
GPU Rasterization for Real-Time
Spatial Aggregation over Arbitrary Polygons

Eleni Tzirita Zacharatou∗‡, Harish Doraiswamy∗†,
Anastasia Ailamaki‡, Cláudio T. Silva†, Juliana Freire†

‡ École Polytechnique Fédérale de Lausanne † New York University
{eleni.tziritazacharatou, anastasia.ailamaki}@epfl.ch {harishd, csilva, juliana.freire}@nyu.edu

ABSTRACT
Visual exploration of spatial data relies heavily on spatial aggre-
gation queries that slice and summarize the data over different re-
gions. These queries comprise computationally-intensive point-in-
polygon tests that associate data points to polygonal regions, chal-
lenging the responsiveness of visualization tools. This challenge is
compounded by the sheer amounts of data, requiring a large num-
ber of such tests to be performed. Traditional pre-aggregation ap-
proaches are unsuitable in this setting since they fix the query con-
straints and support only rectangular regions. On the other hand,
query constraints are defined interactively in visual analytics sys-
tems, and polygons can be of arbitrary shapes. In this paper, we
convert a spatial aggregation query into a set of drawing operations
on a canvas and leverage the rendering pipeline of the graphics
hardware (GPU) to enable interactive response times. Our tech-
nique trades-off accuracy for response time by adjusting the canvas
resolution, and can even provide accurate results when combined
with a polygon index. We evaluate our technique on two large
real-world data sets, exhibiting superior performance compared to
index-based approaches.

PVLDB Reference Format:
E. Tzirita Zacharatou, H. Doraiswamy, A. Ailamaki, C. T. Silva, and J.
Freire. GPU Rasterization for Real-Time Spatial Aggregation over Arbi-
trary Polygons. PVLDB, 11(3): xxxx-yyyy, 2017.
DOI: https://doi.org/10.14778/3157794.3157803

1. INTRODUCTION
The explosion in the number and size of spatio-temporal data sets

from urban environments (e.g., [10,41,60]) and social sensors (e.g.,
[43,62]) creates new challenges for analyzing these data. The com-
plexity and cost of evaluating queries over space and time for large
volumes of data often limits analyses to well-defined questions,
what Tukey described as confirmatory data analysis [61], typi-
cally accomplished through a batch-oriented pipeline. To support
exploratory analyses, systems must provide interactive response
times, since high latency reduces the rate at which users make ob-
servations, draw generalizations and generate hypotheses [34].
∗ These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 3
Copyright 2017 VLDB Endowment 2150-8097/17/11... $ 10.00.
DOI: https://doi.org/10.14778/3157794.3157803

Not surprisingly, the problem of providing efficient support for
visualization tools and interactive queries over large data has at-
tracted substantial attention recently, predominantly for relational
data [1, 6, 27, 30, 31, 33, 35, 56, 66]. While methods have also been
proposed for speeding up selection queries over spatio-temporal
data [17, 70], these do not support interactive rates for aggregate
queries, that slice and summarize the data in different ways, as re-
quired by visual analytics systems [4, 20, 44, 51, 58, 67].
Motivating Application: Visual Exploration of Urban Data Sets.
In an effort to enable urban planners and architects to make data-
driven decisions, we developed Urbane, a visualization framework
for the exploration of several urban data sets [20]. The framework
allows the user to visualize a data set of interest at different resolu-
tions and also enables the visual comparison of several data sets.

Figures 1(a) and 1(b) show the distribution of NYC taxi pick-
ups (data set) in the month of June 2012 using a heat map over
two resolutions: neighborhoods and census tracts. To build these
heatmaps, aggregate queries are issued that count the number of
pickups in each neighborhood and census tract. Through its visual
interface, Urbane allows the user to change different parameters
dynamically, including the time period, the distribution of interest
(e.g., count of taxi pickups, average trip distance, etc.), and even the
polygonal regions. Figure 1(c) shows multiple data sets being com-
pared using a single visualization: a parallel coordinate chart [28].
In this chart, each data set (or dimension) is represented as a ver-
tical axis, and each region (neighborhood) is mapped to a polyline
that traverses across all of the axes, crossing each axis at a position
proportional to its value for that dimension. Note that each point in
an axis corresponds to a different aggregation for the selected time
range for each neighborhood, e.g., Taxi reflects the number of pick-
ups, while Price shows the average price of a square foot. This vi-
sual representation is effective for analyzing multivariate data, and
can provide insights into the relationships between different indi-
cators. For example, by filtering and varying crime rates, users can
observe related patterns in property prices and noise levels over the
different neighborhoods.
Motivating Application: Interactive Urban Planning. Policy
makers frequently rezone different parts of the city, not only ad-
justing the zonal boundaries, but also changing the various laws
(e.g., new construction rules, building policies for different building
types). During this process, they are interested in viewing how the
other aspects of the city (represented by urban data sets) vary with
the new zoning. This operation typically consists of users changing
polygonal boundaries, and inspecting the summary aggregation of
the data sets until they are satisfied with a particular configuration.

In this process, urban planners may also place new resources
(e.g., bus stops, police stations), and again inspect the coverage
with respect to different urban data sets. The coverage is com-



Figure 1: Exploring urban data sets using Urbane: (a) visualizing data distribution per neighborhood, (b) visualizing data distribu-
tion per census tract, (c) comparing data over different neighborhoods. The blue line denotes the NYC average for these data.

monly computed by using a restricted Voronoi diagram [7] to asso-
ciate each resource with a polygonal region, and then aggregating
the urban data over these polygons. To be effective, these summa-
rizations must be executed in real-time as configurations change.
Problem Statement and Challenges. In this paper, we propose
new approaches to speedup the execution of spatial aggregation
queries, which, as illustrated in the examples above, are essential
to explore and visualize spatio-temporal data. These queries can
be translated into the following SQL-like query that computes an
aggregate function over the result of a spatial join between two data
sets, typically a set of points and a set of polygons.
SELECT AGG(ai) FROM P, R
WHERE P.loc INSIDE R.geometry [AND filterCondition]*
GROUP BY R.id

Given a set of points of the form P(loc,a1,a2, . . . ), where loc and
ai are the location and attributes of the point, and a set of regions
R(id,geometry), this query performs an aggregation (AGG) over the
result of the join between P and R. Functions commonly used for
AGG include the count of points and average of the specified at-
tribute ai. The geometry of a region can be any arbitrary polygon.
The query can also have zero or more filterConditions on the
attributes. In general, P and R can be either tables (representing
data sets) or the results from a sub-query (or nested query).

The heat maps in the Figures 1(a) and 1(b) were generated by
setting P as pickup locations of the taxi data; R as either neigh-
borhood (a) or census tract (b) polygons; AGG as COUNT(*); and
filtered on time (June 2012). On the other hand, to obtain the par-
allel coordinate visualization in Figure 1(c), multiple queries are
required: the above query has to be executed for each of the data
sets of interest that contribute to the dimensions of the chart.

Enabling fast response times to such queries is challenging for
several reasons. First, the point-in-polygon (PIP) tests to find which
polygons contain each point require time linear with respect to the
size of the polygons. Real-world polygonal regions have complex
shapes, often consisting of hundreds of vertices. This problem is
compounded due to the fact that data sets can have hundreds of
millions to several billion points. Second, as illustrated in the ex-
amples above, when using interactive visual analytics tools, users
can dynamically change not only the filtering conditions and aggre-
gation operations, but also the polygonal regions used in the query.
Since the query rate is very high in these tools, delays in processing
a query have a snowballing effect over the response times.

Existing spatial join techniques, common in database systems,
are costly and often suitable only for batch-oriented computations.
The join is first solved using approximations (e.g., bounding boxes)
of the geometries. Then, false matches are removed by comparing
the geometries (e.g., performing PIP tests), which is a computa-

tionally expensive task. This two stage evaluation strategy also in-
troduces the overhead of materializing the results of the first stage.
Finally, the aggregates are computed over the materialized join re-
sults and incur additional query processing costs. Data cube-based
structures (e.g., [33]) can be used to maintain aggregate values.
However, creating such structures requires costly pre-processing
while the memory overhead can be prohibitively high. More im-
portantly, these techniques do not support queries over arbitrary
polygonal regions, and thus are unsuitable for our purposes.

Last but not least, while powerful servers might be accessible to
some, many users have no alternative other than commodity hard-
ware (e.g., business grade laptops, desktops). Having approaches
to efficiently evaluate the above queries on commodity systems can
help democratize large-scale visual analytics and make these tech-
niques available to a wider community.

For visual analytics systems, approximate answers to queries are
often sufficient as long as they do not alter the resulting visualiza-
tions. Moreover, the exploration is typically performed using the
“level-of-detail” (LOD) paradigm: first look at the overview, and
then zoom into the regions of interest for more details [53]. Thus,
these systems can greatly benefit from an approach that trades-off

accuracy for response times, and enables LOD exploration that im-
proves accuracy when focusing on details.
Our Approach. By leveraging the massive parallelism provided by
current generation graphics hardware (Graphics Processing Units
or GPUs), we aim to support interactive response times for spa-
tial aggregation over large data. However, accomplishing this is
challenging. Since the memory capacity of a GPU is limited, data
must be transferred between the CPU and GPU, and this introduces
significant overhead when dealing with large data. In addition, to
best utilize the available parallelism, GPU occupancy must be max-
imized. We propose rasterization-based methods that use the fol-
lowing key insights to overcome the above challenges:

• Insight 1: It is not necessary to explicitly materialize the result
of the spatial join since the final output of the query is simply the
aggregate value;

• Insight 2: A spatial join between two data sets can be consid-
ered as “drawing” the two data sets on the same canvas, and then
examining their intersections; and

• Insight 3: When working with visualizations, small errors can
be tolerated if they cannot be perceived by the user in the visual
representation.

