
UCL
Institut d’administration et de gestionUniversité catholique de Louvain

 RESEARCH REPORT

 Academic Year 2004-2005

Interface Model Elicitation from
Textual Scenarios

Christophe Lemaigre, Josefina Guerrero García, and Jean Vanderdonckt

Belgian Laboratory of Computer-Human Interaction (BCHI)
Louvain School of Management (LSM), Université catholique de Louvain (UCL)
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
E-mail: {christophe.lemaigre@, josefina.guerrero@student,
jean.vanderdonckt@}uclouvain.be

Abstract: During the stage of system requirements gathering, model elicitation is
aimed at identifying in textual scenarios model elements that are relevant for
building a first version of models that will be further exploited in a model-driven
engineering method. When multiple elements should be identified from multiple
interrelated conceptual models, the complexity increases. Three method levels are
successively examined to conduct model elicitation from textual scenarios for the
purpose of conducting model-driven engineering of user interfaces: manual classi-
fication, dictionary-based classification, and nearly natural language understanding
based on semantic tagging and chunk extraction. A model elicitation tool imple-
menting these three levels is described and exemplified on a real-world case study
for designing user interfaces to workflow information systems. The model elicita-
tion process discussed in the case study involves several models: user, task, do-
main, organization, resources, and job.

Keywords: Model-driven engineering, requirements gathering, user interface de-
velopment method, user task elicitation, workflow information systems.

1. Introduction

In recent years, there has been a lot of interest for scenario-based design (Rosson,
1997) and other forms of User-Centred Design (UCD) (Paterno, 1999) to initiate a
development life cycle of User Interfaces (UI). Textual scenarios found in sce-
nario-based design consist of informal but structured narrative descriptions of in-
teraction sequences between the users and the interactive system, whether this sys-
tem exists already or is simply envisioned. Scenarios have been proved (Rosson,
1997) to be a valuable tool to elicit, improve, and validate UI requirements.

 Christophe Lemaigre, Josefina Guerrero García, and Jean Vanderdonckt

On the other hand, descriptions of the UI domain itself and the UI requirements
are also expressed using conceptual models depicting either static (Tam, 1998) or
dynamic (Fliedl, 2003) aspects of the interactive system. The models resulting
from this process are supposed to raise the level of abstraction with respect to the
implementation (Tam, 1998). The models are frequently expressed in a formal
way so as to enable model reasoning. The process which ultimately leads to these
descriptions, whether they are informal (such as scenarios) or (semi-)formal (such
as models) is Requirement Engineering (RE) (Haumer, 1998).

Scenarios have the advantage to describe UI requirements from captured or
imagined user interactions through concrete examples [8] of the user carrying out
her task. This form is much more representative and evocative for an end user to
validate UI requirements than models that are mainly used by software engineers.
Models, e.g., domain models, user models, are expressed in a way that maximizes
desirable properties such as completeness, consistency, and correctness (Vander-
donckt, 2005). But their expression is significantly less understandable for end us-
ers who are often in trouble of validating their UI requirements when they are con-
fronted to models. Consequently, both types of descriptions, scenarios and models,
are needed interchangeably in order to conduct a proper RE process that will ef-
fectively and efficiently feed the rest of the UI development life cycle. We intro-
duce model elicitation as the general activity of transforming textual scenarios into
models that are pertaining to the UI development.

The remainder of this paper is structured as follows: some related work is re-
ported in Section 2. Three levels of model elicitation are defined in Section 3 and
consistently described and discussed in the light of a model elicitation tool imple-
menting these techniques. Section 4 will sum up the benefits and the shortcomings
of the model elicitation techniques investigated so far and will present some future
avenues for this work.

2. Related Work

Model elicitation consists of transforming scenarios into models so that they are
usable in the rest of the development life cycle (Hemmecke, 2006), for instance by
conducting a model-driven engineering method (Brasser, 2002; Vanderdonckt,
2005). Model verbalization (Jarrar, 2006) is the inverse process: it consists of
transforming model elements into textual scenarios while preserving some quality
properties (e.g., concision, consistency). Any model can be considered for this
purpose: models found in HCI (e.g., task, user) or in RE (e.g., domain, organiza-
tion). In (Bono, 1992), the system restates queries expressed on a domain model
(here, an entity-relationship attribute model) into natural language expression.

