517,843 research outputs found
Bridging symbolic computation and economics: a dynamic and interactive tool to analyze the price elasticity of supply
It is not possible to achieve the objectives and skills of a program in economics, at the secondary and undergraduate levels, without resorting to graphic illustrations. In this way, the use of educational software has been increasingly recognized as a useful tool to promote students' motivation to deal with, and understand, new economic concepts. Current digital technology allows students to work with a large number and variety of graphics in an interactive way, complementing the theoretical results and the so often used paper and pencil calculations. The computer algebra system Mathematica is a very powerful software that allows the implementation of many interactive visual applications. Thanks to the symbolic and numerical capabilities of Mathematica, these applications allow the user to interact with the graphical and analytical information in real time. However, Mathematica is a commercially distributed application which makes it difficult for teachers and students to access. The main goal of this paper is to present a new dynamic and interactive tool, created with Mathematica and available in the Computable Document Format. This format allows anyone with a computer to use, at no cost, the PES(Linear)-Tool, even without an active Wolfram Mathematica license. The PES(Linear)-Tool can be used as an active learning tool to promote better student activity and engagement in the learning process, among students enrolled in socio-economic programs. This tool is very intuitive to use which makes it suitable for less experienced users.Funding Agency
Portuguese Foundation for Science and Technology
UID/ECO/04007/2019info:eu-repo/semantics/publishedVersio
Evaluating system utility and conceptual fit using CASSM
There is a wealth of user-centred evaluation methods (UEMs) to support the analyst in assessing interactive systems. Many of these support detailed aspects of use – for example: Is the feedback helpful? Are labels appropriate? Is the task structure optimal? Few UEMs encourage the analyst to step back and consider how well a system supports users’ conceptual understandings and system utility. In this paper, we present CASSM, a method which focuses on the quality of ‘fit’ between users and an interactive system. We describe the methodology of conducting a CASSM analysis and illustrate the approach with three contrasting worked examples (a robotic arm, a digital library system and a drawing tool) that demonstrate different depths of analysis. We show how CASSM can help identify re-design possibilities to improve system utility. CASSM complements established evaluation methods by focusing on conceptual structures rather than procedures. Prototype tool support for completing a CASSM analysis is provided by Cassata, an open source development
VoodooFlash: authoring across physical and digital form
Design tools that integrate hardware and software components facilitate product design work across aspects of physical form and user interaction, but at the cost of requiring designers to work with other than their accustomed programming tools. In this paper we introduce VoodooFlash, a tool designed to build on the widespread use of Flash while facilitating design work across physical and digital components. VoodooFlash extends the existing practice of authoring interactive applications in terms of arranging components on a virtual stage, and provides a physical stage on which controls can be arranged, linked to software components, and appropriated with other physical design materials
Interactive multimedia teaching of digital signal processors
This article shows a novel approach to Digital Signal Processors (DSPs) teaching based on an interactive multimedia educational tool, designed with Shockwave™ and Macromedia Director™. The use and utility of the tool has been analyzed, and the benefits of this novel teaching methodology have been pointed ou
Opportunistic visualization with iVoLVER
Proposed as 'data analysis anywhere, anytime, from anything', Opportunistic Information Visualization (Opportu-Vis) [1] seeks to provide analytical support in scenarios where the data of interest is not explicitly available and has to be retrieved from digital artifacts that are not traditionally used as data sources. Examples include raster images, web pages, vector files, and photographs. This showpiece presents how iVoLVER, the Interactive Visual Language for Visualization Extraction and Reconstruction, provides support in such settings. We briefly describe the overall construction approach of the tool in scenarios where different digital artifacts are used to compose interactive visuals. All of this becomes possible by using the data extraction capabilities of iVoLVER together with the elements of its visual language
Digital processing of mesoscale analysis and space sensor data
The mesoscale analysis and space sensor (MASS) data management and analysis system on the research computer system is presented. The MASS data base management and analysis system was implemented on the research computer system which provides a wide range of capabilities for processing and displaying large volumes of conventional and satellite derived meteorological data. The research computer system consists of three primary computers (HP-1000F, Harris/6, and Perkin-Elmer 3250), each of which performs a specific function according to its unique capabilities. The overall tasks performed concerning the software, data base management and display capabilities of the research computer system in terms of providing a very effective interactive research tool for the digital processing of mesoscale analysis and space sensor data is described
Digital support interventions for the self-management of low back pain: a systematic review
Background: Low back pain (LBP) is a common cause of disability and is ranked as the most burdensome health condition globally. Self-management, including components on increased knowledge, monitoring of symptoms, and physical activity, are consistently recommended in clinical guidelines as cost-effective strategies for LBP management and there is increasing interest in the potential role of digital health.