Insight 1 allows combining the aggregation operation with the ac-
tual join. The advantages of this are twofold: (i) no memory needs
to be allocated for storing join results, allowing the GPU to process
more input data, and thus computing the result in fewer passes; and



(ii) since no materialization (and corresponding data transfer over-
head) is required, query times are improved. Insight 2 allows us
to frame the problem of evaluating spatial aggregation as render-
ings, using operations that are highly optimized for the GPU. In
particular, it allows us to exploit the rasterization operation, which
converts a polygon into a collection of pixels. Rasterization is an
important component of the graphics rendering pipeline and is na-
tively supported by GPUs. As part of the driver provided by the
hardware vendors, rasterization is optimized to make use of the un-
derlying architecture and thus maximize occupancy of the GPU.
By allowing approximate results, Insight 3 enables a mechanism
to completely avoid the costly point-in-polygon tests, and use only
the drawing operations, thus leading to a significant performance
improvement over traditional techniques. Moreover, it allows an
algorithmic design in which the input data is transferred only once
to the GPU, further reducing the memory transfer overhead.

Even though our focus in this work is to enable seamless in-
teraction on visual analysis tools, we would like to note that the
spatial aggregation has utility in a variety of applications in several
fields. For example, this type of query is commonly used to gener-
ate scalar functions for topological data analysis [11,16,37]. While
these applications might not require interactivity per se, having fast
response times would definitely improve analysis efficiency.
Contributions. Our contributions can be summarized as follows:

• Based on the observation that spatial databases rely on the same
primitives (e.g., points, polygons) and operations (e.g., intersec-
tions) common in computer graphics rendering, we develop spa-
tial query operators that exploit GPUs and take advantage of
their native support for rendering.

• We propose bounded raster join, an efficient approximate ap-
proach, that by eliminating the need for costly point-in-polygon
tests provides close to accurate results in real-time.

• We develop an accurate variant of the bounded raster join that
combines an index-based join with rasterization to efficiently
evaluate spatial aggregation queries.

To the best of our knowledge, this is the first work that efficiently
evaluates spatial aggregation using rendering operations. The ad-
vantages of blending computer graphics techniques with database
queries are amply clear from our comprehensive experimental eval-
uation using two real world data sets– NYC taxi data (∼868 million
points) and geo-tagged Twitter (∼2.2 billion points). The results
show that the bounded raster join obtains over two orders of mag-
nitude speedup compared to an optimized CPU approach when the
data fits in main memory (note that the data need not fit in GPU
memory), and over 30X speedup otherwise. In fact, it can exe-
cute queries involving over 868 million points in only 1.1 second
even on a current generation laptop. We also report the accuracy-
efficiency as well as bound-error trade-offs of the bounded approach,
and show that the errors incurred using even a very coarse bound do
not impact the quality of the generated visual representations. This
makes our approach extremely valuable for visualization-based ex-
ploratory analysis where interactivity is essential. Given the wide-
spread availability of GPUs on desktops and laptops, our approach
brings large-scale analytics to commodity hardware.

2. RELATED WORK
Spatial Aggregation. To support interactive response times for
analytical queries in visualization systems, compact data structures
such as Nanocubes [33] and Hashedcubes [45] have been designed
to store and query the CUBE operator for spatio-temporal data sets.

These techniques mainly rely on static pre-computation: they pre-
aggregate records at various spatial resolutions and store this sum-
marized information in a hierarchy of rectangular regions (main-
tained using a quadtree). To enable filtering and aggregation sup-
port over different attributes, these attributes must be known at
build-time to be included as a dimension of the cube. Also, the
granularity of the filtering depends on the number of discrete ranges
the attribute is divided into. Thus, supporting filtering and ag-
gregation over arbitrary attributes not only entails substantial pre-
computation costs, but also exponentially increases the storage re-
quirements, often making it impractical for real-world, large data
sets. More importantly, since these structures maintain aggregate
information over a hierarchy of rectangular regions, they have three
key limitations: 1) the queries supported are constrained to only
rectangular regions; 2) spatial aggregation has to be executed as a
collection of queries, one for each region, which is inefficient for
a large number of regions; and 3) the computed aggregates are ap-
proximate and the error cannot be dynamically bounded (since the
accuracy depends on the quadtree resolution). Supporting arbitrary
polygons and obtaining accurate results requires accessing the raw
data (which might require additional spatial indexes) and defeats
the purpose of maintaining a cube structure.

Several algorithms have also been proposed by the database com-
munity to evaluate spatial aggregate queries [59, 63]. For instance,
the aRtree [46] enhances the R-tree [24] structure by keeping ag-
gregate information in intermediate nodes. These algorithms rely
on annotated data structures and thus suffer from the aforemen-
tioned key limitations. Besides, they only support a spatial range
selection predicate and do not support predicates on other attributes
which makes them unsuitable for a dynamic setting. Closest to our
approach are online aggregation techniques for spatial databases.
However, prior work in the area [65] is also limited to range queries
and does not provide support for join and group-by predicates.
Spatial Joins on CPUs. Our work is closely related to spatial join
techniques since the join operation is the most expensive compo-
nent of spatial aggregation queries. However, recall that explicit
materialization of the join results is not required. Spatial joins typ-
ically involve two steps: filtering followed by refinement. The fil-
tering step finds pairs of spatial elements whose approximations
(minimum bounding rectangles - MBRs) intersect with each other,
while the refinement step detects the intersection between the ac-
tual geometries. Past research on spatial join algorithms has largely
focused on the filtering step [9, 29, 47, 48]. To improve the pro-
cessing of spatial queries over complex geometries, the Rasteriza-
tion Filter [73] approximates polygons with rectangular tiles and
serves as an additional filtering step that reduces the number of
costly geometry-geometry comparisons. This approximation is cal-
culated statically and stored in the database. In contrast, our ap-
proach exploits GPU rasterization to produce a fine-grained polyg-
onal approximation on-the-fly and completely eliminates MBR-
based tests. Apart from the aforementioned standalone solutions,
several commercial and freely available DBMSs offer spatial ex-
tensions complying with the two-step evaluation process [14, 15,
19, 39, 50, 64]. While the filtering step is usually efficient, the re-
finement often degrades query performance since it involves costly
computational geometry algorithms [55]. As a point of compar-
ison, we performed a join between only 10 NYC neighborhood
polygons and the taxi data using a commercial database. The query
took over ten minutes to execute. This performance is not suitable
for interactive visual analytics systems. More recently, distributed
solutions such as Hadoop-GIS [3] and Simba [68] were proposed
for spatial query processing. Both these solutions suffer from net-
work bottlenecks which might affect interactivity, and also rely on



the presence of powerful clusters for processing. Hadoop-based so-
lutions are further constrained due to disk I/O. As we show in our
experiments, our approach attains interactive speeds using GPUs
that are ubiquitous in current generation desktops and laptops.
Spatial Query Processing on GPUs. Over the past decade, several
research efforts have leveraged programmable GPUs to boost the
performance of general, data-intensive operations [5,18,22,26,32].
Earlier techniques (e.g., [22]) employed the programmable render-
ing pipeline to execute these queries. Due to a fixed set of oper-
ations supported by the pipeline, it often resulted in overly com-
plex implementations to work around the restrictions. With the
advent of more flexible GPGPU interfaces, there have been sev-
eral full fledged GPU-accelerated RDBMSs [8, 36]. MapD [36]
accelerates SQL queries by compiling them to native GPU code
and leveraging GPU parallelism. It is a relational database that
currently does not support polygonal queries1. On the other hand,
exploiting graphics processors for spatial databases is natural, as it
involves primitive types (geometrical objects) and operations (spa-
tial selections, containment tests) that are similar to the ones used
in graphics. However, there has been limited amount of work in
this area. Sun et al. [57] used GPU rasterization to improve the
efficiency of spatial selections and joins. In the case of joins, they
used rasterization as part of the join refinement phase to determine
if two polygons do not intersect. However, this approach does not
scale with an increasing number of polygons since the GPU is only
used to perform pairwise comparisons. In contrast, the rasterization
pipeline plays an integral part in our technique. By exploiting the
capabilities of modern GPUs, we are able to perform more complex
operations at faster speeds.

Closest to our work, Zhang et al. [69, 71] used GPUs to join
points with polygons. They index the points with a Quadtree to
achieve load balancing and enable batch processing. In the filter-
ing step of the join, the polygons are approximated using MBRs.
Zhang et al. [70] use the spatial join technique proposed in [69]
to pre-compute spatial aggregations in a pre-defined hierarchy of
spatial regions on the GPU. In contrast, we perform the aggrega-
tion on-the-fly, taking into account dynamic constraints. More re-
cently, they extended their spatial join framework [72] to handle
larger point data sets. As they materialize the join result, to opti-
mize the memory usage, they make the limiting assumption that no
two polygons intersect, thus ensuring the join size is at most the
size of the input. Additionally, to improve efficiency, they truncate
coordinates to 16-bit integers, thus resulting in approximate joins
as well. Because we focus on analytical queries that do not require
explicit materialization of the join result, we can use rasterization
to better approximate the polygons as well as combine the join with
the aggregation operation.

Aghajarian et al. [2] employ the GPU to join non-indexed polyg-
onal data sets. The focus of our work, however, is aggregating
points contained within polygonal regions. Doraiswamy et al. [17]
proposed a customized kd-tree structure for GPUs that supports ar-
bitrary polygonal queries. While the proposed index provides in-
teractive response times for selection queries, the evaluation of the
join requires one selection to be performed for each polygon, and
is thus inefficient when the polygon data set is large.

