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Abstract

In this study, we propose a technique for quantitative visual inspec-
tion that can quantify structural damage using extended reality (XR).
The XR headset can display and overlay graphical information on
the physical space and process the data from the built-in camera
and depth sensor. Also, the device permits accessing and analyz-
ing image and video stream in real-time and utilizing 3D meshes of
the environment and camera pose information. By leveraging these
features for the XR headset, we build a workflow and graphic in-
terface to capture the images, segment damage regions, and eval-
uate the physical size of damage. A deep learning-based interac-
tive segmentation algorithm called f-BRS was deployed to precisely
segment damage regions through the XR headset. A ray-casting al-
gorithm is implemented to obtain 3D locations corresponding to the
pixel locations of the damage region on the image. The size of the
damage region is computed from the 3D locations of its boundary.
The performance of the proposed method is demonstrated through
a field experiment at an in-service bridge where spalling damage is
present at its abutment. The experiment shows that the proposed
method provides sub-centimeter accuracy for the size estimation.

1 Introduction

The goal of vision-based structure inspection methods, in general,
is to utilize images to conduct remote visual inspections of large-
scale structures that are difficult to access (e.g., rough terrains,
spanning water bodies) and have large surface areas to be in-
spected. These methods aim to automate key steps typical in visual
inspections, namely, collection, identification, localization, quantifi-
cation, and documentation of damage regions to reduce time for
inspections and monetary costs.

Recent advances in computer vision technologies: new vision
sensors, sensing platforms, and high-performance computing, have
transformed how structures are inspected. As sensors become
smaller, lower cost, and more powerful, a larger volume of high-
quality visual data can be captured from structures with high spatial
and temporal granularity. Powerful computer vision methods and
machine learning algorithms enable automatic extraction of visual
features and semantic information to detect visual changes of struc-
tures, which may be an indicator of damage in structures.

Over the past several years, different vision-based visual in-
spection techniques have been actively developed with the intent
of applying them to various civil structures. There are two key steps
in vision-based visual inspection: data collection and feature extrac-
tion. Visual data collection can be challenging for large scale civil
structures, so remote and automated data collection systems such
as drones, mobile ground robots, and surveillance cameras [1, 2]
have been proposed to allow access to inspection regions that are
difficult to reach. Advances in computer vision techniques such as
deep neural networks (D-NN) [3–5] and 3D scene reconstruction [6]
have allowed for the extraction and localization of damage features
based on images.

However, despite technological opportunities, their adoption in
the field has been quite limited. One of the main obstacles is the
lack of real-time interaction between the inspector and the technol-
ogy during the process of inspection. Existing vision-based inspec-
tion methods are heavily asynchronous, which means data process-
ing takes place hours or days after field-inspection and data collec-
tion. As a result, key outcomes are not known at the time of in-
spection and hence cannot inform either the inspector to allow for
immediate investigation or intervention.

A potential solution to address the current limitation is to exploit
an extended reality technology (XR) for real-time processing and vi-
sualization of inspection data. XR is a term referring to a technology
combining reality and virtual spaces for immersive data visualiza-
tion and enabling human-machine interaction. Microsoft HoloLens
1 & 2 headset (HL2) are examples of XR technology enabled via

a wearable headset. For the domain applications of vision-based
inspection, a camera and depth sensor equipped in an XR device
facilitates the real-time detection, analysis of visual damage, and
visualization of results in real-time. Also, the depth sensor permits
scanning and reconstructing the 3D geometry of the scene so that
such 3D maps can be used for quantitative damage analysis.

In this study, we propose a vision-based quantitative damage
measurement method through an XR wearable device, where the
physical size of the damage is estimated by processing sensor data
collected from the XR device (HL2 in this study). A deep learning-
based interactive segmentation algorithm called f-BRS was de-
ployed to precisely segment visual damage regions from the im-
ages and engaging the human in this process to improve the quality
of the result. To measure the size of damage, the segmented dam-
age region is geometrically evaluated using 3D scene geometry and
camera pose information obtained from the XR device. Also, to
support computationally or memory intensive algorithms, we build
a pipeline for offloading heavy computations to a remote server. To
demonstrate the capability of the proposed method and feasibility
of its application in the field, an experiment study is conducted us-
ing HL2 at an actual bridge where spalling damage is present at its
abutment.

2 System Overview

The process pipeline for the proposed system to quantitatively eval-
uate the size of damage area by leveraging the XR headset and
DNN-based interactive segmentation algorithm is shown in Fig. 1.
The user starts by selecting segmentation seed points inside and
outside the target damage region through a hand gesture in the
XR device. The user simply clicks those locations with their fingers
and the XR headset automatically anchors those points, denoted
Xp, to the spatial mesh environment using a ray-casting algorithm,
denoted rayCast. Once the point selection is completed, the user
then takes an image (I) that includes the view of the entire target
damage region and Xp. The 2D pixel coordinates (xp) correspond-
ing to Xp are obtained by multiplying Xp by the projection matrix (P)
of I. Then, I and xp are sent to the computational server. An inter-
active segmentation algorithm uses xp as seed points to segment
damage region using the DNN-based interactive segmentation al-
gorithm (Segment in Fig. 1), and obtain the pixel coordinates of its
boundary (xs) using a contour extraction algorithm (findContours in
Fig. 1). The pixel information of the extracted damage boundary,
xs, will be sent back to the XR headset. xs is then back-projected
from the camera center (C) of I using the pseudo-inverse of P, de-
noted P+, to the spatial mesh using rayCast to obtain the 3D world
coordinates of the damage boundary edges (Xs). The headset then
displays a holographic overlay of the damage region and anchors
the graphics to the spatial mesh so that the user can determine if
the target damage region is properly detected for size computation.
Then, the user decides on the quality of the segmentation output
through the graphic overlay, illustrated as the decision symbol in
Fig. 1. If the segmentation is not satisfactory, the user needs to re-
fine the segmentation by adding more seed points and repeat the
process for segmentation. If the segmentation is satisfactory, the
physical area (As) of the damage region is calculated by computing
the area of the polygon joined by Xs. Here, since Xs is not per-
fectly placed on a single plane due to errors in the spatial mesh,
Xs is projected on a best-fitting plane before computing the polygon
area. Finally, the headset generates a text overlay of the physical
size of the target damage region and anchors it to the center of the
detected damage area.