As such, model elicitation is not new in Software Engineering (SE) (Fliedl,
2004, 2005b), but at least five significant works have been conducted in Human-
Computer Interaction (HCI):

Interface Model Elicitation from Textual Scenarios

1. U-Tel (Tam, 1998) is a user-task elicitation software that enables designers to
allocate elements of a textual scenarios into elements of three models: actions
names (relevant to the task model), user classes (relevant to a user model), and
objects names (relevant to a domain model). This allocation can be conducted
manually or automatically.

2. ConcurTaskTrees Editor (Paterno, 1999) contains a module for task elicitation
where designers copy task names found in a textual scenario and paste them in a
graphical editor for representing a task model. Designers can then refine the task
model, e.g., by specifying a task type, temporal relationships between tasks.

3. Similarly, T2T (Paris, 2002) is a tool for automatic acquisition of task elements
(names and relationships) from textual documents such as manuals. Another
version exists for the same purpose from a domain model (here, an object-
oriented diagram) (Lu,1998) and for multiple heterogeneous sources (Lu, 2002).

4. Garland et al. (2001) present general software for gathering UI requirements
from examples containing various elements that are relevant for different mod-
els, but models are not constructed per se.

5. Brasser & vander Linden (Brasser, 2002) developed a task elicitation system for
the Isolde task modeling environment: based on a 25-state Augmented Transi-
tion Network (ATN) derived from written narratives, this system extracts two
kinds of information: domain information (i.e., actors and objects) and proce-
dural information (e.g., “when the user saves a file,…”)
From these works, we observed the following shortcomings: some do not pro-

duce a genuine model at the end, for instance (Garland, 2001), some other produce
model elements that are relevant to HCI, for instance (Lu, 1998; Paris, 2002), but
only some model elements are derived (e.g., task names) or they mostly focus on
task models whereas several models are typically found in HCI, not only the task
model. When other models are considered, e.g., the user and the domain (Lu,
1998), only the names of the classes are captured. In this paper, we would like to
capture all elements (i.e., classes, attributes, and relationships) of many interre-
lated models to inform the development. It is however fundamental that the task
model is considered to initiate a full model-driven engineering life cycle (Clerckx,
2006; Paterno, 1999). Dynamo-AID (Clerckx, 2006) provides a distribution man-
ager which distributes the sub-tasks of a task model to various computing plat-
forms in the same physical environment, thus fostering a task-based approach for
distributing UIs across locations of the physical environment. In the next section,
an elicitation of UI model elements is provided according to three levels.

The three levels of model elicitation presented in this paper, i.e., manual classi-
fication, dictionary-base classification, and nearly-natural language classification,
are presented in this order only for structuring purposes. This does not mean that
the elicitation process should be conducted in that order. Indeed, one may desire
eliciting model elements in a mostly automated way, then refine the classification
manually. Or one may prefer first designating the most important model elements
if they do not fit well from the identified ontology and then apply more automated
techniques in order to propagate these manual classifications

 Christophe Lemaigre, Josefina Guerrero García, and Jean Vanderdonckt

3. User Interface Model Elements Elicitation

In order to effectively support UI model elicitation, the model elements that are
typically involved in the UI development life cycle should be considered. Figure 1
reproduces a simplified version of the ontology of these model elements that will
be used throughout this paper: only classes and relationships are depicted here for
concision, not their attributes and methods. The complete version of this ontology
along with its definition and justification is detailed in (Guerrero, 2008).

We choose this ontology because it characterises the concepts used in the de-
velopment life cycle of UIs for workflow systems, which are assumed to have the
one of the largest coverage possible. Any other similar ontology could be used in-
stead. In this ontology, tasks are organized into processes which are in turn or-
dered in a workflow. A job consists of a logical grouping of tasks, as we know
them (Paterno, 1999). Jobs are usually assigned to organizational units (e.g., a de-
partment, a service) independently of the workers who are responsible to conduct
these jobs. These workers are characterized thanks to the notion of user stereotype.
But a same task could require other types of resources such as material resources
(e.g., hardware, network) or immaterial resources (e.g., electricity, power). A task
may manipulate objects that can invoke methods in order to ensure their role.