3. BACKGROUND: GRAPHICS PIPELINE
The most common operation in graphics-intensive applications

(e.g., games) is to render a collection of triangular and polygonal
meshes that make up a scene. To achieve interactivity, such appli-
cations rely heavily on rasterization and approximate visual effects
1MapD currently has only one GIS function: https://www.mapd.com/
docs/latest/mapd-core-guide/dml/#geometric-function-support

(e.g., shadows) to render the scenes. Modern GPUs exhibit impres-
sive computational power (the latest Nvidia GTX 1080 Ti reaches
10.6 TFLOPS) and implement rasterization in hardware to speedup
the rendering process. The key idea in our approach is to leverage
the graphics hardware rendering pipeline for rasterization and the
efficient execution of spatial aggregation queries.
Rasterization-based Graphics Pipeline. Rendering a collection
of triangles is accomplished in a series of processing stages that
compose a graphics pipeline. First, the coordinates of all the ver-
tices (of the triangles) that compose the scene are transformed into
a common world coordinate system, and then projected onto the
screen space. Next, triangles falling outside the screen (also called
viewport) are discarded, while those partially outside are clipped.

Figure 2: Rasterizing
a triangle into pixels.

Parts of triangles within the viewport
are then rasterized. Rasterization con-
verts each triangle in the screen space
into a collection of fragments. Here, a
fragment can be considered as the data
corresponding to a pixel. The fragment
size therefore depends on the resolu-
tion (the number of pixels in the screen
space). For example, a 800 × 600 ren-
dering of a scene has fewer pixels (480k
pixels) than a high resolution rendering
(e.g., 1920 × 1080 ≈ 2M pixels), and thus has a bigger fragment
size. In the final step, each fragment is appropriately colored and
displayed onto the screen. Figure 2 shows an example where a tri-
angle is rasterized (pixels colored violet) at a given resolution.

OpenGL [54], a cross platform rendering API, supports the abil-
ity to program parts of the rendering pipeline with a shading lan-
guage (GLSL), thus allowing for custom functionality. In partic-
ular, the custom rendering pipeline, known as shader programs,
commonly consists of a vertex shader and a fragment shader. The
vertex shader allows modifying the first stage of the pipeline, namely,
the transformation of the set of vertices to the screen space. The
clipping and rasterization stages are handled by the GPU (driver).
Finally, the fragment shader allows defining custom processing for
each fragment that is generated. Both shaders are executed using a
single program, multiple data (SPMD) paradigm.
Rasterization. Given the crucial part it plays in the graphics pipeline,
parallel rasterization has had a long research history, as can be seen
from these classical papers [38, 49]. Hardware vendors optimize
parallel rasterization by directly mapping computational concepts
to the internal layout of the GPU. While the details of the raster-
ization approaches used in current GPU hardware are beyond the
scope of this work, we briefly describe the key ideas.

Hardware drivers typically use a variation of the algorithm pro-
posed by Olano and Greer [42]. As a key optimization, they focus
on the rasterization of triangles instead of general polygons. The
triangle is the simplest convex polygon, and it is thus computation-
ally efficient to test whether a pixel intersects with it. The inter-
section tests are typically performed by solving linear equations,
called edge functions [42]. The rasterization algorithm allows to
test whether pixels lie within a given triangle in parallel, and thus
is amenable to hardware implementation.
Triangulation. Rendering polygons on the GPU is often accom-
plished by decomposing them into a set of triangles, an opera-
tion called triangulation. The problem of polygon triangulation
has a rich history in the computational geometry domain. The two
most common approaches for triangulation are the ear-clipping al-
gorithm [7] and Delaunay triangulation, in particular, a constrained
Delaunay triangulation [52]. Delaunay-based approaches have the
advantage of providing theoretical guarantees regarding the quality



of the generated triangles (such as minimum angle), and are often
preferred for generating better triangle meshes. In this work, we
employ constrained Delaunay polygon triangulation.
Frame buffer objects (FBO). Instead of directly displaying the
rendered scene onto a physical screen (monitor), OpenGL also al-
lows outputting the result into a “virtual” screen. The virtual screen
is represented by a frame buffer object (FBO) having a resolution
defined by the user. Even though the resolutions supported by ex-
isting monitors are limited, current graphics generation hardware
supports resolutions as large as 32K × 32K. Each pixel of the FBO
is represented by 4 32-bit values, [r,g,b,a], corresponding to the
red, blue, green, and alpha color channels. Users can also mod-
ify the FBO to store other quantities such as depth values. Since
our goal is to compute the result of a spatial aggregation, we do
not make use of any physical screen, but we make extensive use of
FBOs to store intermediate results.

4. RASTER JOIN
Existing techniques execute spatial aggregation for a given set of

points and polygons in two steps: (1) the spatial join is computed
between the two data sets; and (2) the join results are aggregated.
Such an approach has two shortcomings. The join operation is ex-
pensive, in particular, the PIP tests it requires – in the best-case
scenario, one PIP test must be performed for every point-polygon
pair that satisfies the join condition, and the complexity of each
PIP test is linear with the size of the polygon. Even when the PIP
tests are executed in parallel on the GPU, queries still require sev-
eral seconds to execute even for a relatively small number of points
(see Section 7 for details). To compute the aggregate as a second
step, the join must be materialized. Consequently, given the limited
memory on a GPU, the join has to be performed in batches, which
incurs additional memory transfer between the CPU and GPU.

In this section, we first discuss how the rasterization operation
can be applied to overcome the above shortcomings. We then pro-
pose two algorithms: bounded and accurate raster join, which pro-
duce approximate and exact results, respectively.

4.1 Core Approach
The design of raster join builds on two key observations:

1. A spatial join between a polygon and a point is essentially the
intersection observed when the polygon and point are drawn on
the same canvas.

2. Given that the goal of the query is to compute aggregates, if the
join and aggregate operations are combined, there is no need to
materialize the join results.

Intuitively, our approach draws the points on a canvas and keeps
track of the intersections by maintaining partial aggregates in the
canvas cells. It then draws the polygons on the same canvas, and
computes the aggregate result from the partial aggregates of the
cells that intersect with each polygon. The above operations are
accomplished in two steps as described next. To illustrate our ap-
proach, we use the following example. We apply the query:
SELECT COUNT(*) FROM Dpt, Dpoly
WHERE Dpoly.region CONTAINS Dpt.location
GROUP BY Dpoly.id

to the data sets shown in Figure 3, Dpoly with 3 polygons, and Dpt
with 33 points.
Step I. Draw points: The first step renders the points onto an FBO
as shown in Procedure DrawPoints. We maintain an array A of size
equal to the number of polygons, which is 3 for the example in
Figure 3. This array is initially set to 0. When a point is processed,
it is first transformed into the screen space, and then rasterization
converts it into a fragment that is rendered onto an FBO. In this

FBO, we use the color channels of a pixel for storing the count of
points falling in that pixel. Instead of setting a color to that pixel,
we add to the color of the pixel (e.g., the red channel of the pixel
is incremented by 1). OpenGL only allows specifying colors for
a fragment in the fragment shader. The way the specified color is
combined with that in the FBO is controlled by a blend function.
We set this function such that the specified color is added to the
existing color in the FBO. This step results in Fpt, an FBO storing
the count of points that fall into each of its pixels. The FBO for the
input in Figure 3 is illustrated in Figure 4(a).

Procedure DrawPoints
Require: Points Dpt, Point FBO Fpt
1: Initialize array A to 0
2: Clear point FBO Fpt
3: for each p = (x,y) ∈ Dpt do
4: (x′,y′) = transform(p)
5: Fpt(x′,y′) += 1 % can be any function, see Section 5
6: end for
7: return A, Fpt

Figure 3: Example input.

Step II. Draw polygons: The
second step renders all the poly-
gons and incrementally updates
the query result. As explained
in Section 3, the polygons are
first triangulated. All triangles
corresponding to a polygon are
assigned the same key (or ID)
as that polygon. As before,
the vertices of the polygons are
transformed into the screen space
and the rasterization converts the
polygons into discrete fragments. The generated fragments are
then processed in the fragment shader (Procedure DrawPolygons).
When processing a fragment corresponding to a polygon with ID
i, the count of points corresponding to this pixel (stored in Fpt) is
added to the result A[i] corresponding to polygon i. Figure 4(b)
highlights the pixels that are counted with respect to one of the
polygons. After all polygons are rendered, the array A stores the
result of the query. As we discuss in Section 5, this approach can
be extended to handle other aggregation and filtering conditions.

Procedure DrawPolygons
Require: Polygon fragment (x′,y′), Polygon ID i,

Point FBO Fpt, Array A
1: A[i] = A[i] + Fpt(x′,y′) % same function as in DrawPoints
2: return A

4.2 Bounded Raster Join
Raster join is an approximate technique that introduces some

false positive and false negative points. In this section, we show
that the number of these errors depends on the resolution and their
2D location can be bounded.

The introduction of false negatives is an artifact of the rasteri-
zation of the triangles that compose a polygon: a pixel is part of
a triangle only when its center is inside the triangle. As a result,
the points that fall in the intersection between a pixel and a triangle
not containing the pixel’s center are not aggregated. The pixels that
intersect the polygon outline are considered to be part of the poly-
gon and they introduce false positives, as all the points contained in
those pixels are aggregated. In the example shown in Figure 4(b),
P1 is approximated by the violet fragments and the false positive



(a) (b)

Figure 4: The raster join approach first renders all points onto
an FBO storing the count of points in each pixel (a). In the sec-
ond step, it aggregates the pixel values corresponding to frag-
ments of each polygon (b).

