472 research outputs found

    Discrete port-Hamiltonian systems: mixed interconnections

    Get PDF
    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling at the discrete level itself. The goal of this paper is to apply a previously developed discrete modeling technique to study the interconnection of continuous systems with discrete ones in such a way that passivity is preserved. Such a theory has potential applications, in the field of haptics, telemanipulation etc. It is shown that our discrete modeling theory can be used to formalize previously developed techniques for obtaining passive interconnections of continuous and discrete systems

    Sampled data systems passivity and discrete port-Hamiltonian systems

    Get PDF
    In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system first presented in [1][2] [3]. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the field of telemanipulation, for the implementation of a passive master/slave system on a digital transmission line with varying time delays and possible loss of packets (e.g., the Internet), and in the field of haptics, where the virtual environment should `feel¿ like a physical equivalent system

    INTERACTIVE PHYSICAL DESIGN AND HAPTIC PLAYING OF VIRTUAL MUSICAL INSTRUMENTS

    No full text
    International audienceIn Computer Music, a practical approach of many Digital Musical Instruments is to separate the gestural input stage from the sound synthesis stage. While these instruments offer many creative possibilities, they present a strong rupture with traditional acoustic instruments, as the physical coupling between human and sound is broken. This coupling plays a crucial role for the expressive musical playing of acoustic instruments; we believe restoring it in a digital context is of equal importance for revealing the full expressive potential of digital instruments. This paper first presents haptic and physical modelling technologies for representing the mechano-acoustical instrumental situation in the context of DMIs. From these technologies, a prototype environment has been implemented for both designing virtual musical instruments and interacting with them via a force feedback device, able to preserve the energetic coherency of the musician-sound chain

    A MODELLER-SIMULATOR FOR INSTRUMENTAL PLAYING OF VIRTUAL MUSICAL INSTRUMENTS

    No full text
    International audienceThis paper presents a musician-oriented modelling and simulation environment for designing physically modelled virtual instruments and interacting with them via a high performance haptic device. In particular, our system allows restoring the physical coupling between the user and the manipulated virtual instrument, a key factor for expressive playing of traditional acoustical instruments that is absent in the vast majority of computer-based musical systems. We first analyse the various uses of haptic devices in Computer Music, and introduce the various technologies involved in our system. We then present the modeller and simulation environments, and examples of musical virtual instruments created with this new environment

    Safe Haptics-enabled Patient-Robot Interaction for Robotic and Telerobotic Rehabilitation of Neuromuscular Disorders: Control Design and Analysis

    Get PDF
    Motivation: Current statistics show that the population of seniors and the incidence rate of age-related neuromuscular disorders are rapidly increasing worldwide. Improving medical care is likely to increase the survival rate but will result in even more patients in need of Assistive, Rehabilitation and Assessment (ARA) services for extended periods which will place a significant burden on the world\u27s healthcare systems. In many cases, the only alternative is limited and often delayed outpatient therapy. The situation will be worse for patients in remote areas. One potential solution is to develop technologies that provide efficient and safe means of in-hospital and in-home kinesthetic rehabilitation. In this regard, Haptics-enabled Interactive Robotic Neurorehabilitation (HIRN) systems have been developed. Existing Challenges: Although there are specific advantages with the use of HIRN technologies, there still exist several technical and control challenges, e.g., (a) absence of direct interactive physical interaction between therapists and patients; (b) questionable adaptability and flexibility considering the sensorimotor needs of patients; (c) limited accessibility in remote areas; and (d) guaranteeing patient-robot interaction safety while maximizing system transparency, especially when high control effort is needed for severely disabled patients, when the robot is to be used in a patient\u27s home or when the patient experiences involuntary movements. These challenges have provided the motivation for this research. Research Statement: In this project, a novel haptics-enabled telerobotic rehabilitation framework is designed, analyzed and implemented that can be used as a new paradigm for delivering motor therapy which gives therapists direct kinesthetic supervision over the robotic rehabilitation procedure. The system also allows for kinesthetic remote and ultimately in-home rehabilitation. To guarantee interaction safety while maximizing the performance of the system, a new framework for designing stabilizing controllers is developed initially based on small-gain theory and then completed using strong passivity theory. The proposed control framework takes into account knowledge about the variable biomechanical capabilities of the patient\u27s limb(s) in absorbing interaction forces and mechanical energy. The technique is generalized for use for classical rehabilitation robotic systems to realize patient-robot interaction safety while enhancing performance. In the next step, the proposed telerobotic system is studied as a modality of training for classical HIRN systems. The goal is to first model and then regenerate the prescribed kinesthetic supervision of an expert therapist. To broaden the population of patients who can use the technology and HIRN systems, a new control strategy is designed for patients experiencing involuntary movements. As the last step, the outcomes of the proposed theoretical and technological developments are translated to designing assistive mechatronic tools for patients with force and motion control deficits. This study shows that proper augmentation of haptic inputs can not only enhance the transparency and safety of robotic and telerobotic rehabilitation systems, but it can also assist patients with force and motion control deficiencies

    Profiling Distributed Virtual Environments by Tracing Causality

    Get PDF
    Real-time interactive systems such as virtual environments have high performance requirements, and profiling is a key part of the optimisation process to meet them. Traditional techniques based on metadata and static analysis have difficulty following causality in asynchronous systems. In this paper we explore a new technique for such systems. Timestamped samples of the system state are recorded at instrumentation points at runtime. These are assembled into a graph, and edges between dependent samples recovered. This approach minimises the invasiveness of the instrumentation, while retaining high accuracy. We describe how our instrumentation can be implemented natively in common environments, how its output can be processed into a graph describing causality, and how heterogeneous data sources can be incorporated into this to maximise the scope of the profiling. Across three case studies, we demonstrate the efficacy of this approach, and how it supports a variety of metrics for comprehensively bench-marking distributed virtual environments
    corecore