18,240 research outputs found

    OEXP Analysis Tools Workshop

    Get PDF
    This publication summarizes the software needs and available analysis tools presented at the OEXP Analysis Tools Workshop held at the NASA Langley Research Center, Hampton, Virginia on June 21 to 22, 1988. The objective of the workshop was to identify available spacecraft system (and subsystem) analysis and engineering design tools, and mission planning and analysis software that could be used for various NASA Office of Exploration (code Z) studies, specifically lunar and Mars missions

    Unveiling E-bike potential for commuting trips from GPS traces

    Get PDF
    Common goals of sustainable mobility approaches are to reduce the need for travel, to facilitate modal shifts, to decrease trip distances and to improve energy efficiency in the transportation systems. Among these issues, modal shift plays an important role for the adoption of vehicles with fewer or zero emissions. Nowadays, the electric bike (e-bike) is becoming a valid alternative to cars in urban areas. However, to promote modal shift, a better understanding of the mobility behaviour of e-bike users is required. In this paper, we investigate the mobility habits of e-bikers using GPS data collected in Belgium from 2014 to 2015. By analysing more than 10,000 trips, we provide insights about e-bike trip features such as: distance, duration and speed. In addition, we offer a deep look into which routes are preferred by bike owners in terms of their physical characteristics and how weather influences e-bike usage. Results show that trips with higher travel distances are performed during working days and are correlated with higher average speeds. Usage patterns extracted from our data set also indicate that e-bikes are preferred for commuting (home-work) and business (work related) trips rather than for recreational trips

    A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage

    Full text link
    A key aspect of a sustainable urban transportation system is the effectiveness of transportation policies. To be effective, a policy has to consider a broad range of elements, such as pollution emission, traffic flow, and human mobility. Due to the complexity and variability of these elements in the urban area, to produce effective policies remains a very challenging task. With the introduction of the smart city paradigm, a widely available amount of data can be generated in the urban spaces. Such data can be a fundamental source of knowledge to improve policies because they can reflect the sustainability issues underlying the city. In this context, we propose an approach to exploit urban positioning data based on stigmergy, a bio-inspired mechanism providing scalar and temporal aggregation of samples. By employing stigmergy, samples in proximity with each other are aggregated into a functional structure called trail. The trail summarizes relevant dynamics in data and allows matching them, providing a measure of their similarity. Moreover, this mechanism can be specialized to unfold specific dynamics. Specifically, we identify high-density urban areas (i.e hotspots), analyze their activity over time, and unfold anomalies. Moreover, by matching activity patterns, a continuous measure of the dissimilarity with respect to the typical activity pattern is provided. This measure can be used by policy makers to evaluate the effect of policies and change them dynamically. As a case study, we analyze taxi trip data gathered in Manhattan from 2013 to 2015.Comment: Preprin

    Doctor of Philosophy

    Get PDF
    dissertationRecent advancements in mobile devices - such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID) - have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data mining, which leads to the integration of GVis and KDD. Case studies using three movement datasets (personal travel data survey in Lexington, Kentucky, wild chicken movement data in Thailand, and self-tracking data in Utah) demonstrate the potential of the system to extract meaningful patterns from the otherwise difficult to comprehend collections of space-time trajectories

    Alternative methodological approaches in understanding tourist spatial behavior in urban heritage destination

    Get PDF
    The complexities of cities as spaces lead to the difficulties in understanding the spatial behavior of tourists within cities. Mapping and modelling of tourists’ spatial activity is viewed by many researchers as an under researched field in which much progress is still needed. The advancement of tracking technologies development offers an opportunity to further and expand the nature of understanding the tourist particularly in urban destination. Understanding of this phenomenon may also allow planners and tourism managers to make decisions and to address tourism development in a well-versed manner. The rapid advancement and availability of small, cheap and reliable tracking devices drawing on GPS technology is assisting researchers to develop new methods of spatial research. From this point of view, tourism is mainly a geographic activity. Most of the information needed in tourism planning is spatial, indicating where and how extensive the tourism resources are, how intensively the resources are used and so on. Basically, different methods can be employed to utilize the collected spatial data. However, the most basic method is to present the collected information on a map. The tracks collected from tourists using advanced tracking technologies can be further used to calculate many different variables that describe the spatial activity of tourist particularly in urban destination. This paper aims to capture the new methodological approaches which can help to explain different modes of behavior in urban destination versus traditional approaches. In this context, advanced tracking technologies were seen as the best tool in order to give both actual and detailed insight into people’s individual and collective travel behavior

    Indexical Representations for Context-Aware Mobile Devices

    Get PDF
    corecore