315 research outputs found

    Interactive Visual Exploration of Spatio-Temporal Urban Data Sets using Urbane

    Get PDF
    The recent explosion in the number and size of spatio-temporal data sets from urban environments and social sensors creates new opportunities for data-driven approaches to understand and improve cities. Visual analytics systems like Urbane aim to empower domain experts to explore multiple data sets, at different time and space resolutions. Since these systems rely on computationally-intensive spatial aggregation queries that slice and summarize the data over different regions, an important challenge is how to attain interactivity. While traditional pre-aggregation approaches support interactive exploration, they are unsuitable in this setting because they do not support ad-hoc query constraints or polygons of arbitrary shapes. To address this limitation, we have recently proposed Raster Join, an approach that converts a spatial aggregation query into a set of drawing operations on a canvas and leverages the rendering pipeline of the graphics hardware (GPU). By doing so, Raster Join is able to evaluate queries on the fly and at interactive speeds on commodity laptops and desktops. In this demonstration, we showcase the efficiency of Raster Join by integrating it with Urbane and enabling interactive exploration of urban data sets. Demo visitors will interact with Urbane to filter and visualize several urban data sets over multiple resolutions

    Explora : interactive querying of multidimensional data in the context of smart cities

    Get PDF
    Citizen engagement is one of the key factors for smart city initiatives to remain sustainable over time. This in turn entails providing citizens and other relevant stakeholders with the latest data and tools that enable them to derive insights that add value to their day-to-day life. The massive volume of data being constantly produced in these smart city environments makes satisfying this requirement particularly challenging. This paper introduces Explora, a generic framework for serving interactive low-latency requests, typical of visual exploratory applications on spatiotemporal data, which leverages the stream processing for deriving-on ingestion time-synopsis data structures that concisely capture the spatial and temporal trends and dynamics of the sensed variables and serve as compacted data sets to provide fast (approximate) answers to visual queries on smart city data. The experimental evaluation conducted on proof-of-concept implementations of Explora, based on traditional database and distributed data processing setups, accounts for a decrease of up to 2 orders of magnitude in query latency compared to queries running on the base raw data at the expense of less than 10% query accuracy and 30% data footprint. The implementation of the framework on real smart city data along with the obtained experimental results prove the feasibility of the proposed approach

    Urban Mosaic: Visual Exploration of Streetscapes Using Large-Scale Image Data

    Full text link
    Urban planning is increasingly data driven, yet the challenge of designing with data at a city scale and remaining sensitive to the impact at a human scale is as important today as it was for Jane Jacobs. We address this challenge with Urban Mosaic,a tool for exploring the urban fabric through a spatially and temporally dense data set of 7.7 million street-level images from New York City, captured over the period of a year. Working in collaboration with professional practitioners, we use Urban Mosaic to investigate questions of accessibility and mobility, and preservation and retrofitting. In doing so, we demonstrate how tools such as this might provide a bridge between the city and the street, by supporting activities such as visual comparison of geographically distant neighborhoods,and temporal analysis of unfolding urban development.Comment: Video: https://www.youtube.com/watch?v=Nrhk7lb3GU

    The Urban Toolkit: A Grammar-based Framework for Urban Visual Analytics

    Full text link
    While cities around the world are looking for smart ways to use new advances in data collection, management, and analysis to address their problems, the complex nature of urban issues and the overwhelming amount of available data have posed significant challenges in translating these efforts into actionable insights. In the past few years, urban visual analytics tools have significantly helped tackle these challenges. When analyzing a feature of interest, an urban expert must transform, integrate, and visualize different thematic (e.g., sunlight access, demographic) and physical (e.g., buildings, street networks) data layers, oftentimes across multiple spatial and temporal scales. However, integrating and analyzing these layers require expertise in different fields, increasing development time and effort. This makes the entire visual data exploration and system implementation difficult for programmers and also sets a high entry barrier for urban experts outside of computer science. With this in mind, in this paper, we present the Urban Toolkit (UTK), a flexible and extensible visualization framework that enables the easy authoring of web-based visualizations through a new high-level grammar specifically built with common urban use cases in mind. In order to facilitate the integration and visualization of different urban data, we also propose the concept of knots to merge thematic and physical urban layers. We evaluate our approach through use cases and a series of interviews with experts and practitioners from different domains, including urban accessibility, urban planning, architecture, and climate science. UTK is available at urbantk.org.Comment: Accepted at IEEE VIS 2023. UTK is available at http://urbantk.or

    GPU Rasterization for Real-Time Spatial Aggregation over Arbitrary Polygons

    Get PDF
    Visual exploration of spatial data relies heavily on spatial aggregation queries that slice and summarize the data over different regions. These queries comprise computationally-intensive point-in-polygon tests that associate data points to polygonal regions, challenging the responsiveness of visualization tools. This challenge is compounded by the sheer amounts of data, requiring a large number of such tests to be performed. Traditional pre-aggregation approaches are unsuitable in this setting since they fix the query constraints and support only rectangular regions. On the other hand, query constraints are defined interactively in visual analytics systems, and polygons can be of arbitrary shapes. In this paper, we convert a spatial aggregation query into a set of drawing operations on a canvas and leverage the rendering pipeline of the graphics hardware (GPU) to enable interactive response times. Our technique trades-off accuracy for response time by adjusting the canvas resolution, and can even provide accurate results when combined with a polygon index. We evaluate our technique on two large real-world data sets, exhibiting superior performance compared to index-based approaches

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research
    • …
    corecore