21 research outputs found

    Interference Management in Lte Downlink Networks

    Full text link

    Adaptive Multi-objective Optimization for Energy Efficient Interference Coordination in Multi-Cell Networks

    Full text link
    In this paper, we investigate the distributed power allocation for multi-cell OFDMA networks taking both energy efficiency and inter-cell interference (ICI) mitigation into account. A performance metric termed as throughput contribution is exploited to measure how ICI is effectively coordinated. To achieve a distributed power allocation scheme for each base station (BS), the throughput contribution of each BS to the network is first given based on a pricing mechanism. Different from existing works, a biobjective problem is formulated based on multi-objective optimization theory, which aims at maximizing the throughput contribution of the BS to the network and minimizing its total power consumption at the same time. Using the method of Pascoletti and Serafini scalarization, the relationship between the varying parameters and minimal solutions is revealed. Furthermore, to exploit the relationship an algorithm is proposed based on which all the solutions on the boundary of the efficient set can be achieved by adaptively adjusting the involved parameters. With the obtained solution set, the decision maker has more choices on power allocation schemes in terms of both energy consumption and throughput. Finally, the performance of the algorithm is assessed by the simulation results.Comment: 29 page

    Inter-cellular scheduler for 5G wireless networks

    Get PDF
    International audienceEnhancing the Quality of Experience (QoE) in wireless networks is a crucial issue. Many acknowledged works focus on intra-cellular scheduling. They have shown that when the channel impairment is taken into consideration by the opportunistic scheduling approaches, it allows to reach higher throughputs and, for the most efficient ones, a higher fairness. However, if some of these works provide results near to optimum considering a single cell, high QoE cannot be guaranteed for scenarios where the cells are overloaded. In this article, we propose a new inter-cellular scheduler able to help the overloaded cells thanks to a dynamic cell bandwidth allocation. Our resource allocation technique is based on an adequate emergency parameter called Mean Cell Packet Delay Outage Ratio (MCPDOR). Performance evaluation shows that the proposed scheduler widely outperforms existing solutions in various scenarios. A variant of our solution that does not consider MCPDOR is also proposed and evaluated

    マクロ-ăƒ•ă‚§ăƒ ăƒˆă‚»ăƒ«ă‚·ă‚čăƒ†ăƒ ăźæœ€é©ćŒ–ăƒąăƒ‡ăƒ«ă«é–ąă™ă‚‹ç ”ç©¶

    Get PDF
    æ—©ć€§ć­Šäœèš˜ç•Șć·:新8266早çšČ田性

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
    corecore