2 research outputs found

    Simulation, Measurement and Modeling of Orthogonal On-Chip Interconnects

    No full text
    International audienceThis paper explains the appearance of resonant frequency due to underlayer orthogonal metal grid in microstrip line structures. In the context of global interconnects, this resonant frequency may lead to noise and has to be estimate. A model, which allows one to approximate this resonant frequency, is validated by measurement

    Caractérisation et modélisation d'interconnexions. Développement de nouvelles solutions pour la transmission d'informations au sein des cartes et puces électroniques.

    Get PDF
    Since the first IC in 1959 the performances and computing capacity of electronic devices have always grown, following thus the well-known empirical Moore’s law which says that the number of transistors in a dense integrated circuit doubles approximately every 18 months. This prevision is still verified even if some limitations appears like for example the limitation of the clock frequency which grow less than the projection that the ITRS (International Technology Roadmap for Semiconductors) has made in 2000. One of the stumbling point comes from interconnects which ensure the transmission of information inside electronic chips or cards. The interconnects imply delay, signal distortion, crosstalk and power dissipation and they now must be taken into account during electronic device design. So the researches depicted in this manuscript deal with the modelling of interconnect and study of new solutions to overcome problems due to classical interconnects. These works have been realized in Lab-STICC laboratory with the help of colleagues, post-doc, PhDs and Master Students. The manuscript include three chapters, the first one concerns researches on modelling aspects, the second is about alternative solutions to classical wired interconnects and to conclude the research projects for the next years are presented.The first chapter concern researches about modelling which aim to develop reliable models in view to simulate more quickly the electrical behavior of interconnects. Firstly the collaborations concerning the development of model-order reduction are presented. Then with the aim to evaluate the impact of inductive behavior, the current return patch problem and so the extraction of loop inductance is treated. The 3D discontinuities and 3D environment effects are presented in the third part of this chapter. For example the parallel grid influences on propagation are explored as well as the case of coupling between microvias and parallel-plates cavities inside multilayer PCB.The second chapter is about research of new solutions to overcome the limitation due to classical wired interconnects. A review of envisaged alternative solutions like for example optical interconnects and CNT (carbon Nano Tube) is first presented. Then a focus on RF guided interconnect is made and constraints in term of bandwidth are explained and some coupling techniques are explored. These studies naturally lead to exploration of the paradigm of wireless interconnects and the preliminary researches on radio transmission between two circuits placed on a PCB are shown. All these approaches of RF wireless interconnect are prelude to the research projects which are developed in a third chapter of the manuscript.The development of the draft over 4 years is based on the BBC project (wireless interconnect network on chip or in board for Broadcast-Based parallel Computing) funded by the Labex COMINLABS and which will begin in October 2016. The aims of this project are outlined as well as the aims of another project entitled “BROADWAYS” (Broadcast-Based new paradigms of ubiquitous memory mapping, bandwidth allocation and parallel programing made possible by Radio Network On Chip) which is currently in the second step of review by the ANR. To conclude this research part other embryonic researches are presented as well as long term researches envisaged like terahertz applications of the use of graphene for microwave applications.Depuis les premiers circuits intĂ©grĂ©s en 1959 les composants et les systĂšmes Ă©lectroniques n’ont cessĂ© de voir leurs performances augmenter suivant ainsi la loi empirique de Gordon Moore qui