3 Interactive Segmentation

Most state-of-the-art vision-based methods for detecting and local-
izing damage rely on automated image segmentation algorithms



Fig. 1: Real-time damage size estimation pipeline using an XR
headset and computation server.

that either use DNN-based semantic segmentation [3–5] or hand-
crafted features [7–9]. Although the performance of such algorithms
have improved over the years, they often fail to capture the clear
boundary of target damage under real-world lighting, texture varia-
tions or clutter conditions. Such incorrect segmentation will result in
erroneous visual inspection results as an under- or over-estimation
of damage size. Thus, in this study, rather than applying automated
algorithms, we implemented an interactive segmentation algorithm,
called feature back-propagating refinement scheme (f-BRS) [10].
The XR headset can fully support data visualization and interactive
operations so we can deploy f-BRS for reliable real-time segmenta-
tion of damaged regions.

The user provides seed points inside and outside the damage
region, which are then used as initial conditions to find a region in
the image that is distinct from the background and includes the pos-
itive points and excludes the negative points. f-BRS builds upon the
back-propagating refinement scheme (BRS) [11], which improves
segmentation accuracy by optimizing network inputs to minimize
squared error at seed point locations after each click. However,
f-BRS only optimizes scale and bias variables in intermediate lay-
ers of the network and achieves comparable results to BRS with
much lower time per click. We show that f-BRS can segment
spalling damage (target damage type used for experiment demon-
stration) using a ResNet-34 network trained on the SBD benchmark
dataset [12]. The pre-trained model still achieves good segmen-
tation results (approximately more than 0.78 intersect-over-union
(IoU) when more than 6 positive and negative points are used as
the seed) even though this model was not trained on images with
spalling damage.

4 Experimental Validation

The proposed system was tested on spalling damage present on
an abutment of an in-service bridge in Fig. 2a. There are several
spalling regions, but we randomly selected one target defect loca-
tion for evaluation purposes. The ground-truth area of the target
spalling is simply measured by capturing an image with a square
marker reference present. Then, the boundary of the spalling on
the image is manually segmented, which is a green line in Fig. 2b.
The surface areas in pixels is computed using the Shoelace formula
and converted to a physical area using the scale obtained from the
marker with a known dimension. The ground-truth size of the target

(a) (b)

Fig. 2: Experimental validation using actual spalling damage on an
in-service bridge (a) Overview of a bridge abutment wall for testing
and (b) Ground-truth measurement of a target spalling area using a
marker and manual segmentation.

Fig. 3: Overview of test setup: A Microsoft HoloLens 2 headset
wirelessly connected to a laptop for computation.

spalling is 0.143 m2. The experiment was conducted using the HL2
device which was wirelessly connected to a personal laptop using a
Wi-Fi hotspot. The laptop served as the computation server in the
proposed system (see Fig. 3). The time required from start to finish
in Fig. 1 is around 30 sec, while little over 20 sec was consumed for
the image segmentation task. This is primarily the result of the lap-
top not being equipped with a power GPU compute capability. It has
been reported that when a GTX 1080 Ti GPU is used, the process-
ing time of the f-BRS segmentation algorithm can be up to 0.32 sec
per seed point, or less than 2 sec if 6 seed points are selected and
used [10]. The remainder of the time was spent on interactive seed
point selection. The rayCast, findContour, and area computation
processes are executed in almost real-time. In the actual testing,
four and two seed points from inside and outside spalling respec-
tively are selected, respectively. Then, the image is captured to
include a full view of the spalling and selected seed points. Fig. 4a
shows the image with the selected seed points, which is sent to
the laptop for segmentation. The placement and the number of
points can be adjusted through trial and error to obtain the best
segmentation result, if the segmentation result is not satisfactory,
as mentioned in Fig. 1. Finally, the area of the segmented region is
automatically computed, and the holographic overlay of the region
and area value are displayed as shown in Fig. 4b. For this test,
the estimated spalling area is 0.15 m2 and the difference from the
ground-truth measurement is less than 0.007 m2, which is less than
4% error.
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Fig. 4: Outcome of spalling area estimation: (a) after selecting seed
points, and (b) final visualization of the spalling segmentation and
its area. Note that the graphics are holograms that are anchored in
the spatial mesh, so the graphics are overlaid on the same physical
locations regardless of changing HL2 locations or viewpoints.

5 Conclusion

In this study, we propose a vision-based quantitative damage mea-
surement method that leverages XR technology to measure the size
of structural damage in real world units by processing data from the
built-in camera and depth sensor. The proposed system was de-
ployed on a XR wearable device, Microsoft HoloLens 2. Using this
headset, a field experiment was conducted at an in-service bridge
for spalling damage size estimation. The results of the experiment
show that the proposed system can segment damage areas ac-
curately and achieve less than 4% error compared to ground-truth
marker-based damage area measurements.
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