Objective: The study aimed to synthesize and critically appraise published evidence concerning the use of interactive digital interventions to support self-management of LBP. The following specific questions were examined: (1) What are the key components of digital self-management interventions for LBP, including theoretical underpinnings? (2) What outcome measures have been used in randomized trials of digital self-management interventions in LBP and what effect, if any, did the intervention have on these? and (3) What specific characteristics or components, if any, of interventions appear to be associated with beneficial outcomes?
Methods: Bibliographic databases searched from 2000 to March 2016 included Medline, Embase, CINAHL, PsycINFO, Cochrane Library, DoPHER and TRoPHI, Social Science Citation Index, and Science Citation Index. Reference and citation searching was also undertaken. Search strategy combined the following concepts: (1) back pain, (2) digital intervention, and (3) self-management. Only randomized controlled trial (RCT) protocols or completed RCTs involving adults with LBP published in peer-reviewed journals were included. Two reviewers independently screened titles and abstracts, full-text articles, extracted data, and assessed risk of bias using Cochrane risk of bias tool. An independent third reviewer adjudicated on disagreements. Data were synthesized narratively.
Results: Of the total 7014 references identified, 11 were included, describing 9 studies: 6 completed RCTs and 3 protocols for future RCTs. The completed RCTs included a total of 2706 participants (range of 114-1343 participants per study) and varied considerably in the nature and delivery of the interventions, the duration/definition of LBP, the outcomes measured, and the effectiveness of the interventions. Participants were generally white, middle aged, and in 5 of 6 RCT reports, the majority were female and most reported educational level as time at college or higher. Only one study reported between-group differences in favor of the digital intervention. There was considerable variation in the extent of reporting the characteristics, components, and theories underpinning each intervention. None of the studies showed evidence of harm.
Conclusions: The literature is extremely heterogeneous, making it difficult to understand what might work best, for whom, and in what circumstances. Participants were predominantly female, white, well educated, and middle aged, and thus the wider applicability of digital self-management interventions remains uncertain. No information on cost-effectiveness was reported. The evidence base for interactive digital interventions to support patient self-management of LBP remains weak
A computer program for processing impedance cardiographic data: Improving accuracy through user-interactive software
This report contains the source code and documentation for a computer program used to process impedance cardiography data. The cardiodynamic measures derived from impedance cardiography are ventricular stroke column, cardiac output, cardiac index and Heather index. The program digitizes data collected from the Minnesota Impedance Cardiograph, Electrocardiography (ECG), and respiratory cycles and then stores these data on hard disk. It computes the cardiodynamic functions using interactive graphics and stores the means and standard deviations of each 15-sec data epoch on floppy disk. This software was designed on a Digital PRO380 microcomputer and used version 2.0 of P/OS, with (minimally) a 4-channel 16-bit analog/digital (A/D) converter. Applications software is written in FORTRAN 77, and uses Digital's Pro-Tool Kit Real Time Interface Library, CORE Graphic Library, and laboratory routines. Source code can be readily modified to accommodate alternative detection, A/D conversion and interactive graphics. The object code utilizing overlays and multitasking has a maximum of 50 Kbytes
- …