Figure 5: When the resolution required to satisfy the given ε-
bound is greater than what is supported by the GPU, the canvas
used for drawing the geometries is split into multiple small can-
vases, each having resolution within the GPU’s limit.

counts are highlighted in white. By increasing the screen resolu-
tion, the pixel size decreases and thus pixels better approximate the
polygon outline. As a result, the expected number of both false pos-
itives and false negatives decreases. Clearly, with an appropriately
high resolution, we can converge to the actual aggregate result.

In real-world data, there is typically uncertainty associated with
respect to the location of a point. Similarly, polygon boundaries
(which often correspond to political boundaries) are fuzzy, in the
sense that there is often some leeway as to their exact location.
For example, the neighborhood boundaries of NYC fall on streets,
and in most cases, the whole street surface (rather than a one-
dimensional line) is considered to be the boundary. This means
that when analyzing data over neighborhoods, it is often admissi-
ble to consider data points falling on boundary streets to be part of
either of the two adjacent neighborhoods. In such cases, it is suf-
ficient to compute the aggregate with respect to a polygon i′ that
closely approximates the given polygon i. Formally, a polygon i′

ε-approximates the polygon i if the Hausdorff distance dH(i, i′) be-
tween the polygons is at most ε, where

dH(i, i′) = max
{

max
p′∈i′

min
p∈i

d(p, p′),max
p∈i

min
p′∈i′

d(p′, p)
}

Here, d(p′, p) denotes the Euclidean distance between two points.
Given ε, raster join can guarantee that dH(i, i′) ≤ ε, by using a

pixel side length equal to ε′ = ε√
2

(i.e., the length of the diagonal
of the pixel is ε). Intuitively, this ensures that any false positive
(false negative) point that is present (absent) in the approximate
polygon, and thus considered (or not) in the aggregation, is within
a distance ε from the boundaries of polygon i. For example, the
outline of the violet pixelated polygon in Figure 4(b) represents the
approximation used corresponding to P1. In the example of NYC
neighborhoods, a meaningful aggregate result is obtained by using
a pixel size approximately equal to the average street width.

The required resolution onto which the points and polygons are
rendered to guarantee the ε-bound is w′ ×h′ = w

ε′ ×
h
ε′ , where w×h

Figure 6: Visualizing the approximate (left) and accu-
rate (right) results of the example query in Figure 1. The ε-
bound was set to 20m. Note that the two visualizations are vir-
tually indistinguishable from one another.

are the dimensions of the bounding box of the polygon data set.
When ε becomes small, the required resolution w′×h′ can be higher
than the maximum resolution supported by the GPU. To handle
such cases, the canvas is split into smaller rectangular canvases,
and the raster join algorithm described in Section 4.1 is executed
over each one of them. This multi-rendering process is illustrated
in Figure 5. Recall that during the rendering process, the points or
polygons that do not fall onto the canvas are automatically clipped
by the graphics pipeline. This ensures that every point-polygon pair
satisfying the join is correctly counted exactly once.

Typically, in a visualization scenario such as the motivating ex-
ample in Section 1, it is perfectly acceptable to trade-off accuracy
for interactivity, and increase the query rate by performing only a
single rendering operation with a relatively low resolution. For ex-
ample, Figure 6(left) shows the number of taxi pick-ups that hap-
pened in the month of June 2012 over the neighborhoods of NYC
as obtained using the raster technique with a canvas resolution of
approximately 4k×4k that corresponds to ε = 20 meters. Note that
this approximate result is almost indistinguishable from the visual-
ization obtained from an accurate aggregation (right), but it can be
computed at a fraction of the time. Also, if we fix a resolution as
is common in visualization interfaces, when the user zooms into an
area of interest, a smaller region is rendered with a larger number of
pixels. Effectively, this is equivalent to computing the aggregation
with a higher accuracy without any significant change in computa-
tion times (since the FBO resolution does not change). Thus, our
approach is naturally suited for LOD rendering.

4.3 Accurate Raster Join
While Bounded Raster Join derives good (and bounded) approx-

imations for spatial aggregation queries, some applications require
accurate results. In this section, we describe a modification of the
core raster approach that obtains exact results through the addition
of a minimal number of PIP tests.

Consider the same point and polygon data sets described in the
previous section, but as illustrated in Figure 7(a). Notice that cer-
tain fragments (pixels), colored green and white respectively, are
either completely inside one of the polygons, or outside all poly-
gons. Grid cells colored violet are on the boundary of one or more
polygons. Recall that the errors from the raster approach are due
only to the points that lie in these boundary pixels. This observa-
tion can be used to minimize the number of PIP tests: by perform-
ing tests just on these points, we can guarantee that no errors occur.



(a) (b)
Figure 7: Accurate raster join performs PIP tests only on points
that fall on the violet cells in (a) that correspond to pixels form-
ing the boundaries of the polygons. The other points are ac-
cumulated in the green pixels (b), which are then added to the
polygons that are “drawn” over them.

This is accomplished in three steps.
1. Draw the outline of all the polygons: In this step, the bound-
aries of the set of polygons are rendered onto an FBO. In particular,
the fragment shader assigns a predetermined color to the fragments
corresponding to the boundaries of the polygons. The FBO is first
cleared to have no color ([0,0,0,0]), thus ensuring that at the end of
this step, only pixels on the boundary will have a color. The outline
FBO for the example data will consist of an image having only the
violet pixels from Figure 7.
2. Draw points: This step (Procedure AccuratePoints) builds on
the core raster approach described above. As before, we maintain a
result array A initialized to 0. When a point is processed, it is first
transformed into the screen space. If the fragment corresponding to
the point falls into a boundary pixel (which is determined by exam-
ining the pixel color in the Boundary FBO), the point is processed
with Procedure JoinPoint. This procedure first uses an index over
the polygons to identify candidate polygons that might contain the
point, and then performs a PIP test for every candidate. Since our
focus is on time efficiency, we use a grid index that stores in each
grid cell the list of polygons intersecting it, thus allowing for con-
stant O(1) lookup time. If a point is inside the polygons with IDs
I = {i1, i2, . . . , il}, l≤ k, where k is the total number of polygons, then
each of the array elements A[i], i ∈ I, is incremented by 1.

If the fragment does not correspond to a boundary pixel, then
this fragment is rendered onto a second FBO. In this FBO, as in
the core approach, we use the color channels of a pixel to store the
count of points falling in that pixel. This step results in two outputs:
A, which stores the partial query result corresponding to data points
that fall on the boundary of the polygons; and Fpt, an FBO storing
the count of points that fall into each of its pixels (see Figure 7(b)).

Procedure AccuratePoints
Require: Polygon Index Ind, Points Dpt, Boundary FBO Fb
1: Initialize array A to 0
2: Clear point FBO Fpt
3: for each p = (x,y) ∈ Dpt do
4: (x′,y′) = transform(p)
5: if Fb(x′,y′) is a boundary then % test pixel color in FBO
6: execute JoinPoint(Ind, p, A)
7: else
8: Fpt(x′,y′) += 1 % same function as in DrawPoints
9: end if

10: end for
11: return A, Fpt

3. Render polygons: The final step simply renders all the poly-
gons and updates the query result when processing the polygon
fragments in the fragment shader (Procedure AccuratePolygons).

Procedure JoinPoint
Require: Polygon Index Ind, Point (x,y), Array A
1: P = Ind.query(x,y)
2: for each ri ∈ P do
3: if ri contains p then
4: A[i] = A[i] + 1 % same function as in DrawPoints
5: end if
6: end for
7: return A

The only difference from the core approach in this procedure is
checking if a fragment corresponding to a polygon with ID i falls
on a boundary pixel. If the fragment is on a boundary pixel, then
it is discarded since all points falling into that pixel have already
been processed in the previous step. Otherwise, all points that fall
into the pixel are inside this polygon. Thus, the count of points
corresponding to the pixel (stored in Fpt) is added to the result A[i]
corresponding to polygon i. Note that when polygons intersect,
fragments completely inside one polygon can be on the boundary
of another polygon. The white point in Figure 7(a) is one such
example: it lies inside P1, but on the boundary of P2. After all
polygons are rendered, the array A stores the result of the query.

Procedure AccuratePolygons
Require: Polygon fragment (x′,y′), Polygon ID i,

Boundary FBO Fb, Point FBO Fpt, Array A
1: if Fb(x′,y′) is not a boundary then % test FBO pixel color
2: A[i] = A[i] + Fpt(x′,y′) % same function as in JoinPoint
3: end if
4: return A

