4,878 research outputs found

    A comparative evaluation of interactive segmentation algorithms

    Get PDF
    In this paper we present a comparative evaluation of four popular interactive segmentation algorithms. The evaluation was carried out as a series of user-experiments, in which participants were tasked with extracting 100 objects from a common dataset: 25 with each algorithm, constrained within a time limit of 2 min for each object. To facilitate the experiments, a “scribble-driven” segmentation tool was developed to enable interactive image segmentation by simply marking areas of foreground and background with the mouse. As the participants refined and improved their respective segmentations, the corresponding updated segmentation mask was stored along with the elapsed time. We then collected and evaluated each recorded mask against a manually segmented ground truth, thus allowing us to gauge segmentation accuracy over time. Two benchmarks were used for the evaluation: the well-known Jaccard index for measuring object accuracy, and a new fuzzy metric, proposed in this paper, designed for measuring boundary accuracy. Analysis of the experimental results demonstrates the effectiveness of the suggested measures and provides valuable insights into the performance and characteristics of the evaluated algorithms

    A Compact Linear Programming Relaxation for Binary Sub-modular MRF

    Full text link
    We propose a novel compact linear programming (LP) relaxation for binary sub-modular MRF in the context of object segmentation. Our model is obtained by linearizing an l1+l_1^+-norm derived from the quadratic programming (QP) form of the MRF energy. The resultant LP model contains significantly fewer variables and constraints compared to the conventional LP relaxation of the MRF energy. In addition, unlike QP which can produce ambiguous labels, our model can be viewed as a quasi-total-variation minimization problem, and it can therefore preserve the discontinuities in the labels. We further establish a relaxation bound between our LP model and the conventional LP model. In the experiments, we demonstrate our method for the task of interactive object segmentation. Our LP model outperforms QP when converting the continuous labels to binary labels using different threshold values on the entire Oxford interactive segmentation dataset. The computational complexity of our LP is of the same order as that of the QP, and it is significantly lower than the conventional LP relaxation
    corecore