1,376 research outputs found

    Info Navigator: A visualization tool for document searching and browsing

    Get PDF
    In this paper we investigate the retrieval performance of monophonic and polyphonic queries made on a polyphonic music database. We extend the n-gram approach for full-music indexing of monophonic music data to polyphonic music using both rhythm and pitch information. We define an experimental framework for a comparative and fault-tolerance study of various n-gramming strategies and encoding levels. For monophonic queries, we focus in particular on query-by-humming systems, and for polyphonic queries on query-by-example. Error models addressed in several studies are surveyed for the fault-tolerance study. Our experiments show that different n-gramming strategies and encoding precision differ widely in their effectiveness. We present the results of our study on a collection of 6366 polyphonic MIDI-encoded music pieces

    Developing an interoperable cloud-based visualization workflow for 3D archaeological heritage data. The Palenque 3D Archaeological Atlas

    Get PDF
    In archaeology, 3D data has become ubiquitous, as researchers routinely capture high resolution photogrammetry and LiDAR models and engage in laborious 3D analysis and reconstruction projects at every scale: artifacts, buildings, and entire sites. The raw data and processed 3D models are rarely shared as their computational dependencies leave them unusable by other scholars. In this paper we outline a novel approach for cloud-based collaboration, visualization, analysis, contextualization, and archiving of multi-modal giga-resolution archaeological heritage 3D data. The Palenque 3D Archaeological Atlas builds on an open source WebGL systems that efficiently interlink, merge, present, and contextualize the Big Data collected at the ancient Maya city of Palenque, Mexico, allowing researchers and stakeholders to visualize, access, share, measure, compare, annotate, and repurpose massive complex archaeological datasets from their web-browsers

    Evolving rules for document classification

    Get PDF
    We describe a novel method for using Genetic Programming to create compact classification rules based on combinations of N-Grams (character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that because the induced rules are meaningful to a human analyst they may have a number of other uses beyond classification and provide a basis for text mining applications

    Multiple Views: different meanings and collocated words

    Get PDF
    We report on an in‐depth corpus linguistic study on ‘multiple views’ terminology and word collocation. We take a broad interpretation of these terms, and explore the meaning and diversity of their use in visualisation literature. First we explore senses of the term ‘multiple views’ (e.g., ‘multiple views’ can mean juxtaposition, many viewport projections or several alternative opinions). Second, we investigate term popularity and frequency of occurrences, investigating usage of ‘multiple’ and ‘view’ (e.g., multiple views, multiple visualisations, multiple sets). Third, we investigate word collocations and terms that have a similar sense (e.g., multiple views, side‐by‐side, small multiples). We built and used several corpora, including a 6‐million‐word corpus of all IEEE Visualisation conference articles published in IEEE Transactions on Visualisation and Computer Graphics 2012 to 2017. We draw on our substantial experience from early work in coordinated and multiple views, and with collocation analysis develop several lists of terms. This research provides insight into term use, a reference for novice and expert authors in visualisation, and contributes a taxonomy of ‘multiple view’ terms

    BRAIM: A computer-aided diagnosis system for neurodegenerative diseases and brain lesion monitoring from volumetric analyses

    Full text link
    [EN] Background and objective: This paper presents BRAIM, a computer-aided diagnosis (CAD) system to help clinicians in diagnosing and treatment monitoring of brain diseases from magnetic resonance image processing. BRAIM can be used for early diagnosis of neurodegenerative diseases such as Parkinson, Alzheimer or Multiple Sclerosis and also for brain lesion diagnosis and monitoring. Methods: The developed CAD system includes different user-friendly tools for segmenting and determining whole brain and brain structure volumes in an easy and accurate way. Specifically, three types of measurements can be performed: (1) total volume of white, gray matter and cerebrospinal fluid; (2) brain structure volumes (volume of putamen, thalamus, hippocampus and caudate nucleus); and (3) brain lesion volumes. Results: As a proof of concept, some study cases were analyzed with the presented system achieving promising results. In addition to be used to quantify treatment effectiveness in patients with brain lesions, it was demonstrated that BRAIM is able to classify a subject according to the brain volume measurements using as reference a healthy control database created for this purpose. Conclusions: The CAD system presented in this paper simplifies the daily work of clinicians and provides them with objective and quantitative volume data for prospective and retrospective analyses. (C) 2017 Elsevier B.V. All rights reserved.This work has been supported by the Centro para el Desarrollo Tecnologico Industrial (CDTI) under the project BRAIM (IDI-20130020)Morales, S.; Bernabeu-Sanz, A.; López-Mir, F.; Gonzalez, P.; Luna, L.; Naranjo Ornedo, V. (2017). BRAIM: A computer-aided diagnosis system for neurodegenerative diseases and brain lesion monitoring from volumetric analyses. Computer Methods and Programs in Biomedicine. 145:167-179. https://doi.org/10.1016/j.cmpb.2017.04.006S16717914

    Visualizing data mining results with the Brede tools

    Get PDF
    A few neuroinformatics databases now exist that record results from neuroimaging studies in the form of brain coordinates in stereotaxic space. The Brede Toolbox was originally developed to extract, analyze and visualize data from one of them --- the BrainMap database. Since then the Brede Toolbox has expanded and now includes its own database with coordinates along with ontologies for brain regions and functions: The Brede Database. With Brede Toolbox and Database combined we setup automated workflows for extraction of data, mass meta-analytic data mining and visualizations. Most of the Web presence of the Brede Database is established by a single script executing a workflow involving these steps together with a final generation of Web pages with embedded visualizations and links to interactive three-dimensional models in the Virtual Reality Modeling Language. Apart from the Brede tools I briefly review alternate visualization tools and methods for Internet-based visualization and information visualization as well as portals for visualization tools

    Design Patterns for Situated Visualization in Augmented Reality

    Full text link
    Situated visualization has become an increasingly popular research area in the visualization community, fueled by advancements in augmented reality (AR) technology and immersive analytics. Visualizing data in spatial proximity to their physical referents affords new design opportunities and considerations not present in traditional visualization, which researchers are now beginning to explore. However, the AR research community has an extensive history of designing graphics that are displayed in highly physical contexts. In this work, we leverage the richness of AR research and apply it to situated visualization. We derive design patterns which summarize common approaches of visualizing data in situ. The design patterns are based on a survey of 293 papers published in the AR and visualization communities, as well as our own expertise. We discuss design dimensions that help to describe both our patterns and previous work in the literature. This discussion is accompanied by several guidelines which explain how to apply the patterns given the constraints imposed by the real world. We conclude by discussing future research directions that will help establish a complete understanding of the design of situated visualization, including the role of interactivity, tasks, and workflows.Comment: To appear in IEEE VIS 202

    Evolving text classification rules with genetic programming

    Get PDF
    We describe a novel method for using genetic programming to create compact classification rules using combinations of N-grams (character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that the rules may have a number of other uses beyond classification and provide a basis for text mining applications
    corecore