5. RASTER JOIN EXTENSIONS
In this section, we discuss how our approach can be extended to

handle different aggregations and filtering clauses, as well as data
larger than GPU memory. We also describe how accurate ranges
can be computed for the aggregate results. While the bounded ap-
proach provides guarantees with respect to the spatial region to take
into account the uncertainties in the spatial data, providing bounds
over the query result can be also useful for a more in-depth analysis.
Aggregates. Aggregate functions are categorized into distributive,
algebraic and holistic [23]. Distributive aggregates, such as count,
(weighted) sum, minimum and maximum, can be computed by di-
viding the input into disjoint sets, aggregating each set separately
and then obtaining the final result by further aggregating the partial
aggregates. Algebraic aggregates can be computed by combining
a constant number of distributive aggregates, e.g., average is com-
puted as sum/count. Holistic aggregates, such as median, cannot
be computed by partitioning the input. In this paper we focus on
count queries, while our current implementation also supports sum
and average. However, note that our solutions apply to any dis-
tributive or algebraic (but not to holistic) aggregates in a straight-
forward manner. When computing the average, as with the count
function, one of the color channels in the FBO (e.g., red) is used for
counting the number of points while another channel (e.g., green) is
used to sum the appropriate attribute. Similarly, instead of a single
output array A, we use two arrays A1 and A2 to maintain the sum
and count values when the polygons are processed (or when PIP
tests are performed in the accurate variant). After all polygons are
drawn in the final step of the algorithm, the query result is obtained
by dividing the elements of the sum array A1 by the elements of the
count array A2. Note that the data corresponding to the aggregated
attribute is also transferred to the GPU.
Query Parameters. When query constraints are specified, they
can also be tested on the GPU for each data point. The constraint



test is performed in the vertex shader before transforming the point
into screen space. The vertex shader discards the points that do not
satisfy the constraint by positioning them outside the screen space
so that they are clipped and they are not further processed in the
fragment shader. We currently support the following constraints:
>,≥,<,≤, and =. Note that the data corresponding to the attributes
over which constraints are imposed is also transferred to the GPU.
Out-of-Core Processing. When the data points do not fit into GPU
memory, they are split into batches that fit into the GPU. Then the
query is executed on each of the batches and the results are com-
bined. Thus, a given point data set has to be transferred to the GPU
exactly once. Current generation GPUs have at least a few GB of
memory that can easily fit several million polygons (depending on
their size). Thus, we assume that the polygon data set fits into GPU
memory and does not need to be transferred in batches.
Estimating the Result Range. We extend the bounded variant to
compute a range for the aggregate result at each polygon. This is
accomplished using the boundary pixels corresponding to the poly-
gons as follows. Given a polygon i, let P+

i (P−i ) be the set of pix-
els on its boundary that contain false positive (negative) results.
Since only these pixels contribute to the approximation, counting
the points contained in them provides loose bounds on the result
range. In particular, the sums ε+

i =
∑

(x,y)∈P+
i

Fpt(x,y) and ε−i =∑
(x,y)∈P−i

Fpt(x,y) are used to compute the worst case lower and
upper bounds respectively, resulting in the interval [A[i]−ε+

i ,A[i]+

ε−i ] with 100% confidence.
Independent of the actual data distribution, since the region cor-

responding to a pixel covers a very small fraction of the spatial do-
main, we can reasonably assume that the spatial and value-domain
distribution of the data points within each pixel is uniform. Un-
der this assumption, we provide tighter expected intervals by com-
puting the intersection between the boundary pixels and the poly-
gons. In particular, let fi(x,y) denote the fraction area of the pixel
(x,y) that intersects polygon i. Then the expected lower and upper
bounds, respectively, are computed as before using:

ε+
i =

∑
(x,y)∈P+

i

fi(x,y)×Fpt(x,y)

ε−i =
∑

(x,y)∈P−i

fi(x,y)×Fpt(x,y)

The corresponding intervals for sum and average can be com-
puted in a similar fashion.

6. IMPLEMENTATION
In this section we first discuss the implementation of the raster

join approaches using OpenGL2. We then briefly describe the GPU
baseline used for the experiments.

6.1 OpenGL Implementation
We used C++ and OpenGL for the implementation. We make ex-

tensive use of the newer OpenGL features, such as compute shaders
and shader storage buffer objects (SSBO). Compute shaders add
the flexibility to perform general purpose computations (similar
to cuda [40]) from within the OpenGL context while making the
implementation (hardware) manufacturer independent. SSBOs en-
able shaders to write to external buffers (in addition to FBOs). For
memory transfer between the CPU and GPU, we use the newly in-
troduced persistent mapping that is part of OpenGL’s techniques
for Approaching Zero Driver Overhead.

2
https://github.com/vida-nyu/raster-join

Polygon Triangulation. To triangulate polygons, we use the clip2tri
library [12], which implements an efficient constrained Delaunay-
based triangulation strategy. Triangulation is accomplished in par-
allel on the CPU and the set of triangles is transferred to the GPU
during query execution.
Bounded Raster Join. Each of the two steps of the bounded ap-
proach, i.e., drawing points followed by drawing polygons, is com-
posed of two shaders – a vertex shader and a fragment shader.

When drawing points, we transfer them to the GPU by copying
them to a persistently mapped buffer that is used as a vertex buffer
object (VBO). Each vertex shader instance takes a single data point
from the VBO and transforms it into screen space (Line 4 in Proce-
dure DrawPoints). The transformed point is processed in the frag-
ment shader, which essentially updates the FBO at the given loca-
tion (Line 5 in Procedure DrawPoints). Note that the memory for
the FBO is allocated directly on the GPU.

When drawing polygons, the triangle coordinates are passed to
the GPU as part of the VBO, and the vertex shader again trans-
forms the endpoints to screen space. The rasterization is accom-
plished as part of the OpenGL pipeline, and each fragment result-
ing from this operation is processed in the fragment shader (Pro-
cedure DrawPolygons). Since the FBO from the previous step is
already on the GPU, it is simply bound as a texture to the fragment
shader, thus ensuring there is no unnecessary data transfer between
the CPU and GPU. The result array A is maintained as an SSBO,
and atomic operations are used when updating it. An advantage
of SSBOs is that they allow processing intersecting polygons in a
single pass thus avoiding unnecessary, additional processing.
Computing Result Ranges. Recall that the boundary pixels that
contribute to both false positives and false negatives have to be
identified to compute the result intervals. False positive pixels are
identified by simply drawing the outline of a polygon. Identifying
false negative pixels, however, is less straightforward. To accom-
plish this, we use conservative rasterization that allows rendering
all partially covered pixels: the outline is drawn using conservative
rasterization, and pixels that are not part of the regular rasterization
form the false negative pixels. Conservative rasterization is sup-
ported via a custom OpenGL extension (GL NV conservative raster)
on Nvidia GPUs. On non-Nvidia GPUs, conservative rasterization
can be accomplished by drawing a thicker outline and discarding
pixels that do not intersect with the drawn polygon.

Deriving the tighter expected result interval requires computing
the intersection between a pixel and its corresponding polygon. To
do this efficiently, in the vertex shader, in addition to the trans-
formed coordinates, we output the edge that is being drawn. We
then use the Cohen-Sutherland line clipping algorithm [21] in the
fragment shader to compute the fraction of the pixel that intersects
with the polygon.
Accurate Raster Join. The first step of the accurate variant (draw-
ing polygon boundaries) is again implemented as a vertex and frag-
ment shader, where the boundaries are stored in an FBO. Conser-
vative rasterization is used to ensure that no boundary pixels are
missed. The second step (lines 4–9 in Procedure AccuratePoints) is
implemented using compute shaders. As before, persistent mapped
buffers are used for sharing data between the CPU and GPU. In
addition to the data points, this step also requires a grid index on
the query polygons. This index is created on-the-fly on the GPU
as described next. The implementation of the third step (Proce-
dure AccuratePolygons) is similar to that of the bounded raster join.
Polygon Index. We implemented a grid index that stores a poly-
gon identifier in all the grid cells intersecting the bounding box of
that polygon. The grid is represented as an array of linked lists,
one for every grid cell. Each linked list stores all polygons that are



assigned to a grid cell. We build the index on the GPU on-the-fly
for every query in two passes. Given a grid resolution, the first pass
computes the number of cells each polygon intersects with to esti-
mate the size of the index. The second pass assigns the polygons to
their corresponding cells. Since dynamic memory allocation is not
supported on the GPU, we allocate the required memory directly
on the GPU as a single contiguous region and implement a custom
linked list. This memory is discarded after the query is executed.
Query Options. We chose to pass attributes as part of the VBO
rather than regular buffers to allow for an efficient stratified access
to the data when processing the vertex information in the vertex
shader. However, this imposes the restriction that the size of each
vertex must be fixed at compile time. As a result, in our imple-
mentation, we support constraints (which are conjunctions) over a
maximum of 5 attributes. We can increase this constant up to the
hardware limit in the shader code.

6.2 Baseline: Index Join Approach
As we show in the next section, using current GPU-based spa-

tial join techniques [72] to execute the spatial aggregation is not
very efficient mainly due to the materialization of the spatial join
prior to the aggregation. To have a better baseline to compare
our rasterization-based approaches, we extend existing index-based
techniques to combine the spatial join operation with the aggrega-
tion so as not to explicitly materialize the join.

The key idea is to use an index on the polygon data to identify
polygons on which to perform PIP tests. As with the accurate raster
join, we use the grid index for this purpose. The query is executed
as shown in Procedure IndexJoin. As with the raster join variants,
the result array A is initialized to 0. Then the algorithm processes
each point p(x,y) ∈ Dpt using Procedure JoinPoint. Note that in the
case of accurate raster join, this Procedure is executed only for a
subset of points that are within a small distance from the polygon
boundaries. After all points are processed, the array A contains the
query result. Similar to the accurate raster join variant, the above
query is implemented using a compute shader.

Procedure IndexJoin
Require: Polygon Index Ind, Points Dpt
1: Initialize array A to 0
2: for each p = (x,y) ∈ Dpt do % Can be run in parallel
3: execute JoinPoint(Ind, p)
4: end for
5: return A

7. EXPERIMENTAL EVALUATION
In this section, we first describe the experimental setup and then

present a thorough experimental analysis that demonstrates the ben-
efits of our raster join approach using two real-world data sets. Sec-
tions 7.3–7.5 discuss the scalability of the approaches when data
fits in main memory. The goal of these experiments is threefold:
1) demonstrate the benefits of exploiting the parallelism of GPU;
2) verify the scalability of the approaches with increasing input
sizes; and 3) show that the bounded variant outperforms all the
other approaches in terms of query performance. Section 7.6 pro-
vides an in-depth analysis of the accuracy trade-offs of the bounded
raster join approach. Finally, Section 7.7 presents experiments on
data sizes larger than the main memory.

7.1 Experimental Setup
Hardware Configuration. The experiments were performed on a
Windows laptop equipped with an Intel Core i7 Quad-Core pro-
cessor, running at 2.8 GHz, 16 GB RAM and 1 TB SSD, and an
NVIDIA GTX 1060 mobile GPU with 6 GB of GPU memory.

