1,783 research outputs found

    Morphing of Triangular Meshes in Shape Space

    Get PDF
    We present a novel approach to morph between two isometric poses of the same non-rigid object given as triangular meshes. We model the morphs as linear interpolations in a suitable shape space S\mathcal{S}. For triangulated 3D polygons, we prove that interpolating linearly in this shape space corresponds to the most isometric morph in R3\mathbb{R}^3. We then extend this shape space to arbitrary triangulations in 3D using a heuristic approach and show the practical use of the approach using experiments. Furthermore, we discuss a modified shape space that is useful for isometric skeleton morphing. All of the newly presented approaches solve the morphing problem without the need to solve a minimization problem.Comment: Improved experimental result

    A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation

    Full text link
    Intrinsic isometric shape matching has become the standard approach for pose invariant correspondence estimation among deformable shapes. Most existing approaches assume global consistency, i.e., the metric structure of the whole manifold must not change significantly. While global isometric matching is well understood, only a few heuristic solutions are known for partial matching. Partial matching is particularly important for robustness to topological noise (incomplete data and contacts), which is a common problem in real-world 3D scanner data. In this paper, we introduce a new approach to partial, intrinsic isometric matching. Our method is based on the observation that isometries are fully determined by purely local information: a map of a single point and its tangent space fixes an isometry for both global and the partial maps. From this idea, we develop a new representation for partial isometric maps based on equivalence classes of correspondences between pairs of points and their tangent spaces. From this, we derive a local propagation algorithm that find such mappings efficiently. In contrast to previous heuristics based on RANSAC or expectation maximization, our method is based on a simple and sound theoretical model and fully deterministic. We apply our approach to register partial point clouds and compare it to the state-of-the-art methods, where we obtain significant improvements over global methods for real-world data and stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure

    Novel Correspondence-based Approach for Consistent Human Skeleton Extraction

    Get PDF
    This paper presents a novel base-points-driven shape correspondence (BSC) approach to extract skeletons of articulated objects from 3D mesh shapes. The skeleton extraction based on BSC approach is more accurate than the traditional direct skeleton extraction methods. Since 3D shapes provide more geometric information, BSC offers the consistent information between the source shape and the target shapes. In this paper, we first extract the skeleton from a template shape such as the source shape automatically. Then, the skeletons of the target shapes of different poses are generated based on the correspondence relationship with source shape. The accuracy of the proposed method is demonstrated by presenting a comprehensive performance evaluation on multiple benchmark datasets. The results of the proposed approach can be applied to various applications such as skeleton-driven animation, shape segmentation and human motion analysis
    • …
    corecore