Organizational Unit Job Task1..* 1..* 1..* 1..*

Task Resource

User Stereotype Material Immaterial

Process Workflow
1..*
1..*

*0..1 0..1 * 0..1 *

1..*

1..*

1..* 1..*

isOrganizedInto ► isOrderedIn ►

1..* 1..*

Object Method

Manipulates ►

Invokes ►

*

* * *

Organizational Unit Job Task1..* 1..* 1..* 1..*

Task Resource

User Stereotype Material Immaterial

Process Workflow
1..*
1..*

*0..1 0..1 * 0..1 *

1..*

1..*

1..* 1..*

isOrganizedInto ► isOrderedIn ►

1..* 1..*

Object Method

Manipulates ►

Invokes ►

*

* * *

Figure 1. Simplified ontology of the model elements (Guerrero, 2008).

Figure 1 represents the conceptual coverage of model elements that will be sub-
ject to model elicitation techniques. This coverage is therefore larger than merely
a task, an object, a user as observed today in the state of the art. In the next sub-
sections, three progressively more sophisticated elicitation techniques based on
this ontology will be described, motivated, and exemplified on a running textual
scenario. This scenario explains the workflow for obtaining administrative docu-
ments in a town hall. The ordering of the three classification levels in the text is
just a way to structure the article. Not an order the program user would comply in
order to get a result.

Interface Model Elicitation from Textual Scenarios

3.1 Model Elicitation Level 1: Manual Classification

The UI designer is probably the most reliable person to identify in the textual sce-
nario fragments that need to be elicited into model elements. Therefore, manual
classification of model elements remains of high importance for flexibility, reli-
ability, and speed. In a manual classification, any name that represents an instance
of a model element belonging to the ontology can be manually selected, high-
lighted, and assigned to the corresponding concept, such as a task, a job, an organ-
izational unit, etc. Consequently, all occurrences of this instance are automatically
identified in the scenario and highlighted in the colour assigned to this concept.
For instance, grey for an object, yellow for a user, red for an organizational unit,
blue for a task. This colour coding scheme can be parameterized according to the
designer’s preferences.

Elicitation of a class. Any class belonging to the ontology can be manually
classified according to the aforementioned technique. For example, “statement” is
considered as an object in Figure 2 and is consequently assigned to the corre-
sponding hierarchy in the related tab. Since a model element may appear in the
scenario in multiple alternative forms (e.g., a plural form, a synonym), an alias
mechanism enables designers to defines names that are considered equivalent to a
previously defined one. For example, “statements” and “stated text” could be con-
sidered aliases of “statement”.

Figure 2. Elicitation of a class (here, an object) in manual classification.

In UCD, tasks, users, and objects are often considered as elements of primary

interest. Therefore, it is likely that a designer will initiate the classification by
identifying firstly tasks and related objects for instance. An object or a task could
be of course elicited separately. In order to speed up this activity, the designer may
directly associate a task to its related object when selected according to the same
mechanism. All occurrences are highlighted similarly. Figure 3 illustrates this
situation: a “birth statement” object is selected and a task “issuing” is attached to

 Christophe Lemaigre, Josefina Guerrero García, and Jean Vanderdonckt

this object in order to create a complete task “issuing a birth statement”. A special
support exists for tasks: at any time, the designer may specify for a task a task type
which belongs to one of the three following task types (Figure 4):
• A predefined task type: a taxonomy of task types (e.g., transmit, communicate,

create, delete, duplicate) is made accessible for the designer to pick a name
from, while a definition for each task type is displayed. This taxonomy consists
of 15 basic task types that are decomposed into +/- 40 synonyms or sub-task
types as used in the UsiXML User Interface Description Language (Vander-
donckt, 2005). This taxonomy has been established by relying on the Grounded
Theory (Strauss, 1997), which means that it has been developed inductively
from examining a corpus of data. In order to obtain this corpus, we have exam-
ined over time a series of interactive information systems and categorized the
found task definitions into a corpus of task types that have been updated accord-
ing to systematic deciphering scheme. Each predefined task type comes with a
precise definition and scope, some synonyms, if any, and its decomposition into
sub-tasks, if any. This taxonomy could be edited, e.g., by introducing some new
task types, or by adding new synonyms to already existing task types.