Table 1: Polygonal data sets and processing costs.

Region Nr of
polygons

Text file
size

Triangu-
lation

Index Creation

GPU Multi-
CPU

Single-
CPU

NYC neigh-
borhoods 260 877 KB 20 ms 10 ms 0.57 s 2.15 s

US counties 3945 20 MB 0.66 s 14 ms 23.34 s 37.05 s

Data Sets. We use two real-world data sets for our experiments:
NYC yellow taxi and Twitter. The NYC Taxi data set contains de-
tails of over 868 million yellow taxi trips that occurred in NYC over
a 5 year period (2009 - 2013). The data is available [60] as a col-
lection of csv files, which when converted to binary occupy 72 GB.
Each record corresponds to a taxi trip and consists of two spatial
attributes (pickup and drop-off locations), two temporal attributes
(pickup and drop-off times), as well as other attributes such as fare,
tip, and number of passengers. The data is stored as columns on
disk and the required columns (attributes) from the Taxi data set
are loaded into main memory prior to performing any experiments.
The Twitter data set was collected from Twitter’s live public feed
over a period of 5 years. It consists of over 2.29 billion geo-tagged
tweets in the USA formatted as json records. Each tweet record has
attributes corresponding to the location and time of the tweet, the
actual text, and other information such as the favorite and retweet
counts. When converted to binary, the data (excluding the text) oc-
cupies 69 GB on disk. Note that both data sets are skewed. Taxi
trips are mostly concentrated in Lower Manhattan, Midtown, and
airports, while there is a denser concentration of tweets around
large cities. Sections 7.2–7.6 use the taxi data set. To perform
the join queries, we also use two polygon data sets, summarized in
Table 1. These data sets contain complex polygons commonly used
by domain experts in their analyses.
Queries. For the experimental evaluation, we use Count() as the
most representative aggregate function. Unless otherwise stated,
no filtering is performed on additional attributes. To vary the input
sizes, we first divided the data into roughly equal time intervals.
The input size of a query was then increased by using data from
increasing number of time intervals.
CPU Baseline: Index Join Approach. In addition to the GPU
approaches, we also implemented the Index Join Approach on the
CPU (described in Section 6). We further optimized the approach
by assigning a polygon only to those grid cells that the actual ge-
ometry intersects. That is, we build the polygon index by first iden-
tifying all the cells intersecting with the MBR of the polygon, and
then perform cell-polygon intersection tests. The algorithm was
implemented in C++. We also implemented a parallel version with
OpenMP, where we used #pragma omp parallel for to parallelize
the PIP tests (Line 2 in Procedure IndexJoin). To avoid locking
delays, each thread maintains the aggregates in a thread-local data
structure, and all the aggregates are merged into a single result array
in the end. The building of the polygon index was also parallelized
(each polygon was processed independently).
Processing Polygon Data. Recall that both rasterization variants
require the polygons to be triangulated (Section 3), while the ac-
curate variant, and the CPU as well as GPU baselines require the
creation of an index. For all the GPU approaches, our implemen-
tation computes the triangulation (in parallel on the CPU) and the
indexes (on the GPU) on-the-fly for each query. On the other hand,
since the CPU computation is much slower, the indexes were pre-
computed. Table 1 shows the time taken for each of these cases.
To be consistent, we do not include the polygon processing time
in the reported query execution time. However, note that even if



Figure 8: Scaling with increasing input sizes for Taxi ./ Neigh-
borhood when the data fits in GPU memory. (Left) Speedup
over single-CPU. (Right) Total query time. Bounded Raster
Join has the best scalability as it eliminates all PIP tests. Ac-
curate Raster Join performs fewer PIP tests than the Baseline.

these time were included, they would have a minimal effect on the
performance of the GPU approaches.
Configuration Parameters. We limited the GPU memory usage
to 3 GB, and the maximum FBO resolution to 8192×8192. Unless
otherwise stated, the default ε-bound for NYC polygons is 10 m,
and 1 km for US polygons. The resolution of the grid index for
the neighborhood polygonal data set was set to 10242. For US
counties, the GPU approaches use a grid index with 10242 cells,
while the CPU baselines use 40962 cells. The index resolution for
the GPU approaches was chosen based on the total time, including
index creation time, since this was part of the query execution. The
overall performance of using a 10242 index far outweighed that
of using a 40962 index on the GPU. On the other hand, since we
pre-computed the index for the CPU implementation, we chose the
resolution that provided best query performance.

7.2 Choice of GPU Baseline
Table 2 compares our GPU index-based approach (Index Join)

with state-of-the-art work on GPU join/aggregation3 [72]. Our im-
plementation performs 2-3× faster, mainly due to avoiding the ma-
terialization of the join result. We could not perform experiments
with bigger input sizes as the provided code ran out of GPU mem-
ory. In the remaining experiments, given its clear advantages, we
use our Index Join as the GPU baseline.

Table 2: Choice of GPU baseline.

Input Size (#points) Zhang et al. [72]
(total time - ms)

Index Join Baseline
(total time - ms)

57,676,723 1060 344
111,659,661 1649 651
168,368,285 2129 999

7.3 Scalability with Points
In-Memory Performance. Figure 8 (left) plots the speedup of the
parallel approaches (GPU and CPU) relative to our single-threaded
CPU baseline when the point data sets fit in the GPU memory (i.e.,
the GPU memory holds the entire data set and data need not be
transferred from the CPU to the GPU). Figure 8 (right) plots the
total time against input size. The rasterization-based approaches
are over two orders of magnitude faster than the single-core CPU
implementation. Moreover, the bounded variant is over 4 times
faster than the accurate versions. Given that our test system has a
quad core processor (with a total of 8 threads), the multi-core CPU
implementation provides a 5× speedup over the single-core CPU
implementation. Thus, for the same laptop the GPU offers at least
an order of magnitude more parallelism.

3Code made available by the authors at http://geoteci.engr.ccny.
cuny.edu/zs_supplement/zs_gbif.html

Figure 9: Scaling with increasing input sizes for Taxi ./
Neighborhood when the data does not fit in GPU memory.
(Left) Speedup over single-CPU. (Right) Break down of the ex-
ecution time. Note that the memory transfer between CPU and
GPU dominates the execution time for the bounded approach.

Out-of-Core Performance. While significant speedups are ob-
tained for in-memory queries, large speedups are achieved even
when the data does not fit in GPU memory. As illustrated in Fig-
ure 9, the GPU approaches still obtain over an order of magni-
tude speedup over the CPU implementation while bounded raster
join has a speedup of over two orders of magnitude. Note that,
since the query times in this case are in milliseconds, the speedups
are affected by even small fluctuations in the time (e.g., due to
other windows background processes). The scalability observed
for the different approaches is similar to that when data fits in GPU
memory. By eliminating the costly polygon containment tests, the
bounded approach significantly outperforms the other approaches.
Even when the input size is around 868 million points, query exe-
cution takes only 1.1 seconds. The linear scaling also shows that
the computation time is typically not affected by the number of ad-
ditional passes required in the out-of-core scenario. To better un-
derstand the reduced speedup attained by the out-of-core technique
compared to in-memory, we broke down the total execution time
into the different components of query evaluation, i.e., processing
and data transfer. The data transfer has a significant contribution in
the overall time, especially in the case of bounded raster join where
it dominates the execution time.

7.4 Scalability with Polygons
Generating Polygons. Since real-world polygonal data consists
of a small number of polygons (100’s to 1000’s), we generated
polygonal data to test the scalability of our approaches with the
number of polygons. Our goal was to generate synthetic polygons
with properties similar to the real ones. In particular, the generated
data should contain a combination of simple as well as complex-
shaped polygons (concave and arbitrary) with varying sizes. To
accomplish this, we use the Voronoi diagram to generate a collec-
tion of convex polygons of varying sizes (based on the location of
the points) and then ensure that concave and more complex shapes
are generated by merging multiple adjacent convex polygons. More
specifically, to generate n polygons, we first randomly generated 4n
points within the rectangular extent of the data. We then computed
the constrained Voronoi diagram over these points. This gener-
ates a collection of 4n convex polygons partitioning the rectangular
region. Next, we randomly chose two neighboring polygons and
merged them into a single polygon. We repeated this step until
only n polygons remained.
Polygon Processing Costs. Figure 10 (left) shows the cost of pro-
cessing the polygons (i.e., triangulation and index creation). As
with the neighborhood data, we build a grid index with 10242 cells.
Recall that the bounded variant requires only triangulation, the base-
line only grid index creation, and the accurate variant both. As ex-
pected, triangulation time increases with an increasing number of
polygons. When building the index, since the polygons partition



Figure 10: Scaling with polygons. (Left) Polygon processing costs. (Middle) Total query time when data does not fit in GPU memory.
(Right) GPU processing time. Note that increasing the number of polygons has almost no effect on Bounded Raster Join.

Figure 11: Scaling with number of attribute constraints.

the space, we touch all cells of the grid index one or more times
depending on the polygons’ structure. That explains the small drop
at the beginning of the plot: even though the number of polygons
increases, the sizes of their bounding boxes become smaller and
each grid cell needs to be processed fewer times. As the number of
polygons further increases, each grid cell intersects more polygon
bounding boxes and needs to be processed more times thus increas-
ing the building time. Note that even 64K polygons are processed
in milliseconds. Thus, in dynamic settings where the polygons are
not known a priori, they can be efficiently processed on-the-fly.
Performance. Figure 10 (middle) plots the total time when joining
with 600 M points that do not fit in GPU memory. Figure 10 (right)
focuses on the time spent on the GPU. The performance gap be-
tween the accurate variant and the baseline is much smaller in this
scenario. Given the large number of polygons, the polygon outlines
cover a significantly higher number of pixels, thus requiring more
PIP tests to be performed. In the worst case, if the polygonal data
set is very dense, the accurate variant degenerates into the baseline.
Current generation GPUs can handle millions of polygons at fast
frame rates. Since the bounded variant decouples the processing of
points and polygons, increasing the number of polygons has almost
no effect on the query time. The performance of the in-memory sce-
nario is similar to that of Figure 10 (right), which shows the GPU
processing times.

