dissertation makes the following contributions. First, it presents SMORE, a practical offloading architecture that reduces end-to-end latency and enables new functionalities in mobile networks. It then presents SIMECA, a light-weight and scalable mobile core network designed for a massive number of future IoT devices. Second, it presents ABSENCE, a passive service monitoring system using customer usage and data analytics to detect silent failures in an operational mobile network. Lastly, it presents ECHO, a distributed mobile core network architecture to improve availability of NFV-based mobile core network in public clouds

    Managing the Transition from SNMP to NETCONF: Comparing Dual-Stack and Protocol Gateway Hybrid Approaches

    Get PDF
    As industries become increasingly automated and stressed to seek business advantages, they often have operational constraints that make modernization and security more challenging. Constraints exist such as low operating budgets, long operational lifetimes and infeasible network/device upgrade/modification paths. In order to bypass these constraints with minimal risk of disruption and perform ``no harm'', network administrators have come to rely on using dual-stack approaches, which allow legacy protocols to co-exist with modern ones. For example, if SNMP is required for managing legacy devices, and a newer protocol (NETCONF) is required for modern devices, then administrators simply modify firewall Access Control Lists (ACLs) to allow passage of both protocols. In today's networks, firewalls are ubiquitous, relatively inexpensive, and able to support multiple protocols (hence dual-stack) while providing network security. While investigating securing legacy devices in heterogeneous networks, it was determined that dual-stack firewall approaches do not provide adequate protection beyond layer three filtering of the IP stack. Therefore, the NETCONF/SNMP Protocol Gateway hybrid (NSPG) was developed as an alternative in environments where security is necessary, but legacy devices are infeasible to upgrade, replace, and modify. The NSPG allows network administrators to utilize only a single modern protocol (NETCONF) instead of both NETCONF and SNMP, and enforce additional security controls without modifying existing deployments. It has been demonstrated that legacy devices can be securely managed in a protocol-agnostic manner using low-cost commodity hardware (e.g., the RaspberryPi platform) with administrator-derived XML-based configuration policies
    corecore