• A custom task name: any non-predefined task name can be entered, such as “is-
suing” in Figure 3. In this way, any new task type that does not belong to the
taxonomy may be introduced, such as task types for a particular domain of hu-
man activity. The custom task name is introduced mainly for specific case stud-
ies where one does not want necessarily to introduce a new task type in the tax-
onomy, for instance, in order to avoid deviations from these types.

• A pattern of tasks: a pattern of tasks is hereby referred to as any set of prede-
fined task types and/or of custom task names. This should not be confused with
a task pattern which is a pattern for task models. A pattern of tasks is aimed at
gathering into one pattern a set of tasks that are typically, frequently carried out
on an object. Instead of redefining every such task for an object, the pattern
could be applied to the object, thus redefining the different tasks for this particu-
lar object. Such a set can be defined by the designer and reused at any time. For
example, the pattern CRUD (acronym for Create, Read, Update, Delete), one of
the most frequently applied patterns in SE, will automatically enter four prede-
fined task types for a designated object and specialize them for this objects in
order to avoid ambiguity.

Figure 3. Assigning a task to a already defined object.

Interface Model Elicitation from Textual Scenarios

Figure 4. Introduction of various task types for a task model being elicited.

Elicitation of an attribute. The same technique is used in order to elicit an attrib-
ute of a class: either this attribute is predefined in the ontology (e.g., “frequency”
to denote the frequency of a task) or a custom name can be manually entered. For
example, in Figure 5, the designer has identified in the scenario the expression de-
noting the frequency of task and therefore elicits this attribute for the correspond-
ing task (here, “ticketing”). The attribute is then represented as a facer of the cor-
responding task.

Figure 5. Elicitation of a predefined attribute for a task.

Figure 6 graphically depicts the three main steps for entering a custom name
for an attribute, here an organizational unit. The procedure is similar for any other
type of model attribute. The location of an organization unit is an attribute that
does not belong to the ontology. Therefore, once such a parameter has been se-
lected (Figure 6a), it is identified with a unique name (Figure 6b), and then in-
cluded in the hierarchy (Figure 6c). Its value is then entered in the model as well.
There is no underlying definition of data types supporting this action since it is
considered rather informal at this stage of the development life cycle.

 Christophe Lemaigre, Josefina Guerrero García, and Jean Vanderdonckt

Figure 6a. Elicitation of a custom attribute for an organizational unit: selection.

Figure 6b. Elicitation of a custom attribute for an organizational unit: identification.

Figure 6c. Elicitation of a custom attribute for an organizational unit: inclusion.

Elicitation of a relationship. By using drag and drop, the designer can arrange
model elements in their corresponding hierarchy in order to reflect the decomposi-
tion relationships of Figure 1. For example, a task is decomposed into sub-tasks,
tasks are composed in a process, and processes are composed into a workflow. Or
in the other way around, a workflow is decomposed into processes (e.g., business
processes), which are in turn decomposed into tasks, to end up with sub-tasks.
Apart from these decomposition relationships, only the “manipulates” relationship
between a task and an object can be encoded in this level because it can be re-
corded thanks to the special support for tasks described above. For example in the
right pane of Figure 3, the object “statement” is further refined into the two sub-
classes “birth statement” and “death statement”, that automatically inherit from
the attributes of the super-class.

Interface Model Elicitation from Textual Scenarios

3.2 Model Elicitation Level 2: Dictionary-based Classification

The model elicitation technique described in the previous sub-section, although
flexible, reliable, and fast, represents a tedious task for the designer since it is
likely to be repeated. Therefore, instead of manually designating in the textual
scenario the fragments that are subject to model elicitation, these fragments could
be automatically classified according to a dictionary of model terms. We distin-
guish two categories of dictionary:
1. Generic dictionaries contain fragments representing model elements that are

supposed to be domain-independent (e.g., “a worker”, “a manager”, “a clerk”
for a user model; “create”, “read”, “update”, “delete” for a task model, etc.)

