1,546 research outputs found

    Be your own cameraman: real-time support for zooming and panning into stored and live panoramic video

    Get PDF
    International audienceHigh-resolution panoramic video with a wide eld-of-view is popular in many contexts. However, in many examples, like surveillance and sports, it is often desirable to zoom and pan into the generated video. A challenge in this respect is real-time support, but in this demo, we present an end-to- end real-time panorama system with interactive zoom and panning. Our system installed at Alfheim stadium, a Nor- wegian premier league soccer team, generates a cylindrical panorama from ve 2K cameras live where the perspective is corrected in real-time when presented to the client. This gives a better and more natural zoom compared to existing systems using perspective panoramas and zoom operations using plain crop. Our experimental results indicate that vir- tual views can be generated far below the frame-rate thresh- old, i.e., on a GPU, the processing requirement per frame is about 10 milliseconds. The proposed demo lets participants interactively zoom and pan into stored panorama videos generated at Alfheim stadium and from a live 2-camera array on-site

    Cracks in the Glass: The Emergence of a New Image Typology from the Spatio-temporal Schisms of the 'Filmic' Virtual Reality Panorama

    Get PDF
    Virtual Reality Panoramas have fascinated me for some time; their interactive nature affording a spectatorial engagement not evident within other forms of painting or digital imagery. This interactivity is not generally linear as is evident in animation or film, nor is the engagement with the image reduced to the physical or visual border of the image, as its limit is never visible to the viewer in its entirety. Further, the time taken to interact and navigate across the Virtual Reality panorama’s surface is not reflected or recorded within the observed image. The procedural construction of the Virtual Reality panorama creates an a-temporal image event that denies the durée of its own index and creation. This is particularly evident in the cinematic experiments conducted by Jeffrey Shaw in the 1990s that ‘spatialised’ time and image through the fusion of the formal typology of the Panorama together with the cinematic moving-image, creating a new kind of image technology. The incorporation of the space enclosed by the panorama’s drum, into the conception and execution of the cinematic event, reveals an interesting conceptual paradox. Space and time infinitely and autonomously repeat upon each other as the linear trajectory of the singular cinematic shot is interrupted by a ‘time schism’ on the surface of the panorama. This paper explores what this conceptual paradox means to the evolution of emerging image-technologies and how Shaw’s ‘mixed-reality’ installation reveals a wholly new image typology that presents techniques and concepts though which to record, interrogate, and represent time and space in Architecture

    Gesture interaction with rich TV content in the social setting

    Get PDF
    The appearance of new immersive TV content has increased the interactive possibilities presented to the viewers. Increased interactivity is seen as a valuable feature in viewing richer television content, but new functionalities are limited by what can be done naturally and intuitively using available devices like remote controls. Therefore, new interaction techniques, such as visual gestures control systems, have appeared aiming to enhance the viewers’ viewing experience. In this work we begin uncovering the potential and challenges of gesture interaction with ultra high definition video for people watching TV together. As a first step we have done a study with a group of people interacting with such content using a gesture-based system in the home environment.Peer ReviewedPostprint (published version

    Using high resolution displays for high resolution cardiac data

    Get PDF
    The ability to perform fast, accurate, high resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to rendering and visualization must evolve. In this paper we address the interactive display of data from high resolution MRI scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled LCD panel display wall and associated software which provide an interactive and intuitive user interface. The oView software is an OpenGL application which is written for the VRJuggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at both Leeds and Oxford Universities. We discuss important factors to be considered for interactive 2D display of large 3D datasets, including the use of intuitive input devices and level of detail aspects

    Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    Get PDF
    Aims:  To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice. Methods and results:  A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope. Conclusions:  The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process

    Target Acquisition in Multiscale Electronic Worlds

    Get PDF
    Since the advent of graphical user interfaces, electronic information has grown exponentially, whereas the size of screen displays has stayed almost the same. Multiscale interfaces were designed to address this mismatch, allowing users to adjust the scale at which they interact with information objects. Although the technology has progressed quickly, the theory has lagged behind. Multiscale interfaces pose a stimulating theoretical challenge, reformulating the classic target-acquisition problem from the physical world into an infinitely rescalable electronic world. We address this challenge by extending Fitts’ original pointing paradigm: we introduce the scale variable, thus defining a multiscale pointing paradigm. This article reports on our theoretical and empirical results. We show that target-acquisition performance in a zooming interface must obey Fitts’ law, and more specifically, that target-acquisition time must be proportional to the index of difficulty. Moreover, we complement Fitts’ law by accounting for the effect of view size on pointing performance, showing that performance bandwidth is proportional to view size, up to a ceiling effect. The first empirical study shows that Fitts’ law does apply to a zoomable interface for indices of difficulty up to and beyond 30 bits, whereas classical Fitts’ law studies have been confined in the 2-10 bit range. The second study demonstrates a strong interaction between view size and task difficulty for multiscale pointing, and shows a surprisingly low ceiling. We conclude with implications of these findings for the design of multiscale user interfaces
    • …
    corecore