7.5 Adding Constraints
As mentioned in Section 1, users commonly change query pa-

rameters interactively as they explore a data set. To test the ef-
ficiency of our approach in this scenario, we incrementally apply
constraints on different attributes of the taxi data. Figure 11 shows
the total execution time of these queries for two input sizes, the first
fitting in GPU memory (85 M points) and the second not (226 M
points). The out-of-GPU-core breakdown shows that increasing the
number of constraints increases the memory transfer time, as more
data corresponding to the filtered attributes has to be transferred.
However, the processing time is sometimes reduced with a higher
number of constraints, because points that do not satisfy the con-
straints are discarded in the vertex shader, before performing any
processing, thus reducing the amount of work done by the GPU.

7.6 Accuracy
Accuracy-Time Trade-Off. Figure 12(a) plots the trade-off be-
tween accuracy and query time for a query involving 600 M points
(out-of-core). As the value of ε decreases, the number of rendering
passes increases quadratically, thus the query time increases. After
some point, the bounded variant becomes slower than the accurate.
Analyzing this trade-off can help a query optimizer to automatically
select a variant based on the value of ε.
Accuracy-ε-Bound Trade-Off. Figure 12(b) shows the effect of
the specified ε-bound on the accuracy of the query results. The
whiskers of the box plot represent the extent that is within 1.5 times
the interquartile range of the 1st and 3rd quartiles, respectively.
Decreasing the ε-bound decreases the error range converging to-
wards the accurate values. The error range for the default value of
ε = 10 m is small, with a median of only about 0.15%. To show
the actual differences in the aggregation results, we also plot the
accurate vs. the approximate value for each of the polygons, us-
ing the coarsest bound (ε = 20 m) in Figure 12(c). The fact that
all the points lie very close to the diagonal indicates that even for
a coarse bound a very good approximation is obtained. The bars
in these plots denote the expected result interval that is computed
(being very small, it is not clearly visible on the complete scatter
plot). As seen in the highlighted region, our approach provides a
tight interval even for a coarse ε value. The overhead of computing
the intervals is negligible; computing them even for the costliest
bound of ε = 1 m required only an additional 140 ms. The accuracy
trade-offs of the in-memory setup have a similar behavior.
Effect on Visualizations. Figure 6 shows side-by-side the visu-
alizations computed through the bounded and accurate variations
respectively. Note that the two visualizations are perceptually in-
distinguishable. The quality of the approximations can also be
formally verified using just-noticeable difference (JND), a quan-
tity used to measure how much a color should “increase” or “de-
crease” before humans can reliably detect the change [13]. In par-
ticular, sequential color maps used in the above visualizations can
have a maximum of 9 perceivable color classes [25], resulting in
a JND equal to 1

9 . A human can perceive the difference between
the approximate and accurate visualizations, only when the differ-
ence between the corresponding normalized values is greater than
1
9 . However, the maximum absolute error between the normalized
values even for the coarsest error bound (ε = 20 m) is less than
0.002� 0.11, clearly showing that the difference from the visual-
ization obtained using the bounded variation is not perceivable.

7.7 Performance on Disk-Resident Data
Figure 13 shows the performance of the different approaches

when the data does not fit into the main memory of the system. We
use the twitter data for this purpose, and aggregate over all coun-
ties in the USA. The increase in query time is primarily due to disk
access times. Our implementation simply reads data from disk as



Figure 12: Accuracy analysis. (a) Accuracy-time trade-off. (b) Accuracy-ε-bound trade-off. The box plot shows the distribution of
the percent error over the polygons for different ε-bounds. (c) The scatter plot shows, for each polygon, the accurate value against
the approximate value for ε = 20 m. The red error bars indicate the expected result intervals (see the enlarged highlighted region).

Figure 13: Scaling with points when data does not fit in
main memory (Twitter ./ County). (Left) Total query time.
(Right) Processing time excluding memory access time.

and when required to transfer to the GPU, and does not apply any
I/O optimizations such as parallel prefetching, which are beyond
the scope of this work. Our focus was on the design of an efficient
operator to perform spatial aggregation that can be integrated into
any existing DBMS which efficiently handles such scenarios. In
spite of this increase, the GPU approaches still provided over an
order of magnitude speedup over the CPU baseline. When looking
at only the processing times (time spent by the GPU), note that the
timings are consistent with those when data fits in main memory.
Even when executing a query with close to 2.3 billion points and
over 3,900 polygons, the GPU processing time with Bounded is
less than 5 seconds. Due to lack of space, we do not report other
scalability results, but we note that the results were consistent with
the main memory results with the addition of disk access time.

Since the counties data spans the whole USA, we chose ε = 1 km
for the above experiments. Figure 14 shows the accuracy-time as
well as accuracy-ε-bound trade-off for 1.8 billion points. The scat-
ter plot visualizing the accuracy of the query is similar to the taxi
experiments, with the points falling close to the diagonal.

8. LIMITATIONS AND DISCUSSION
Worst-Case Scenario for the Accurate Approach. When the
polygonal data set is very dense, every pixel of the FBO will fall
at the boundary of some polygon and the accurate variant essen-
tially becomes the baseline index-based approach. In fact, in this
case, the accurate variant will take more time than the baseline, as it
performs additional drawing (rendering) operations. This can also
happen if the data is skewed such that all points fall close to the
boundaries of the polygons.
Choice of Color Maps. We assume that continuous color maps are
used for visualizations. In the case of categorical color maps, for
values that fall around the boundary of two colors, even a minute
error can completely change the color of the visualization.
Choosing Between the two Raster Variants. Setting a very small
bound can result in the accurate variant becoming faster than the
bounded variant of the raster join. This is because of the high num-
ber of renderings required to satisfy the input bound. We intend to

Figure 14: Accuracy-Time trade-off (left) and ε-bound trade-
off (right) using the Twitter data.

add an estimate of the time required for the two variants, so that an
optimizer can choose the best option based on the input query.
Performing Multiple Aggregates. Our current implementation
performs only one aggregate per query. For multiple aggregates,
multiple queries have to be issued. However, the implementation
can be extended to support multiple aggregate functions by hav-
ing multiple color attachments to the FBO. Similar to the multiple
constraints scenario, this will increase the memory transfer time.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we propose efficient algorithms to evaluate spatial

aggregation queries over arbitrary polygons, which is an essential
operation in visual analytics systems. By efficiently making use of
the graphics rendering pipeline and trading-off accuracy for perfor-
mance, our approach achieves real-time responses to these queries
and takes into account dynamic updates to query parameters with-
out requiring any memory-intensive pre-computation. In addition,
the OpenGL implementation makes the technique portable and easy
to incorporate as an operator in existing database systems.

By showcasing the utility of computer graphics techniques in
the context of spatial data processing, we believe this work opens
new opportunities to make use of advanced graphics techniques for
database research, especially in the context of the ever increasing
spatial/spatio-temporal data. For example, spatial joins between
3D data sets could greatly benefit from the use of ray casting and
collision detection approaches. These approaches could also be
applied to perform more complex spatio-temporal joins.

Acknowledgments. This work was supported in part by: the Moore-
Sloan Data Science Environment at NYU; NASA; DOE; NSF awards
CNS-1229185, CCF-1533564, CNS-1544753, CNS-1730396, and
OAC 1640864; EU Horizon 2020, GA No 720270 (HBP SGA1);
and the EU FP7 (ERC-2013-CoG), GA No 617508 (ViDa). J. Freire
and C. T. Silva are partially supported by the DARPA MEMEX and
D3M programs. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of DARPA.



10. REFERENCES
[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,

and I. Stoica. Blinkdb: Queries with bounded errors and
bounded response times on very large data. In Proc. EuroSys,
pages 29–42, 2013.

[2] D. Aghajarian, S. Puri, and S. Prasad. Gcmf: An efficient
end-to-end spatial join system over large polygonal datasets
on gpgpu platform. In Proc. SIGSPATIAL, pages 18:1–18:10,
2016.

[3] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and
J. Saltz. Hadoop gis: A high performance spatial data
warehousing system over mapreduce. PVLDB,
6(11):1009–1020, 2013.

[4] G. Andrienko, N. Andrienko, C. Hurter, S. Rinzivillo, and
S. Wrobel. Scalable Analysis of Movement Data for
Extracting and Exploring Significant Places. IEEE TVCG,
19(7):1078–1094, 2013.

[5] N. Ao, F. Zhang, D. Wu, D. S. Stones, G. Wang, X. Liu,
J. Liu, and S. Lin. Efficient parallel lists intersection and
index compression algorithms using graphics processing
units. PVLDB, 4(8):470–481, 2011.

[6] L. Battle, M. Stonebraker, and R. Chang. Dynamic reduction
of query result sets for interactive visualizaton. In Proc.
IEEE Big Data, pages 1–8, 2013.

[7] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications.
Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd edition,
2008.

[8] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and
G. Saake. Gpu-accelerated database systems: Survey and
open challenges. In Transactions on Large-Scale Data- and
Knowledge-Centered Systems XV, pages 1–35. Springer,
2014.

[9] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
processing of spatial joins using r-trees. In Proc. SIGMOD,
pages 237–246, 1993.