2. Specific dictionaries that contain fragments representing model elements that
are domain-dependent (e.g., a “physician”, “a pharmacist” in medicine for a
user model; “administrate” for a task model, “physiology” for a domain model).
Each dictionary may contain predefined terms (like the task types) and aliases

(e.g. plural, synonyms) in order to maximize the coverage of the automatic classi-
fication. In order to tailor this classification, two types of filters could be applied
(Tam, 1998):
1. Positive filters force some model terms to be considered anyway, whatever the

domain or the contexts of use are.
2. Negative filters prevent the automatic classification from classifying irrelevant

terms, such as articles (e.g., “the”, “a”), conjunctions (e.g., “with”, “along”), etc.
The terms collected in such filters can be edited manually within any ASCII-

compliant text editor. The advantage of this dictionary-based classification over
the manual one is certainly its speed: in a very short amount of time, most terms
belonging to the dictionaries, modulo their inclusion or rejection through the usage
of filters, are classified. The most important drawback of this technique is that the
identified terms are not necessarily located in the right place in their correspond-
ing hierarchies. For example, a task hierarchy resulting from this process may
consist of a one-level hierarchy of dozens of sub-tasks located in the same level
without any relationships between them. In order to overcome this serious draw-
back a third level has been defined, which is the object of the next sub-section.

3.3 Model Elicitation Level 3: Towards Semantic Understanding

Different techniques exist that elicit model elements from textual scenarios, but so
far they have never been applied in HCI to our knowledge: syntactic tagging (Fli-
edl, 2003), semantic tagging and chunk parsing (Fliedl, 2004). Genuine semantic
understanding requires natural language understanding and processing, which is
far beyond the scope of this work. What can be done however is to substitute a
semantic understanding by a combination of syntactic and semantic tagging (Fli-
edl, 2004, 2005b) in order to recognize possible terms that express, depict, reveal

 Christophe Lemaigre, Josefina Guerrero García, and Jean Vanderdonckt

model elements. For instance, a scenario sentence like “An accountant receives
taxes complaints, but she is also in charge of receipts perception” should generate:
a task “Receive taxes complaint”, a task “charge of receipts perception”, both be-
ing assigned to the user stereotype “Accountant”, and a concurrency temporal op-
erator between those two tasks because no specific term is included to designate
how these tasks are actually carried out by an accountant. We may then assume
the most general temporal operator, like a concurrency temporal operator. In order
to reach this goal, this level attempts to identify possible terms in a syntactical
structure (e.g., a set, a list, a sequence) that depicts a pattern for inferring for in-
stance a task, another task with a temporal constraint, etc. For each model ele-
ment, a table of possible terms involved in this pattern structure is maintained in
accordance with the semantics defined in Figure 1. The parsing decides when to
break any textual fragment (e.g., a sentence, a series of propositions that form a
sentence) into separate model elements using both textual (e.g., periods, commas,
colons, semi-colons) and lexical (e.g., “and”, “or”, “by”, “to”) cues.

Table 1. Possible terms incorporated in taggable expressions for a task model.
Concept Possible terms
Frequency Every day, daily, day by day, day after day, every Monday, every

week, weekly, monthly, each month, each year, yearly, two (#)
times a day, each hour, two (#) times per month (day, year, hour),
two (#) days (weeks, months) a week (month, year), occasionally,
from time to time, every other day, on alternate days, each two (#)
days (weeks, months, years, hours)

Importance Very important, low, high, regular
Structuration
level

Low, high, regular

Complexity
level

Low, high, regular, trivial, very complex, simple

Criticity Low, regular, high, very critic
Centrality Low, high, regular, very central, minor, peripheral
Termination
value

End, finish, last, final, finally, lastly, endings

Task type Communicate, convey, transmit, call, acknowledge, respond/answer,
suggest, direct, instruct, request, create, input/encode/enter associate,
name, group, introduce, insert, (new), assemble, aggregate, overlay
(cover), add, delete, eliminate, remove/cut, ungroup, disassociate,
duplicate, clone, twin, reproduce, copy, filter, segregate, set aside,
mediate, analyze, synthesize, compare, evaluate, decide, modify,
change alter, transform, turning, rename, segregate, resize, move, re-
locate, navigation, Go/To, perceive, acquire/detect/search
for/scan/extract, identify / discriminate / recognize, locate, examine,
monitor, scan, detect, Reinitialize, wipe out, clear, erase, se-
lect/choose, pick, start, initiate/trigger, play, search, active, execute,
function, record, purchase, stop, end, finish, exit, suspend, complete,
terminate, cancel, toggle, activate, deactivate, switch

Task item Collection, container, element, operation

Interface Model Elicitation from Textual Scenarios

Table 2. Possible terms incorporated in taggable expressions for a task relationship.

