7 research outputs found

    Nanotechnology and preventive arms control

    Full text link
    "Nanotechnology (NT) is about analysis and engineering of structures with size between 0.1 and 100 nanometres (1 nm = 10 -9 m). At this scale, new effects occur and the boundaries between physics, chemistry and biology vanish. NT is predicted to lead to stronger but lighter materials, markedly smaller computers with immensely increased power, large and small autonomous robots, tools for manipulation of single molecules, targeted intervention within cells, connections between electronics and neurones, and more. In recent years military research and development (R&D) of NT has been expanded markedly, with the USA far in the lead. US work spans the full range from electronics via materials to biology. While much of this is still at the fundamental level, efforts are being made to bring applications to the armed forces soon. One quarter to one third of the Federal funding for NT goes to military R&D, and the USA outspends the rest of the world by a factor 4 to 10. NT applications will likely pervade all areas of the military. Very small electronics and computers will be used everywhere, e.g. in glasses, uniforms, munitions. Large-scale battle-management and strategy-planning systems will apply human-like reasoning at increasing levels of autonomy, integrating sensors, communication devices and displays into an ubiquitous network. Stronger but light-weight materials, more efficient energy storage and propulsion will allow faster and more agile vehicles in all media. NT-based materials and explosives can bring faster and more precise projectiles. Small arms, munitions and anti-personnel missiles without any metal can become possible. Systems worn by soldiers could monitor the body status and react to injury. Systems implanted into the body could monitor the biochemistry and release drugs, or make contacts to nerves and the brain to reduce the reaction time, later possibly to communicate complex information. Autonomous land vehicles, ships and aircraft would become possible mainly through strongly increased computing power. By using NT to miniaturise sensors, actuators and propulsion, autonomous systems (robots) could also become very small, principally down to below a millimetre - fully artificial or hybrid on the basis of e.g. insects or rats. Satellites and their launchers could become small and cheap, to be used in swarms for earth surveillance, or for anti-satellite attack. Whereas no marked change is expected concerning nuclear weapons, NT may lead to various new types of chemical and biological weapons that target specific organs or act selectively on a certain genetic or protein pattern. On the other hand, NT will allow cheap sensors for chemical or biological warfare agents as well as materials for decontamination. Most of these applications are ten or more years away. Using criteria of preventive arms control, potential military NT applications are evaluated. New conventional, chemical and biological weapons would jeopardise existing arms-control treaties. Armed autonomous systems would endanger the law of warfare. Military stability could decrease with