171 research outputs found

    Analysis performance of wavelet OFDM in mobility platforms

    Get PDF
    Wavelet orthogonal frequency division multiplexing (OFDM) is one of the medium access techniques recommended by the IEEE 1901 working group for broadband communications over electrical networks, and is under consideration for IoT applications. This standard provides a flexible architecture supporting integrated access, smart grid, building, in-home, and mobility platform (vehicle) applications. Wavelet OFDM is a filter bank multicarrier system based on the extended lapped transform, in which the transmitting and receiving filters are obtained from a waveform provided by the standard. In this paper, we explore system performance when other waveforms are employed, studying the trade-off between stopband attenuation and transition band width. Furthermore, an alternative and more efficient way of obtaining the theoretical expressions of the achievable data rate is shown, assuming realistic power line communication noise other than additive white Gaussian noise. To demonstrate the capabilities of wavelet OFDM, the results of simulation of the symbol error rate and the data rate in several systems in platform scenarios (in-vehicle and in-aircraft) are shown.Comunidad de MadridUniversidad de Alcal

    Time Reversal with Post-Equalization for OFDM without CP in Massive MIMO

    Full text link
    This paper studies the possibility of eliminating the redundant cyclic prefix (CP) of orthogonal frequency division multiplexing (OFDM) in massive multiple-input multiple-output systems. The absence of CP increases the bandwidth efficiency in expense of intersymbol interference (ISI) and intercarrier interference (ICI). It is known that in massive MIMO, different types of interference fade away as the number of base station (BS) antennas tends to infinity. In this paper, we investigate if the channel distortions in the absence of CP are averaged out in the large antenna regime. To this end, we analytically study the performance of the conventional maximum ratio combining (MRC) and realize that there always remains some residual interference leading to saturation of signal to interference (SIR). This saturation of SIR is quantified through mathematical equations. Moreover, to resolve the saturation problem, we propose a technique based on time-reversal MRC with zero forcing multiuser detection (TR-ZF). Thus, the SIR of our proposed TR-ZF does not saturate and is a linear function of the number of BS antennas. We also show that TR-ZF only needs one OFDM demodulator per user irrespective of the number of BS antennas; reducing the BS signal processing complexity significantly. Finally, we corroborate our claims as well as analytical results through simulations.Comment: 7 pages, 3 figure

    Frequency-Domain Modeling of OFDM Transmission with Insufficient Cyclic Prefix using Toeplitz Matrices

    Full text link
    A novel mathematical framework is proposed to model Intersymbol Interference (ISI) phenomenon in wireless communication systems based on Orthogonal Frequency Division Multiplexing (OFDM) with or without cyclic prefix. The framework is based on a new formula to calculate the Fast Fourier Transform (FFT) of a triangular Toeplitz matrix, which is derived and proven in this paper. It is shown that distortion inducted by the ISI from a given subcarrier is the most significant for the closest subcarriers and the contribution decays as the distance between subcarriers grows. According to numerical experiments, knowledge of ISI coefficients concentrated around the diagonal of Channel Frequency Response (CFR) matrix improves the receiver's error floor significantly. The potential use of the framework for real-time frequency domain channel simulation was also investigated and demonstrated to be more efficient than conventional time domain Tapped Delay Line (TDL) model when a number of simulated users is high.Comment: Conference: IEEE VTC-Fall 2018, 5 pages, 3 figure

    Orthogonal Frequency Division Multiplexing modulation and inter-carrier interference cancellation

    Get PDF
    The Orthogonal Frequency Division Multiplexing (OFDM) technique, wireless channel models, and a pair of new intercarrier interference self-cancellation methods are investigated in this thesis. The first chapter addresses the history of OFDM, along with its principles and applications. Chapter two consists of three parts: the principal, the modern OFDM models, and the Peak to Average Power Ratio (PAPR) problem. Chapter two also summarizes possible PAPR solutions. Chapter three discusses a series of well-known wireless channel models, as well as the general formula for wireless channels. In Chapter four, ICI problem has been discussed, along with its existing solutions. Chapter five focuses on two new ICI self-cancellation schemes, namely the clustering method and the multi-codebook method. These two new methods show promising results through the simulations. A summary of this thesis and the discussion of future research are also provided in Chapter five

    Factor graph based detection approach for high-mobility OFDM systems with large FFT modes

    Get PDF
    In this article, a novel detector design is proposed for orthogonal frequency division multiplexing (OFDM) systems over frequency selective and time varying channels. Namely, we focus on systems with large OFDM symbol lengths where design and complexity constraints have to be taken into account and many of the existing ICI reduction techniques can not be applied. We propose a factor graph (FG) based approach for maximum a posteriori (MAP) symbol detection which exploits the frequency diversity introduced by the ICI in the OFDM symbol. The proposed algorithm provides high diversity orders allowing to outperform the free-ICI performance in high-mobility scenarios with an inherent parallel structure suitable for large OFDM block sizes. The performance of the mentioned near-optimal detection strategy is analyzed over a general bit-interleaved coded modulation (BICM) system applying low-density parity-check (LDPC) codes. The inclusion of pilot symbols is also considered in order to analyze how they assist the detection process

    Frequency Domain Independent Component Analysis Applied To Wireless Communications Over Frequency-selective Channels