[10] Chicago Open Data.
https://data.cityofchicago.org/.

[11] F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire.
Data polygamy: The many-many relationships among urban
spatio-temporal data sets. In Proc. SIGMOD, pages
1011–1025, 2016.

[12] Using clipper and poly2tri together for robust triangulation.
https://github.com/raptor/clip2tri, 2015.

[13] S. Coren, L. M. Ward, and J. T. Enns. Sensation and
Perception. Wiley, 2003.

[14] O. Corporation. Oracle spatial and graph: Advanced data
management. Technical report, Oracle, 2014.

[15] J. Davis. Ibms db2 spatial extender: Managing geo-spatial
information with the dbms. IBM White Paper, 1998.

[16] H. Doraiswamy, N. Ferreira, T. Damoulas, J. Freire, and
C. Silva. Using topological analysis to support event-guided
exploration in urban data. IEEE TVCG, 20(12):2634–2643,
2014.

[17] H. Doraiswamy, H. T. Vo, C. T. Silva, and J. Freire. A
gpu-based index to support interactive spatio-temporal
queries over historical data. In Proc. ICDE, pages
1086–1097, May 2016.

[18] W. Fang, B. He, and Q. Luo. Database compression on
graphics processors. PVLDB, 3(1-2):670–680, 2010.

[19] Y. Fang, M. Friedman, G. Nair, M. Rys, and A.-E. Schmid.

Spatial indexing in microsoft sql server 2008. In Proc.
SIGMOD, pages 1207–1216, 2008.

[20] N. Ferreira, M. Lage, H. Doraiswamy, H. Vo, L. Wilson,
H. Werner, M. Park, and C. Silva. Urbane: A 3d framework
to support data driven decision making in urban
development. In Proc. IEEE VAST, pages 97–104, 2015.

[21] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.
Computer Graphics: Principles and Practice.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 1990.

[22] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations using
graphics processors. In Proc. SIGMOD, pages 215–226,
2004.

[23] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Mining and Knowledge
Discovery, 1(1):29–53, 1997.

[24] A. Guttman. R-trees: a dynamic index structure for spatial
searching. SIGMOD Rec., 14(2):47–57, June 1984.

[25] M. Harrower and C. A. Brewer. Colorbrewer.org: An online
tool for selecting colour schemes for maps. The
Cartographic Journal, 40(1):27–37, 2003.

[26] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo,
and P. Sander. Relational joins on graphics processors. In
Proc. SIGMOD, pages 511–524, 2008.

[27] J.-F. Im, F. Villegas, and M. McGuffln. Visreduce: Fast and
responsive incremental information visualization of large
datasets. In Proc. IEEE Big Data, pages 25–32, 2013.

[28] A. Inselberg and B. Dimsdale. Parallel coordinates. In
Human-Machine Interactive Systems, pages 199–233.
Springer, 1991.

[29] E. H. Jacox and H. Samet. Spatial join techniques. ACM
Trans. Database Syst., 32(1), Mar. 2007.

[30] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: A
visualization-oriented time series data aggregation. PVLDB,
7(10):797–808, 2014.

[31] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi.
Distributed and interactive cube exploration. In Proc. ICDE,
pages 472–483, 2014.

[32] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. Fast:
fast architecture sensitive tree search on modern cpus and
gpus. In Proc. SIGMOD, pages 339–350, 2010.

[33] L. Lins, J. Klosowski, and C. Scheidegger. Nanocubes for
real-time exploration of spatiotemporal datasets. IEEE
TVCG, 19(12):2456–2465, Dec 2013.

[34] Z. Liu and J. Heer. The effects of interactive latency on
exploratory visual analysis. IEEE TVCG, 20(12):2122–2131,
2014.

[35] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual
querying of big data. CGF, 32, 2013.

[36] Mapd technology. https://www.mapd.com/.
[37] F. Miranda, H. Doraiswamy, M. Lage, K. Zhao, B. Gonalves,

L. Wilson, M. Hsieh, , and C. Silva. Urban pulse: Capturing
the rhythm of cities. IEEE TVCG, 23(1):791–800, 2017.

[38] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting
classification of parallel rendering. IEEE CG&A,
14(4):23–32, July 1994.

[39] MySQL 5.0 Reference Manual (11.5 Extensions for Spatial
Data), 2015.



[40] Nvidia. NVIDIA CUDA Compute Unified Device
Architecture - Programming Guide, 2007.

[41] NYC Open Data. http://data.ny.gov.
[42] M. Olano and T. Greer. Triangle scan conversion using 2d

homogeneous coordinates. In Proc. ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, HWWS, pages 89–95, 1997.

[43] Yahoo labs. https://webscope.sandbox.yahoo.com/.
[44] T. Ortner, J. Sorger, H. Steinlechner, G. Hesina, H. Piringer,

and E. Grller. Vis-a-ware: Integrating spatial and non-spatial
visualization for visibility-aware urban planning. IEEE
TVCG, 23(2):1139–1151, Feb 2017.

[45] C. Pahins, S. Stephens, C. Scheidegger, and J. Comba.
Hashedcubes: Simple, low memory, real-time visual
exploration of big data. IEEE TVCG, 23(1):671–680, 2017.

[46] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient olap
operations in spatial data warehouses. In Proc. SSTD, 2001.

[47] J. Patel and D. DeWitt. Partition Based Spatial-Merge Join.
In Proc. SIGMOD, pages 259–270, 1996.

[48] M. Pavlovic, T. Heinis, F. Tauheed, P. Karras, and
A. Ailamaki. Transformers: Robust spatial joins on
non-uniform data distributions. In Proc. ICDE, pages
673–684, May 2016.

[49] J. Pineda. A parallel algorithm for polygon rasterization.
SIGGRAPH Comput. Graph., 22(4):17–20, June 1988.

[50] PostGIS: Spatial and geographic objects for PostgreSQL.
http://postgis.net/.

[51] R. Scheepens, N. Willems, H. van de Wetering,
G. Andrienko, N. Andrienko, and J. van Wijk. Composite
density maps for multivariate trajectories. IEEE TVCG,
17(12):2518–2527, 2011.

[52] J. R. Shewchuk. Delaunay refinement algorithms for
triangular mesh generation. Comput. Geom. Theory Appl.,
22(1-3):21–74, May 2002.

[53] B. Shneiderman. The eyes have it: a task by data type
taxonomy for information visualizations. In Proc. IEEE
Symposium on Visual Languages, pages 336–343, 1996.

[54] D. Shreiner, G. Sellers, J. M. Kessenich, and B. M.
Licea-Kane. OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 4.3. Addison-Wesley
Professional, 8th edition, 2013.

[55] B. Simion, D. N. Ilha, A. D. Brown, and R. Johnson. The
price of generality in spatial indexing. In Proc. BigSpatial,
2013.

[56] C. Stolte and P. Hanrahan. Polaris: A system for query,
analysis and visualization of multi-dimensional relational

databases. IEEE Transactions on Visualization and
Computer Graphics, 8(1):52–65, 2002.

[57] C. Sun, D. Agrawal, and A. El Abbadi. Hardware
acceleration for spatial selections and joins. In Proc.
SIGMOD, pages 455–466, 2003.

[58] G.-D. Sun, Y.-C. Wu, R.-H. Liang, and S.-X. Liu. A Survey
of Visual Analytics Techniques and Applications:
State-of-the-Art Research and Future Challenges. J. of
Comp. Sci. and Tech., 28(5):852–867, 2013.

[59] Y. Tao, D. Papadias, and J. Zhang. Aggregate processing of
planar points. In Proc. EDBT, 2002.

[60] TLC Trip Record Data. http://www.nyc.gov/html/tlc/
html/about/trip_record_data.shtml, 2015.

[61] J. W. Tukey. Exploratory Data Analysis. Pearson, 1977.
[62] Twitter API. https://dev.twitter.com/.
[63] I. F. Vega Lopez, R. T. Snodgrass, and B. Moon.

Spatiotemporal aggregate computation: A survey. IEEE
Trans. on Knowl. and Data Eng., 17(2):271–286, Feb. 2005.

[64] M. Vermeij, W. Quak, M. Kersten, and N. Nes. Monetdb, a
novel spatial columnstore dbms. In FOSS4G, 2008.

[65] L. Wang, R. Christensen, F. Li, and K. Yi. Spatial online
sampling and aggregation. PVLDB, 9(3):84–95, 2015.

[66] H. Wickham. Bin-summarise-smooth: a framework for
visualising large data. Technical report, had.co.nz, 2013.

[67] N. Willems, H. Van De Wetering, and J. J. Van Wijk.
Visualization of vessel movements. CGF, 28(3):959–966,
2009.

[68] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba:
Efficient in-memory spatial analytics. In Proc. SIGMOD,
pages 1071–1085, 2016.

[69] J. Zhang and S. You. Speeding up large-scale
point-in-polygon test based spatial join on gpus. In Proc.
BigSpatial, pages 23–32, 2012.

[70] J. Zhang, S. You, and L. Gruenwald. High-performance
online spatial and temporal aggregations on multi-core cpus
and many-core gpus. In Proc. DOLAP, pages 89–96, 2012.

[71] J. Zhang, S. You, and L. Gruenwald. High-performance
spatial join processing on gpgpus with applications to
large-scale taxi trip data. Technical report, The City College
of New York, 2012.

[72] J. Zhang, S. You, and L. Gruenwald. Efficient parallel zonal
statistics on large-scale global biodiversity data on gpus. In
Proc. BigSpatial, pages 35–44, 2015.

[73] G. Zimbrao and J. M. d. Souza. A raster approximation for
processing of spatial joins. In Proc. VLDB, pages 558–569,
1998.