Relationship Possible terms
Sequence Then…after; following; first, second…
Parallel And; at same time; in any order; in parallel; jointly; concur-

rently
Conditional If… then … else; either… or; in case of … otherwise
Iterative Each time
Suspend / resume Stop; suspend; discontinue; cease

On the one hand, this pattern matching scheme is syntactical because it is only
based on detecting a particular combination of terms. On the other hand, those
terms are assumed to reflect the precise semantics defined in the ontology. But we
cannot say that this is a true semantic understanding anyway. Table 1 shows some
excerpts of possible terms related to the concept of task, along with its attributes,
while Table 2 shows some possible terms for detecting possible temporal relation-
ships between tasks; these values are the result of the exploration of existing lit-
erature. This pattern matching can be executed automatically or under the control
of the designer who validates each matching one by one.

The reserved names for model elements (e.g., task, the task attributes, and the
temporal operators between the tasks) are read from the XML schema definition
of the underlying User Interface Description Language (UIDL), which is UsiXML
(Vanderdonckt, 2005) in this case. This XSD file can be downloaded from
http://www.usixml.org/ index.php?mod=pages&id=5.

3.4 After Model Elicitation

The main goal of model elicitation is then to handle the textual statement from the
beginning to the end and to ensure that all textual fragments that should be trans-
formed into model elements are indeed elicited. In particular, the graphical high-
lighting in colours allows designers to quickly identify to which model type the
element is relevant and to check in the end that the complete scenario has been
exhausted, that no term remains unconsidered. In this way, they can check
whether main model properties are addressed in an informal way, such as, but not
limited to those model properties that are summarized in Table 3.

It seems of course impossible to automatically check these model properties at
this level since only textual fragments are considered, even if they are linked with
the ontology. However, this table may serve as a check list to ensure that the re-
sulting models are the least incomplete, inconsistent, incorrect, etc. as possible.

After performing the elicitation of model elements according to any of the three
aforementioned techniques, the model elicitation tool can export at any time the
results in UsiXML files for the whole set of models or for any particular combina-
tion (e.g., only the tasks with the users or only the tasks with their related objects).

 Christophe Lemaigre, Josefina Guerrero García, and Jean Vanderdonckt

This file can then be imported in any other UsiXML-compliant editor in order to
proceed with the remainder of the development life cycle. Several tools are candi-
dates for this purpose (Vanderdonckt, 2005):
• IdealXML enables designers to graphically edit respectively the task and the

domain models, in particular to automatically generate an Abstract UI.
• FlowiXML enables designers to edit the task, job, and organizational unit

models in order to proceed with user interfaces for workflow information sys-
tems. Per se, it does not edit the domain model however. It is mainly targeted
towards editing models that are involved in workflow information systems.

• Any general-purpose tool for applying model-to-model or model-to-code
transformations, in particular any software that supports solving the mapping
problem [20] between various models.

Table 3. Desirable quality properties of a model.

Property Definition
Completeness Ability of the model to abstract all real world aspects of interest via

appropriate concepts and relations
Graphical
completeness

Ability of the model to represent all real world aspects of interest via
appropriate graphical representation of the concepts and relations

Consistency Ability of the model to produce an abstraction in a way that repro-
duces the behaviour of the real world aspect of interest in the same
way throughout the model and that preserves this behaviour through-
out any manipulation of the model.

Correction Ability of the model to produce an abstraction in a way that correctly
reproduces the behaviour of the real world aspect of interest

Expressiveness Ability of the model to express via an abstraction any real world as-
pect of interest

Concision Ability of the model to produce concise, compact abstractions to ab-
stract real world aspects of interest

Separability Ability of models to univocally classify any abstraction of a real
world aspect of interest into one single model (based on the principle
of Separation of Concerns)

Correlability Ability of models to univocally and unambiguously establish relations
between models to represent a real world aspect of interest

Integrability Ability of models to concentrate and integrate abstractions of real
world aspects of interest into a single model or a small list of them.