prĂ©voit un doublement de la complexitĂ© des circuits tous les 18 mois. Cette prĂ©vision reste aujourd’hui toujours vĂ©rifiĂ©e mĂȘme si nous constatons depuis une dizaine d’annĂ©es que les frĂ©quences d’horloges stagnent autour de 4-5 GHz alors que l’ITRS (International Technology Roadmap for Semiconductors) prĂ©voyait dans les annĂ©es 2000 des frĂ©quences de travail pouvant atteindre 40 GHz pour 2016. L’un des facteurs limitant la progression des performances vient des interconnexions mĂ©talliques servant au transport de l’information au sein des systĂšmes Ă©lectroniques. Les travaux de recherche prĂ©sentĂ©s dans le cadre de l’obtention de l‘habilitation Ă  diriger des recherches concernent d’une part les travaux rĂ©alisĂ©s sur la modĂ©lisation des interconnexions et d’autre part ceux sur l’étude de solutions alternatives Ă  ces interconnexions classiques. Ces travaux ont Ă©tĂ© rĂ©alisĂ©s au sein du Lab-STICC en collaboration avec plusieurs collĂšgues et lors de l’encadrement de plusieurs post-doctorants, doctorants et stagiaires de master recherche. Le mĂ©moire comporte trois chapitres principaux, le premier concerne les travaux sur la modĂ©lisation des interconnexions, le second porte sur l’étude de solutions alternatives Ă  ces interconnexions classiques et le dernier permet la prĂ©sentation des projets de recherches pour les prochaines annĂ©es.L’objectif de nos travaux sur la modĂ©lisation des interconnexions consiste au dĂ©veloppement de modĂšles fiables permettant d’apprĂ©hender leurs effets sur les signaux. Dans un premier temps, les travaux portant sur l’obtention de modĂšles Ă  complexitĂ© rĂ©duite sont prĂ©sentĂ©s. Puis, afin d’évaluer l’impact des effets inductifs des interconnexions, nous prĂ©sentons les travaux sur l’identification des chemins de retours du courant dans un rĂ©seau comprenant plusieurs lignes et qui sont nĂ©cessaires pour dĂ©terminer les inductances de boucles. La prise en compte de l’environnement 3D des interconnexions fait l’objet de la troisiĂšme partie de ce chapitre. Nous traitons ainsi de l’influence de diffĂ©rentes discontinuitĂ©s et nous prĂ©sentons des rĂšgles de design permettant la limitation des risques de conversion de mode de propagation. Dans le cadre de structures multicouches, nous abordons l’influence de grilles mĂ©talliques placĂ©es au voisinage d’une ligne sur la propagation des signaux. Enfin nous traitons des risques de couplage entre des vias et les modes de cavitĂ©s au sein des structures PCB multicouches.La seconde thĂ©matique dĂ©veloppĂ©e dans ce mĂ©moire porte sur le dĂ©veloppement de solutions alternatives aux interconnexions classiques. AprĂšs avoir listĂ© certaines de ces solutions telle que les interconnexions optiques ou les nanotubes de carbone, nous prĂ©sentons plus particuliĂšrement les interconnexions RF qui vĂ©hiculent l’information numĂ©rique sur porteuse Ă  haute frĂ©quence. Dans un premier temps nous analysons les interconnexions RF guidĂ©es qui utilisent une ligne de transmission comme support pour transporter l’information. A partir de l’étude des modes d’accĂšs multiples nous montrons que les canaux doivent ĂȘtre large bande et nous explorons diverses façons de transmettre l’énergie Ă  la ligne de transmission. Enfin nous prĂ©sentons quelques exemples de performances obtenues Ă  l’aide de dĂ©monstrateurs numĂ©riques. Ces Ă©tudes des interconnexions RF guidĂ©es nous ont naturellement amenĂ© Ă  considĂ©rer les possibilitĂ©s de transmission par voie hertzienne des informations au sein des cartes et puces Ă©lectroniques. Nous avons ainsi analysĂ© Ă  l’aide de dĂ©monstrateurs trĂšs simples les niveaux de transmission entre deux circuits placĂ©s sur une mĂȘme carte PCB (Printed Circuit Board).Ces Ă©tudes initiales sur les interconnexions radios ou sans fils servent de point d’appui aux projets de recherche prĂ©sentĂ©s Ă  la fin de ce manuscrit. La philosophie du projet BBC (wireless interconnect network on chip or in board for Broadcast-Based parallel Computing) financĂ© par le Labex COMINLABS Ă  partir d’octobre est prĂ©sentĂ© de mĂȘme que celle du projet ANR Broadways (Broadcast-Based new paradigms of ubiquitous memory mapping, bandwidth allocation and parallel programing made possible by Radio Network On Chip) en seconde phase d’étude auprĂšs de l’ANR
    corecore