12,174 research outputs found

    XLIndy: interactive recognition and information extraction in spreadsheets

    Get PDF
    Over the years, spreadsheets have established their presence in many domains, including business, government, and science. However, challenges arise due to spreadsheets being partially-structured and carrying implicit (visual and textual) information. This translates into a bottleneck, when it comes to automatic analysis and extraction of information. Therefore, we present XLIndy, a Microsoft Excel add-in with a machine learning back-end, written in Python. It showcases our novel methods for layout inference and table recognition in spreadsheets. For a selected task and method, users can visually inspect the results, change configurations, and compare different runs. This enables iterative fine-tuning. Additionally, users can manually revise the predicted layout and tables, and subsequently save them as annotations. The latter is used to measure performance and (re-)train classifiers. Finally, data in the recognized tables can be extracted for further processing. XLIndy supports several standard formats, such as CSV and JSON.Peer ReviewedPostprint (author's final draft

    Affordances of spreadsheets in mathematical investigation: Potentialities for learning

    Get PDF
    This article, is concerned with the ways learning is shaped when mathematics problems are investigated in spreadsheet environments. It considers how the opportunities and constraints the digital media affords influenced the decisions the students made, and the direction of their enquiry pathway. How might the leraning trajectory unfold, and the learning process and mathematical understanding emerge? Will the spreadsheet, as the pedagogical medium, evoke learning in a distinctive manner? The article reports on an aspect of an ongoing study involving students as they engage mathematical investigative tasks through digital media, the spreadsheet in particular. In considers the affordances of this learning environment for primary-aged students

    Processing mathematics through digital technologies: A reorganisation of student thinking?

    Get PDF
    This article reports on aspects of an ongoing study examining the use of digital media in mathematics education. In particular, it is concerned with how understanding evolves when mathematical tasks are engaged through digital pedagogical media in primary school settings. While there has been a growing body of research into software and other digital media that enhances geometric, algebraic, and statistical thinking in secondary schools, research of these aspects in primary school mathematics is still limited, and emerging intermittently. The affordances of digital technology that allow dynamic, visual interaction with mathematical tasks, the rapid manipulation of large amounts of data, and instant feedback to input, have already been identified as ways mathematical ideas can be engaged in alternative ways. How might these, and other opportunities digital media afford, transform the learning experience and the ways mathematical ideas are understood? Using an interpretive methodology, the researcher examined how mathematical thinking can be seen as a function of the pedagogical media through which the mathematics is encountered. The article gives an account of how working in a spreadsheet environment framed learners' patterns of social interaction, and how this interaction, in conjunction with other influences, mediated the understanding of mathematical ideas, through framing the students' learning pathways and facilitating risk taking

    Techno-mathematical literacies in the workplace: a critical skills gap

    Get PDF
    There has been a radical shift in the mathematical skills required in modern workplaces. With the ubiquity of IT, employees now require Techno-mathematical Literacies, the mastery of new kinds of mathematical knowledge shaped by the systems that govern their work. The education system does not fully recognise these skills, employees often lack them, and companies struggle to improve them. This project has developed prototype learning resources to train a variety of employees in the mathematical awareness and knowledge that today’s employment require
    corecore