4. Conclusion

In this paper, we have investigated three different techniques for eliciting
model elements from fragments found in a textual scenario in order to support ac-
tivities of scenario-based design. These three techniques are progressively more
advanced in terms of consideration of the possible terms found in the scenario:
from purely manual syntactical classification until ontology-based pseudo-
semantic understanding. These three levels can be used in combination. Beyond

Interface Model Elicitation from Textual Scenarios

the automated classification of terms into the respective models that are compati-
ble with the ontology, the model elicitation tool provides editing facilities within a
same model and across models of this ontology. In order to support other models
or other variations of the same model (e.g., a different task model or more attrib-
utes for the same task model), one may need to incorporate these definitions in the
ontology. As empirical validation is an important component in understanding the
capacity and limitations of the model elicitation tool, a series of case studies has
been developed.

Its main advantage relies in its capability of supporting designers in identifying
text fragments that should be considered for model elicitation and in helping them
to informally check some desirable model properties.

Its main drawback today is the lack of graphical visualisation of inter-model re-
lationships or intra-model relationships others than merely decomposition rela-
tionships (represented implicitly in the respective hierarchies). Advanced visuali-
sation techniques, such as carrousel visualisation, may be considered. For the
moment, these relationships are only collected as an entry in a table that can be
further edited. In the near future, we would like to refine the level 3-technique in
terms of possible combinations of terms in an expression to be subject to semantic
pattern matching.

Acknowledgments. We gratefully acknowledge the support of the SIMILAR network of
excellence (http://www.similar.cc), the European research task force creating human-
machine interfaces similar to human-human communication of the European Sixth Frame-
work Programme (FP6-2002-IST1-507609) and the CONACYT program (www.conacyt.
mx) supported by the Mexican government. We also thank the anonymous reviewers for
their constructive comments.

References

Bono, G., and Ficorelli, P.: Natural Language Restatement of Queries Expressed in a Graphical
Language. In: Proc. of the 11th Int. Conf. on the Entity-Relationship Approach ERA’92
(Karlsruhe, October 7-9, 1992), Lecture Notes in Computer Science, Vol. 645, pp. 357-373,
Springer, Heidelberg (1992).

Brasser, M., and Vander Linden, K.: Automatically Elicitating Task Models from Written Task
Narratives. In: Proc. of the 4th Int. Conf. on Computer-Aided Design of User Interfaces CA-
DUI'2002 (Valenciennes, 15-17 May 2002), pp. 83-90, Kluwer Academic Publishers,
Dordrecht (2002).

Clerckx, T., Vandervelpen, Ch., Luyten, K., and Coninx, K.: A Task Driven User Interface Ar-
chitecture for Ambient Intelligent Environments. In: Proc. of 10th ACM Int. Conf. on Intelli-
gent User Interfaces IUI’2006 (Sydney, January 29-February 1, 2006), pp. 309-311, ACM
Press, New York (2006).

Fliedl, G., Kop, Ch., Mayr, H., Hölbling, M., Horn, Th., Weber, G., and Winkler, Ch.: Extended
Tagging and Interpretation Tools for Mapping Requirements Texts to Conceptual (Predesign)
Models. In: Proc. of 10th Int. Conf. on Applications of Natural Language to Information Sys-
tems NLDB’2005 (Alicante, June 15-17, 2005), Lecture Notes in Computer Science, Vol.
3513, pp. 173-180, Springer, Heidelberg (2005).

 Christophe Lemaigre, Josefina Guerrero García, and Jean Vanderdonckt

Fliedl, G., Kop, Ch., and Mayr, H.: From textual scenarios to a conceptual schema. Data Knowl-

edge Engineering, 55(1), 20-37 (2005).
Fliedl, G., Kop, Ch., Mayr, H., Winkler, Ch., Weber, G., and Salbrechter, A.: Semantic Tagging

and Chunk-Parsing in Dynamic Modeling. In: Proc. of 9th Int. Conf. on Applications of Natu-
ral Languages to Information Systems NLDB’2004 (Salford, June 23-25, 2004), Lecture
Notes in Computer Science, Vol. 3136, pp. 421-426, Springer, Heidelberg (2004).

Fliedl, G., Kop, C., and Mayr, H.: From Scenarios to KCPM Dynamic Schemas: Aspects of
Automatic Mapping. In: Proc. of 8th Int. Conf. on Applications of Natural Language to In-
formation Systems NLDB’2003 (Burg, June 2003), Lecture Notes in Informatics, Vol. 29, pp.
91-105, Gesellschaft für Informatik, Bonn (2003).