    Get PDF
    In wireless communications, frequency-selective fading is a major source of impairment for wireless communications. In this research, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve signals traveling through frequency-selective, slow fading channels. Compared with existing time-domain approaches, the ICA-F is computationally efficient and possesses fast convergence properties. Simulation results confirm the effectiveness of the proposed ICA-F. Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in wireless communications nowadays. However, OFDM systems are very sensitive to Carrier Frequency Offset (CFO). Thus, an accurate CFO compensation technique is required in order to achieve acceptable performance. In this dissertation, two novel blind approaches are proposed to estimate and compensate for CFO within the range of half subcarrier spacing: a Maximum Likelihood CFO Correction approach (ML-CFOC), and a high-performance, low-computation Blind CFO Estimator (BCFOE). The Bit Error Rate (BER) improvement of the ML-CFOC is achieved at the expense of a modest increase in the computational requirements without sacrificing the system bandwidth or increasing the hardware complexity. The BCFOE outperforms the existing blind CFO estimator [25, 128], referred to as the YG-CFO estimator, in terms of BER and Mean Square Error (MSE), without increasing the computational complexity, sacrificing the system bandwidth, or increasing the hardware complexity. While both proposed techniques outperform the YG-CFO estimator, the BCFOE is better than the ML-CFOC technique. Extensive simulation results illustrate the performance of the ML-CFOC and BCFOE approaches

    On Time-Variant Distortions in Multicarrier Transmission with Application to Frequency Offsets and Phase Noise

    Full text link
    Phase noise and frequency offsets are due to their time-variant behavior one of the most limiting disturbances in practical OFDM designs and therefore intensively studied by many authors. In this paper we present a generalized framework for the prediction of uncoded system performance in the presence of time-variant distortions including the transmitter and receiver pulse shapes as well as the channel. Therefore, unlike existing studies, our approach can be employed for more general multicarrier schemes. To show the usefulness of our approach, we apply the results to OFDM in the context of frequency offset and Wiener phase noise, yielding improved bounds on the uncoded performance. In particular, we obtain exact formulas for the averaged performance in AWGN and time-invariant multipath channels.Comment: 10 pages (twocolumn), 5 figure

    Factor Graph Based Detection Schemes for Mobile Terrestrial DVB Systems with Long OFDM Blocks

    Get PDF
    This PhD dissertation analyzes the performance of second generation digital video broadcasting (DVB) systems in mobile terrestrial environments and proposes an iterative detection algorithm based on factor graphs (FG) to reduce the distortion caused by the time variation of the channel, providing error-free communication in very severe mobile conditions. The research work focuses on mobile scenarios where the intercarrier interference (ICI) is very high: high vehicular speeds when long orthogonal frequency-division multiplexing (OFDM) blocks are used. As a starting point, we provide the theoretical background on the main topics behind the transmission and reception of terrestrial digital television signals in mobile environments, along with a general overview of the main signal processing techniques included in last generation terrestrial DVB systems. The proposed FG-based detector design is then assessed over a simpli ed bit-interleaved coded modulation (BICM)-OFDM communication scheme for a wide variety of mobile environments. Extensive simulation results show the e ectiveness of the proposed belief propagation (BP) algorithm over the channels of interest in this research work. Moreover, assuming that low density parity-check (LDPC) codes are decoded by means of FG-based algorithms, a high-order FG is de ned in order to accomplish joint signal detection and decoding into the same FG framework, o ering a fully parallel structure very suitable when long OFDM blocks are employed. Finally, the proposed algorithms are analyzed over the physical layer of DVB-T2 speci cation. Two reception schemes are proposed which exploit the frequency and time-diversity inherent in time-varying channels with the aim of achieving a reasonable trade-o among performance, complexity and latency.Doktoretza tesi honek bigarren belaunaldiko telebista digitalaren eraginkortasuna aztertzen du eskenatoki mugikorrean, eta faktoreen grafoetan oinarritzen den hartzaile iteratibo bat proposatzen du denboran aldakorra den kanalak sortzen duen distortsioa leundu eta seinalea errorerik gabe hartzea ahalbidetzen duena. Proposatutako detektorea BICM-OFDM komunikazio eskema orokor baten gainean ebaluatu da lurreko broadcasting kanalaren baldintzak kontutan hartuz. Simulazio emaitzek algoritmo honen eraginkortasuna frogatzen dute Doppler frekuentzia handietan. Ikerketa lanaren bigarren zatian, faktoreen grafoetan oinarritutako detektorea eskema turbo zabalago baten baitan txertatu da LDPC dekodi katzaile batekin batera. Hartzaile diseinu honen abantaila nagusia da OFDM simbolo luzeetara ondo egokitzen dela. Azkenik, proposatutako algoritmoa DVB-T2 katearen baitan inplementatu da, bi hartzaile eskema proposatu direlarik seinaleak duen dibertsitate tenporal eta frekuentziala probesteko, beti ere eraginkortasunaren, konplexutasunaren eta latentziaren arteko konpromisoa mantenduz.Este trabajo de tesis analiza el rendimiento de la segunda generación de la televisión digital terreste en escenarios móviles y propone un algoritmo iterativo basado en grafos de factores para la detección de la señal y la reducción de la distorsión causada por la variación temporal del canal, permitiendo así recibir la señal libre de errores. El detector basado en grafos de factores propuesto es evaluado sobre un esquema de comunicaciones general BICM-OFDM en condiciones de transmisión propios de canales de difusión terrestres. Los resultados de simulación presentados muestran la e ciencia del algoritmo de detección propuesto en presencia de frecuencias Doppler muy altas. En una segunda parte del trabajo de investigación, el detector propuesto es incorporado a un esquema turbo junto con un decodi cador LDPC, dando lugar a un receptor iterativo que presenta características especialmente apropiadas para su implementación en sistemas OFDM con longitudes de símbolo elevadas. Por último, se analiza la implementación del algoritmo propuesto sobre la cadena de recepción de DVB-T2. Se presentan dos esquemas de recepción que explotan la diversidad temporal y frecuencial presentes en la señal afectada por canales variantes en el tiempo, consiguiendo un compromiso razonable entre rendimiento, complejidad y latencia
    corecore