small distributed battlefield sensors and in particular with armed autonomous systems. Arms racing and proliferation have to be feared with all applications. Strong dangers to humans would ensue from armed mini-/ micro-robots and new chemical/ biological weapons used by terrorists. Negative effects on human integrity and human rights could follow indirectly if body manipulation were applied in the military before a thorough societal debate on benefits, risks and regulation." (excerpt)"Die Nanotechnologie (NT) befasst sich mit der Untersuchung und Gestaltung von Strukturen, die sich in Größen zwischen 0,1 and 100 Nanometer (1 nm = 10 -9 m) bewegen. Bei dieser Größenordnung treten neue Effekte auf, und die Grenzen zwischen Physik, Chemie und Biologie verschwinden. Die Experten sagen voraus, dass NT festere und gleichzeitig leichtere Materialien, erheblich kleinere Computer mit unermesslich gesteigerter Leistung, große und kleine autonome Roboter, Werkzeuge für die Handhabung einzelner Moleküle, gezielte Eingriffe in Zellen, Verbindungen zwischen Elektronik und Neuronen und anderes mehr hervorbringen wird. In den letzten Jahren ist die militärische Forschung und Entwicklung (FuE) im Bereich der NT erheblich ausgeweitet worden. Im weltweiten Vergleich liegen die USA deutlich in Führung. Dort wird die gesamte Bandbreite von Elektronik über Materialien bis hin zur Biologie bearbeitet. Auch wenn vieles davon noch Grundlagenforschung ist, gibt es dort doch heute schon Vorbereitungen, den Streitkräften bald Anwendungsmöglichkeiten zur Verfügung zu stellen. Ein Viertel bis ein Drittel der Regierungsausgaben für NT auf Bundesebene steht für militärische FuE zur Verfügung, und die USA geben 4 bis 10 mal so viel dafür aus wie der Rest der Welt. NT-Anwendungen werden alle Bereiche des Militärs durchdringen. Hierzu zählt der umfassende Einsatz sehr kleiner Elektronik und Computer, z.B. in Brillen, Uniformen, Munition. Komplexe Schlachtführungs- und Strategieplanungssysteme werden zunehmend autonom funktionieren und menschenähnliche Überlegungen anstellen, wobei sie Sensoren, Kommunikationsgeräte und Anzeigeeinheiten zu einem allgegenwärtigen Netzwerk verbinden. Festere und dabei leichtere Materialien, effizientere Energiespeicher und Antriebe ermöglichen den Bau schnellerer und beweglicherer Land-, Wasser-, Luft- und Raumfahrzeuge. Des weiteren können NT-basierte Materialien und Sprengstoffe zur Herstellung schnellerer und genauerer Geschosse verwendet werden. Denkbar sind metallfreie Kleinwaffen, Munition und Antipersonen-Flugkörper. Zwar ist bei Kernwaffen keine große Veränderung zu erwarten, NT kann aber zu verschiedenen neuen Arten von chemischen und biologischen Waffen führen, die auf spezifische Organe zielen oder selektiv auf eine bestimmte Eiweißstruktur oder auf ein genetisches Muster hin aktiv werden. Andererseits wird NT billige Sensoren für chemische oder biologische Waffen sowie Materialien zur Entgiftung zur Verfügung stellen. Mit den meisten dieser Anwendungen ist erst in einem Zeitraum von zehn oder mehr Jahren zu rechnen. Mögliche militärische NT-Anwendungen müssen unter den Kriterien der Präventiven Rüstungskontrolle bewertet werden." (Textauszug

