93 research outputs found

    Real-time Quantitative Visual Inspection using Extended Reality

    Get PDF
    In this study, we propose a technique for quantitative visual inspection that can quantify structural damage using extended reality (XR). The XR headset can display and overlay graphical information on the physical space and process the data from the built-in camera and depth sensor. Also, the device permits accessing and analyzing image and video stream in real-time and utilizing 3D meshes of the environment and camera pose information. By leveraging these features for the XR headset, we build a workflow and graphic interface to capture the images, segment damage regions, and evaluate the physical size of damage. A deep learning-based interactive segmentation algorithm called f-BRS was deployed to precisely segment damage regions through the XR headset. A ray-casting algorithm is implemented to obtain 3D locations corresponding to the pixel locations of the damage region on the image. The size of the damage region is computed from the 3D locations of its boundary. The performance of the proposed method is demonstrated through a field experiment at an in-service bridge where spalling damage is present at its abutment. The experiment shows that the proposed method provides sub-centimeter accuracy for the size estimation

    CFR-ICL: Cascade-Forward Refinement with Iterative Click Loss for Interactive Image Segmentation

    Full text link
    The click-based interactive segmentation aims to extract the object of interest from an image with the guidance of user clicks. Recent work has achieved great overall performance by employing the segmentation from the previous output. However, in most state-of-the-art approaches, 1) the inference stage involves inflexible heuristic rules and a separate refinement model; and 2) the training cannot balance the number of user clicks and model performance. To address the challenges, we propose a click-based and mask-guided interactive image segmentation framework containing three novel components: Cascade-Forward Refinement (CFR), Iterative Click Loss (ICL), and SUEM image augmentation. The proposed ICL allows model training to improve segmentation and reduce user interactions simultaneously. The CFR offers a unified inference framework to generate segmentation results in a coarse-to-fine manner. The proposed SUEM augmentation is a comprehensive way to create large and diverse training sets for interactive image segmentation. Extensive experiments demonstrate the state-of-the-art performance of the proposed approach on five public datasets. Remarkably, our model achieves an average of 2.9 and 7.5 clicks of NoC@95 on the Berkeley and DAVIS sets, respectively, improving by 33.2% and 15.5% over the previous state-of-the-art results. The code and trained model are available at https://github.com/TitorX/CFR-ICL-Interactive-Segmentation

    Interactive Class-Agnostic Object Counting

    Full text link
    We propose a novel framework for interactive class-agnostic object counting, where a human user can interactively provide feedback to improve the accuracy of a counter. Our framework consists of two main components: a user-friendly visualizer to gather feedback and an efficient mechanism to incorporate it. In each iteration, we produce a density map to show the current prediction result, and we segment it into non-overlapping regions with an easily verifiable number of objects. The user can provide feedback by selecting a region with obvious counting errors and specifying the range for the estimated number of objects within it. To improve the counting result, we develop a novel adaptation loss to force the visual counter to output the predicted count within the user-specified range. For effective and efficient adaptation, we propose a refinement module that can be used with any density-based visual counter, and only the parameters in the refinement module will be updated during adaptation. Our experiments on two challenging class-agnostic object counting benchmarks, FSCD-LVIS and FSC-147, show that our method can reduce the mean absolute error of multiple state-of-the-art visual counters by roughly 30% to 40% with minimal user input. Our project can be found at https://yifehuang97.github.io/ICACountProjectPage/

    Neural Interactive Keypoint Detection

    Full text link
    This work proposes an end-to-end neural interactive keypoint detection framework named Click-Pose, which can significantly reduce more than 10 times labeling costs of 2D keypoint annotation compared with manual-only annotation. Click-Pose explores how user feedback can cooperate with a neural keypoint detector to correct the predicted keypoints in an interactive way for a faster and more effective annotation process. Specifically, we design the pose error modeling strategy that inputs the ground truth pose combined with four typical pose errors into the decoder and trains the model to reconstruct the correct poses, which enhances the self-correction ability of the model. Then, we attach an interactive human-feedback loop that allows receiving users' clicks to correct one or several predicted keypoints and iteratively utilizes the decoder to update all other keypoints with a minimum number of clicks (NoC) for efficient annotation. We validate Click-Pose in in-domain, out-of-domain scenes, and a new task of keypoint adaptation. For annotation, Click-Pose only needs 1.97 and 6.45 NoC@95 (at precision 95%) on COCO and Human-Art, reducing 31.4% and 36.3% efforts than the SOTA model (ViTPose) with manual correction, respectively. Besides, without user clicks, Click-Pose surpasses the previous end-to-end model by 1.4 AP on COCO and 3.0 AP on Human-Art. The code is available at https://github.com/IDEA-Research/Click-Pose.Comment: Accepted to ICCV 202

    DynaMITe: Dynamic Query Bootstrapping for Multi-object Interactive Segmentation Transformer

    Full text link
    Most state-of-the-art instance segmentation methods rely on large amounts of pixel-precise ground-truth annotations for training, which are expensive to create. Interactive segmentation networks help generate such annotations based on an image and the corresponding user interactions such as clicks. Existing methods for this task can only process a single instance at a time and each user interaction requires a full forward pass through the entire deep network. We introduce a more efficient approach, called DynaMITe, in which we represent user interactions as spatio-temporal queries to a Transformer decoder with a potential to segment multiple object instances in a single iteration. Our architecture also alleviates any need to re-compute image features during refinement, and requires fewer interactions for segmenting multiple instances in a single image when compared to other methods. DynaMITe achieves state-of-the-art results on multiple existing interactive segmentation benchmarks, and also on the new multi-instance benchmark that we propose in this paper
    • …
    corecore