11,323 research outputs found

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    Pinterest Board Recommendation for Twitter Users

    Full text link
    Pinboard on Pinterest is an emerging media to engage online social media users, on which users post online images for specific topics. Regardless of its significance, there is little previous work specifically to facilitate information discovery based on pinboards. This paper proposes a novel pinboard recommendation system for Twitter users. In order to associate contents from the two social media platforms, we propose to use MultiLabel classification to map Twitter user followees to pinboard topics and visual diversification to recommend pinboards given user interested topics. A preliminary experiment on a dataset with 2000 users validated our proposed system

    SAFE: A Neural Survival Analysis Model for Fraud Early Detection

    Full text link
    Many online platforms have deployed anti-fraud systems to detect and prevent fraudulent activities. However, there is usually a gap between the time that a user commits a fraudulent action and the time that the user is suspended by the platform. How to detect fraudsters in time is a challenging problem. Most of the existing approaches adopt classifiers to predict fraudsters given their activity sequences along time. The main drawback of classification models is that the prediction results between consecutive timestamps are often inconsistent. In this paper, we propose a survival analysis based fraud early detection model, SAFE, which maps dynamic user activities to survival probabilities that are guaranteed to be monotonically decreasing along time. SAFE adopts recurrent neural network (RNN) to handle user activity sequences and directly outputs hazard values at each timestamp, and then, survival probability derived from hazard values is deployed to achieve consistent predictions. Because we only observe the user suspended time instead of the fraudulent activity time in the training data, we revise the loss function of the regular survival model to achieve fraud early detection. Experimental results on two real world datasets demonstrate that SAFE outperforms both the survival analysis model and recurrent neural network model alone as well as state-of-the-art fraud early detection approaches.Comment: To appear in AAAI-201

    Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media

    Get PDF
    With the rise of social media, millions of people are routinely expressing their moods, feelings, and daily struggles with mental health issues on social media platforms like Twitter. Unlike traditional observational cohort studies conducted through questionnaires and self-reported surveys, we explore the reliable detection of clinical depression from tweets obtained unobtrusively. Based on the analysis of tweets crawled from users with self-reported depressive symptoms in their Twitter profiles, we demonstrate the potential for detecting clinical depression symptoms which emulate the PHQ-9 questionnaire clinicians use today. Our study uses a semi-supervised statistical model to evaluate how the duration of these symptoms and their expression on Twitter (in terms of word usage patterns and topical preferences) align with the medical findings reported via the PHQ-9. Our proactive and automatic screening tool is able to identify clinical depressive symptoms with an accuracy of 68% and precision of 72%.Comment: 8 pages, Advances in Social Networks Analysis and Mining (ASONAM), 2017 IEEE/ACM International Conferenc

    Traffic event detection framework using social media

    Get PDF
    This is an accepted manuscript of an article published by IEEE in 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC) on 18/09/2017, available online: https://ieeexplore.ieee.org/document/8038595 The accepted version of the publication may differ from the final published version.© 2017 IEEE. Traffic incidents are one of the leading causes of non-recurrent traffic congestions. By detecting these incidents on time, traffic management agencies can activate strategies to ease congestion and travelers can plan their trip by taking into consideration these factors. In recent years, there has been an increasing interest in Twitter because of the real-time nature of its data. Twitter has been used as a way of predicting revenues, accidents, natural disasters, and traffic. This paper proposes a framework for the real-time detection of traffic events using Twitter data. The methodology consists of a text classification algorithm to identify traffic related tweets. These traffic messages are then geolocated and further classified into positive, negative, or neutral class using sentiment analysis. In addition, stress and relaxation strength detection is performed, with the purpose of further analyzing user emotions within the tweet. Future work will be carried out to implement the proposed framework in the West Midlands area, United Kingdom.Published versio
    • …
    corecore