6 research outputs found

    Of Models, Rationales and Prototypes: Studying Designer Needs in an Airborne Maritime Surveillance Drawing Tool to Support Audio Communication

    No full text
    International audienceIn this work, we seek to understand the needs of interaction designers involved in industrial system engineering processes. While current research offers a set of methods and tools for them, we believe that more empirical user studies focusing on designers are needed, in particular to support how model-based activity analysis may inform their decisions. Our designers’ need analysis is conducted through participatory design and contextual inquiry, and applied through a real use-case project: a distributed tactile tool for airborne maritime surveillance. Thanks to this study, we report on our insights on the usability problems and needs related in particular to scenario-based modeling, model-based design rationales and design-based model refinement

    QualiHM: A requirement engineering toolkit for efficient user interface design

    Full text link

    Designing a Requirement Mining System

    Get PDF
    The success of information systems (IS) development strongly depends on the accuracy of the requirements gathered from users and other stakeholders. When developing a new IS, about 80 percent of these requirements are recorded in informal requirements documents (e.g., interview transcripts or discussion forums) using natural language. However, processing the resultant natural language requirements resources is inherently complex and often error prone due to ambiguity, inconsistency, and incompleteness. Thus, even highly qualified requirements engineers often struggle to process large amounts of natural language requirements resources efficiently and effectively. In this paper, we propose a design theory for requirement mining systems (RMSs) based on two design principles: (1) semi-automatic requirement mining and (2) usage of imported and retrieved knowledge. As part of an extensive design project, which led to these principles, we also implemented a prototype based on this design theory (REMINER). It supports requirements engineers in identifying and classifying requirements documented in natural language and allows us to evaluate the artifact’s viability and the conceptual soundness of our design. The results of our evaluation suggest that an RMS based on our proposed design principles can significantly improve recall while maintaining precision levels

    A design theory for requirements mining systems

    Full text link
    Software requirements are often communicated in unstructured text documents, which need to be analyzed in order to identify and classify individual needs. This process is referred to as requirements mining in the context of this thesis. It is known to be time-consuming and error-prone when performed manually by a requirements engineer. Thus, there is a demand to support requirements mining through information technology. However, little research has been conducted to conceptualize theoretically grounded requirements mining systems and abstract the necessary design knowledge in a theory. Furthermore, existing works scarcely investigate the effect of these artifacts on requirements engineers’ productivity. Consequently in this thesis, the following research question is addressed: How can a system be designed which aims at improving requirements mining productivity over manual discovery? Following a Design Science approach, a design theory is derived consisting of design requirements, design principles and design features. Design requirements are identified based on general knowledge and kernel theories. Subsequently they are related to design principles which are finally mapped to design features of an artifact. The artifact is conceptualized in two design cycles, each resulting in a distinct artifact version and its evaluation. In the first design cycle a simulation is conducted to investigate the interplay of the preliminary design principles. In the second design cycle, the effects of the final design principles on requirements mining productivity are measured in an experiment. The thesis contributes to the design theory body of knowledge by providing a design theory for requirements mining systems. The theory is a contribution to the information systems literature because requirements mining systems represent an important class of design situations that have not been adequately described yet by existing works. From a practical point of view, the study addresses the need of requirements engineers to support their work by information technology and provides vendors of requirements engineering software packages guidelines to improve their products

    Interface Model Elicitation from Textual Scenarios

    Get PDF
    During the stage of system requirements gathering, model elicitation is aimed at identifying in textual scenarios model elements that are relevant for building a first version of models that will be further exploited in a model-driven engineering method. When multiple elements should be identified from multiple interrelated conceptual models, the complexity increases. Three method levels are successively examined to conduct model elicitation from textual scenarios for the purpose of conducting model-driven engineering of user interfaces: manual classification, dictionary-based classification, and nearly natural language understanding based on semantic tagging and chunk extraction. A model elicitation tool implementing these three levels is described and exemplified on a real-world case study for designing user interfaces to workflow information systems. The model elicitation process discussed in the case study involves several models: user, task, domain, organization, resources, and job
    corecore