    Nanotechnology and Preventive Arms Control

    Get PDF

    Ancient and historical systems

    Get PDF

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Development of natural-based hydrogel particles using a biomimetic methodology

    Get PDF
    Tese de doutoramento em BioengenhariaSuperhydrophobic (SH) surfaces have been greatly explored in the biomedical field. Such surfaces are inspired by the repellent properties of natural structures. The most well known example is the lotus leaf, which has the capacity to repeal the water droplets due to the presence of micro/nano topographical features and the low surface energy. One particular application of artificial SH surfaces is their employment as supports where liquid droplets of aqueous-based polymeric solutions are dispensed, acquiring an almost spherical shape. Through application of one or multiple hardening steps solid particles are obtained in a fast way. Using this methodology, a variety of functional natural-based hydrogel spherical systems encapsulating cells and/or drugs are proposed in this thesis. The strategy of the first proposed system is the incorporation of cyclodextrins (CDs) in the dextranmethacrylate (Dex-MA) microgels networks in order to improve their loading efficiency for hydrophobic drugs. The formation of inclusion complexes between CDs and dexamethasone, when the CDs were copolymerized, increased significantly the amount of drug in the Dex-MA particles, when compared with formulations without or with freely dispersed CDs. Chitosan (Chi), unless it has been modified, is soluble in acidic media, which turn it incompatible with encapsulation of cells or pH sensitive molecules. The second system proposed envisaged a mild Chi-based system with two sequential hardening steps, where dexamethasone or fibroblast-like cells were successfully entrapped. SH surfaces methodology was also used to co-encapsulate cells and proteins into hydrogel particles without compromise the cell viability and protein activity. Collagen combined with platelet lysates were used to obtain easy-to-handle spherical formulations being capable to act as in situ growth factors release system as well as reservoirs of human adipose derived stem cells, for applications in skin regeneration. Mesenchymal stem cells derived from bone marrow and fibronectin were also encapsulated inside alginate spheres and the system was studied for bone regeneration. The control of the release of bioactive agents may be achieved by adjusting the chemistry and physical parameters such as particles architecture. Multicompartmentalized systems have emerged and are envisioned to be the next area of development due to the possibility to confines various bioactive agents exhibiting a variety of release kinetics. Taking advantage of the simplicity of the SH surfaces methodology, core/shell and multilayered particles composed by Dex-MA and alginate were efficiently prepared, with cells or drugs encapsulated into individual compartments. The developed work shows that a wide variety of particles useful for biomedical application, ranging from homogeneous spherical matrices to compartmentalized systems, could be obtained under mild conditions and in a fast way, using SH surfaces.Superfícies superhidrofóbicas (SH) têm vindo a ser exploradas no campo biomédico. Estas superfícies são inspiradas nas propriedades repelentes de estruturas naturais. O exemplo mais conhecido é a folha de lótus, com a sua capacidade de repelir gotas de água devido à presença de micro/nano estruturas e baixa energia de superfície. Uma aplicação particular das superfícies SH artificiais é a sua utilização como suportes onde gotas de soluções poliméricas de base aquosa são dispensadas, adquirindo uma forma quase esférica. Através da aplicação de um ou múltiplos passos de solidificação, partículas sólidas são obtidas de uma forma rápida. Usando esta metodologia, uma variedade de hidrogéis funcionais de base natural, encapsulando células e/ou fármacos, são propostos nesta tese. A estratégia do primeiro sistema proposto é a incorporação de ciclodextrinas (CDs) em microgéis de dextrano-metacrilatado (Dex-MA), com o intuito de melhorar a sua capacidade de carga para fármacos hidrofóbicos. A formação de complexos de inclusão entre CDs e dexametasona, quando as CDS estavam co-polimerizadas, aumentou significativamente a quantidade de fármaco no interior das partículas, quando comparadas com formulações sem, ou com CDs livres. O quitosano, a não ser que esteja modificado, é solúvel em meios ácidos, o que o torna incompatível com o encapsulamento de células ou moléculas sensíveis ao pH. O segundo sistema proposto teve como objectivo a produção de sistemas não agressivos, através de dois passos sequenciais de gelificação do quitosano, onde dexametasona e/ou fibroblastos foram encapsuladas com sucesso. A metodologia das superfícies SH foi também usada para o co-encapsulamento de células e proteínas em hidrogéis sem comprometer a viabilidade das células nem a atividade das proteínas. Colagénio combinado com lisados de plaquetas foram usados para obter formulações fáceis de manusear, sendo estas capazes de atuar como sistema de libertação de factores de crescimento in situ e também como reservatório de células estaminais derivadas do tecido adiposo, para a regeneração de pele. Em outro sistema apresentado, células estaminais mesenquimais e fibronectina foram encapsulados em esferas de alginato e o sistema foi estudado para regeneração óssea. O controlo da libertação de agentes bioativos pode ser conseguido através do ajuste da química e de parâmetros físicos tal como a arquitetura das partículas. O potencial dos sistemas multicompartimentalizados tem emergido devido à possibilidade de encapsulamento de vários agentes bioativos exibindo diferentes cinéticas de libertação. Aproveitando a simplicidade da metodologia das superfícies SH, partículas com uma ou mais camadas, compostas por Dex-MA e alginato foram eficientemente preparadas, encapsulando células e fármacos em compartimentos individuais. Os trabalhos desenvolvidos mostram que uma grande variedade de partículas úteis para aplicações biomédicas, desde matrizes esféricas homogéneas até sistemas compartimentalizados, podem ser obtidos em condições não agressivas e de uma forma rápida, usando superfícies SH.Fundação para a Ciência e Tecnologoa (FCT) SFRH/BD/71395/2010 e PTDC/CTM-BIO/1814/2012
    corecore