1,581 research outputs found

    Intensity modulated radiation therapy and arc therapy: validation and evolution as applied to tumours of the head and neck, abdominal and pelvic regions

    Get PDF
    Intensiteitsgemoduleerde radiotherapie (IMRT) laat een betere controle over de dosisdistributie (DD) toe dan meer conventionele bestralingstechnieken. Zo is het met IMRT mogelijk om concave DDs te bereiken en om de risico-organen conformeel uit te sparen. IMRT werd in het UZG klinisch toegepast voor een hele waaier van tumorlocalisaties. De toepassing van IMRT voor de bestraling van hoofd- en halstumoren (HHT) vormt het onderwerp van het eerste deel van deze thesis. De planningsstrategie voor herbestralingen en bestraling van HHT, uitgaande van de keel en de mondholte wordt beschreven, evenals de eerste klinische resultaten hiervan. IMRT voor tumoren van de neus(bij)holten leidt tot minstens even goede lokale controle (LC) en overleving als conventionele bestralingstechnieken, en dit zonder stralingsgeïnduceerde blindheid. IMRT leidt dus tot een gunstiger toxiciteitprofiel maar heeft nog geen bewijs kunnen leveren van een gunstig effect op LC of overleving. De meeste hervallen van HHT worden gezien in het gebied dat tot een hoge dosis bestraald werd, wat erop wijst dat deze “hoge dosis” niet volstaat om alle clonogene tumorcellen uit te schakelen. We startten een studie op, om de mogelijkheid van dosisescalatie op geleide van biologische beeldvorming uit te testen. Naast de toepassing en klinische validatie van IMRT bestond het werk in het kader van deze thesis ook uit de ontwikkeling en het klinisch opstarten van intensiteitgemoduleerde arc therapie (IMAT). IMAT is een rotationele vorm van IMRT (d.w.z. de gantry draait rond tijdens de bestraling), waarbij de modulatie van de intensiteit bereikt wordt door overlappende arcs. IMAT heeft enkele duidelijke voordelen ten opzichte van IMRT in bepaalde situaties. Als het doelvolume concaaf rond een risico-orgaan ligt met een grote diameter, biedt IMAT eigenlijk een oneindig aantal bundelrichtingen aan. Een planningsstrategie voor IMAT werd ontwikkeld, en type-oplossingen voor totaal abdominale bestraling en rectumbestraling werden onderzocht en klinisch toegepast

    User Interaction in Semi-Automatic Segmentation of Organs at Risk: a Case Study in Radiotherapy

    Get PDF
    Accurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently fail to provide satisfactory result, and post-processing corrections are often needed. Semi-automatic segmentation methods are designed to overcome these problems by combining physicians’ expertise and computers’ potential. This study evaluates two semi-automatic segmentation methods with different types of user interactions, named the “strokes” and the “contour”, to provide insights into the role and impact of human-computer interaction. Two physicians participated in the experiment. In total, 42 case studies were carried out on five different types of organs at risk. For each case study, both the human-computer interaction process and quality of the segmentation results were measured subjectively and objectively. Furthermore, different measures of the process and the results were correlated. A total of 36 quantifiable and ten non-quantifiable correlations were identified for each type of interaction. Among those pairs of measures, 20 of the contour method and 22 of the strokes method were strongly or moderately correlated, either directly or inversely. Based on those correlated measures, it is concluded that: (1) in the design of semi-automatic segmentation methods, user interactions need to be less cognitively challenging; (2) based on the observed workflows and preferences of physicians, there is a need for flexibility in the interface design; (3) the correlated measures provide insights that can be used in improving user interaction design

    RootPainter3D: Interactive-machine-learning enables rapid and accurate contouring for radiotherapy

    Full text link
    Organ-at-risk contouring is still a bottleneck in radiotherapy, with many deep learning methods falling short of promised results when evaluated on clinical data. We investigate the accuracy and time-savings resulting from the use of an interactive-machine-learning method for an organ-at-risk contouring task. We compare the method to the Eclipse contouring software and find strong agreement with manual delineations, with a dice score of 0.95. The annotations created using corrective-annotation also take less time to create as more images are annotated, resulting in substantial time savings compared to manual methods, with hearts that take 2 minutes and 2 seconds to delineate on average, after 923 images have been delineated, compared to 7 minutes and 1 seconds when delineating manually. Our experiment demonstrates that interactive-machine-learning with corrective-annotation provides a fast and accessible way for non computer-scientists to train deep-learning models to segment their own structures of interest as part of routine clinical workflows. Source code is available at \href{https://github.com/Abe404/RootPainter3D}{this HTTPS URL}

    Multicriteria VMAT optimization

    Full text link
    Purpose: To make the planning of volumetric modulated arc therapy (VMAT) faster and to explore the tradeoffs between planning objectives and delivery efficiency. Methods: A convex multicriteria dose optimization problem is solved for an angular grid of 180 equi-spaced beams. This allows the planner to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus organ at risk sparing. The selected plan is then made VMAT deliverable by a fluence map merging and sequencing algorithm, which combines neighboring fluence maps based on a similarity score and then delivers the merged maps together, simplifying delivery. Successive merges are made as long as the dose distribution quality is maintained. The complete algorithm is called VMERGE. Results: VMERGE is applied to three cases: a prostate, a pancreas, and a brain. In each case, the selected Pareto-optimal plan is matched almost exactly with the VMAT merging routine, resulting in a high quality plan delivered with a single arc in less than five minutes on average. VMERGE offers significant improvements over existing VMAT algorithms. The first is the multicriteria planning aspect, which greatly speeds up planning time and allows the user to select the plan which represents the most desirable compromise between target coverage and organ at risk sparing. The second is the user-chosen epsilon-optimality guarantee of the final VMAT plan. Finally, the user can explore the tradeoff between delivery time and plan quality, which is a fundamental aspect of VMAT that cannot be easily investigated with current commercial planning systems

    Segment Anything Model (SAM) for Radiation Oncology

    Full text link
    In this study, we evaluate the performance of the Segment Anything Model (SAM) model in clinical radiotherapy. We collected real clinical cases from four regions at the Mayo Clinic: prostate, lung, gastrointestinal, and head \& neck, which are typical treatment sites in radiation oncology. For each case, we selected the OARs of concern in radiotherapy planning and compared the Dice and Jaccard outcomes between clinical manual delineation, automatic segmentation using SAM's "segment anything" mode, and automatic segmentation using SAM with box prompt. Our results indicate that SAM performs better in automatic segmentation for the prostate and lung regions, while its performance in the gastrointestinal and head \& neck regions was relatively inferior. When considering the size of the organ and the clarity of its boundary, SAM displays better performance for larger organs with clear boundaries, such as the lung and liver, and worse for smaller organs with unclear boundaries, like the parotid and cochlea. These findings align with the generally accepted variations in difficulty level associated with manual delineation of different organs at different sites in clinical radiotherapy. Given that SAM, a single trained model, could handle the delineation of OARs in four regions, these results also demonstrate SAM's robust generalization capabilities in automatic segmentation for radiotherapy, i.e., achieving delineation of different radiotherapy OARs using a generic automatic segmentation model. SAM's generalization capabilities across different regions make it technically feasible to develop a generic model for automatic segmentation in radiotherapy
    • …
    corecore