18,630 research outputs found

    Generative theatre of totality

    Get PDF
    Generative art can be used for creating complex multisensory and multimedia experiences within predetermined aesthetic parameters, characteristic of the performing arts and remarkably suitable to address Moholy-Nagy's Theatre of Totality vision. In generative artworks the artist will usually take on the role of an experience framework designer, and the system evolves freely within that framework and its defined aesthetic boundaries. Most generative art impacts visual arts, music and literature, but there does not seem to be any relevant work exploring the cross-medium potential, and one could confidently state that most generative art outcomes are abstract and visual, or audio. It is the goal of this article to propose a model for the creation of generative performances within the Theatre of Totality's scope, derived from stochastic Lindenmayer systems, where mapping techniques are proposed to address the seven variables addressed by Moholy-Nagy: light, space, plane, form, motion, sound and man ("man" is replaced in this article with "human", except where quoting from the author), with all the inherent complexities

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    Software agents in music and sound art research/creative work: Current state and a possible direction

    Get PDF
    Composers, musicians and computer scientists have begun to use software-based agents to create music and sound art in both linear and non-linear (non-predetermined form and/or content) idioms, with some robust approaches now drawing on various disciplines. This paper surveys recent work: agent technology is first introduced, a theoretical framework for its use in creating music/sound art works put forward, and an overview of common approaches then given. Identifying areas of neglect in recent research, a possible direction for further work is then briefly explored. Finally, a vision for a new hybrid model that integrates non-linear, generative, conversational and affective perspectives on interactivity is proposed

    PIWeCS: enhancing human/machine agency in an interactive composition system

    Get PDF
    This paper focuses on the infrastructure and aesthetic approach used in PIWeCS: a Public Space Interactive Web-based Composition System. The concern was to increase the sense of dialogue between human and machine agency in an interactive work by adapting Paine's (2002) notion of a conversational model of interaction as a ‘complex system’. The machine implementation of PIWeCS is achieved through integrating intelligent agent programming with MAX/MSP. Human input is through a web infrastructure. The conversation is initiated and continued by participants through arrangements and composition based on short performed samples of traditional New Zealand Maori instruments. The system allows the extension of a composition through the electroacoustic manipulation of the source material

    Generative sound art as poeitic poetry for an information society

    Get PDF
    This paper considers computer music in relation to broader society and asks what algorithmic composition can learn from the metaphysical shift which is happening in the so-called information societies. This is explored by taking the mapping problem inherent in the use of extra- musical models in generative composition and presenting a simple generative schema which prioritises sound, ex- ploiting the generative potential of digital audio. It is sug- gested that the exploration of such models has more than aesthetic relevance and that the interdisciplinary nature of digital sound art represents a microcosm of an emerging reality, thereby constituting a poietic playground for com- ing to terms with the implications and challenges of the information age

    Visual art inspired by the collective feeding behavior of sand-bubbler crabs

    Full text link
    Sand--bubblers are crabs of the genera Dotilla and Scopimera which are known to produce remarkable patterns and structures at tropical beaches. From these pattern-making abilities, we may draw inspiration for digital visual art. A simple mathematical model is proposed and an algorithm is designed that may create such sand-bubbler patterns artificially. In addition, design parameters to modify the patterns are identified and analyzed by computational aesthetic measures. Finally, an extension of the algorithm is discussed that may enable controlling and guiding generative evolution of the art-making process

    Towards the Evolution of Novel Vertical-Axis Wind Turbines

    Full text link
    Renewable and sustainable energy is one of the most important challenges currently facing mankind. Wind has made an increasing contribution to the world's energy supply mix, but still remains a long way from reaching its full potential. In this paper, we investigate the use of artificial evolution to design vertical-axis wind turbine prototypes that are physically instantiated and evaluated under approximated wind tunnel conditions. An artificial neural network is used as a surrogate model to assist learning and found to reduce the number of fabrications required to reach a higher aerodynamic efficiency, resulting in an important cost reduction. Unlike in other approaches, such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made.Comment: 14 pages, 11 figure
    corecore