Garland, A., Ryall, K., and Rich, Ch.: Learning hierarchical task models by defining and refining
examples. In: Proc. of the 1st Int. Conf. on Knowledge Capture K-CAP’2001 (Victoria, Octo-
ber 21-23, 2001), pp. 44-51, ACM Press, New York (2001).

Guerrero, J., and Vanderdonckt, J.: FlowiXML: a Step towards Designing Workflow Manage-
ment Systems, Journal of Web Engineering, 4(2), 163-182 (2008).

Haumer, P., Pohl, K., and Weidenhaupt, K.: Requirements Elicitation and Validation with Real
World Scenes, IEEE Transactions on Software Engineering, 24(12), 1036-1054 (1998).

Hemmecke, J., and Stary, Ch.: The Tacit Dimension of User Tasks: Elicitation and Contextual
Representation. In: Proc. of 5th Int. Workshop on Task Models and Diagrams for User Inter-
face Design TAMODIA’2006 (Hasselt, October 23-24, 2006), Lecture Notes in Comp. Sci-
ence, Vol. 4385, pp. 308-323, Springer, Heidelberg (2006).

Jarrar, M., Keet, M., and Dongilli, P.: Multilingual verbalization of ORM conceptual models and
axiomatized ontologies. Technical report. STARLab. (Available via Vrije Universiteit, 2006).
http://www.starlab.vub.ac.be/staff/mustafa/publications/[JKD06a].pdf. Accessed 14 April
2008.

Lu, S., Paris, C., and Vander Linden, K.: Computer Aided Task Model Acquisition From Het-
erogeneous Sources. In: D. Guozhong (Ed.), Proc. of 5th Asia Pacific Conference on Com-
puter Human Interaction APCHI’2002 (Beijing, November 1-4, 2002), pp. 878-886, Science
Press, Beijing (2002).

Lu, S., Paris, C., and Vander Linden, K.: Toward the Automatic Construction of Task Models
from Object-Oriented Diagrams. In: Proc. of the IFIP TC2/TC13 WG2.7/ WG13.4 7th Work-
ing Conf. on Engineering for Human-Computer Interaction EHCI’98 (Heraklion, September
14-18, 1998), pp. 169-189, IFIP Conference Proceedings, Kluwer (1999).

Paris, C., and Vander Linden, K., Lu, S.: Automated knowledge acquisition for instructional text
generation. In: Proc. of the 20th Annual Int. Conf. on Computer documentation SIG-
DOC’2002 (Toronto, October 20-23, 2002), pp. 142-151, ACM Press, New York (2002).

Paterno, F., and Mancini, C.: Developing task models from informal scenarios. In: Proc. of ACM
Conf. on Human Aspects in Computing Systems CHI’99 (Pittsburgh, May 15-20, 1999),
ACM Press, New York (1999).

Rosson, M.B., Carroll, J. M.: Scenario-based Design. In: A. Sears, J.A. Jacko (Eds.), The human-
computer interaction handbook: fundamentals, evolving technologies, and emerging applica-
tions, CRC Press (2007).

Strauss A.L., Corbin, J.: Grounded Theory in Practice, Sage, London (1997).
Tam, R., Maulsby, D., Puerta, A.: U-TEL: A Tool for Eliciting User Task Models from Domain

Experts. In: Proc. of ACM Int. Conf. on Intelligent User Interfaces IUI’1998 (San Francisco,
January 6-9, 1998), pp. 77-80, ACM Press, New York (1998).

Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of Informa-
tion Systems. In: Proc. of 17th Conf. on Advanced Information Systems Engineering CAi-
SE'05 (Porto, June 13-17, 2005), Lecture Notes in Computer Science, Vol. 3520, pp. 16-31,
Springer, Heidelberg (2005).

	Louvain School of Management: Louvain School
of Management
	Text2: Working paper 08/08
Interface Model Elicitation from Textual Scenarios
	Text4: Academic Year 2007- 2008
	Text3: Louvain School of Management
	Texte1: Christophe Lemaigre, Josefina Guerrero Garcia,
Jean Vanderdonckt

