29,060 research outputs found

    Shape-Based Models for Interactive Segmentation of Medical Images

    Get PDF
    Accurate image segmentation is one of the key problems in computer vision. In domains such as radiation treatment planning, dosimetrists must manually trace the outlines of a few critical structures on large numbers of images. Considerable similarity can be seen in the shape of these regions, both between adjacent slices in a particular patient and across the spectrum of patients. Consequently we should be able to model this similarity and use it to assist in the process of segmentation. Previous work has demonstrated that a constraint-based 2D radial model can capture generic shape information for certain shape classes, and can reduce user interaction by a factor of three over purely manual segmentation. Additional simulation studies have shown that a probabilistic version of the model has the potential to further reduce user interaction. This paper describes an implementation of both models in a general-purpose imaging and graphics framework and compares the usefulness of the models on several shape classes

    User kansei modeling and eco-design

    Get PDF
    The use of day-to-day life artifacts is a key phase in the lifecycle of products. Indeed it has a great impact on our environment. User centered methods are not yet taken into account in eco-design approaches. These methods are being developed in two ways, by building new user models encompassing complex dimensions such as Kansei and experience, including values and moods, and by integrating the user himself in the design process. This paper deals with setting-up a new theoretical framework associating user-centered design advanced approaches such as experience design, Kansei studies, or participative design and eco-design methods. The final goal is to support product design by providing some guidelines according to environmental issues linked to the users and their abilities

    Optimisation of the concurrent product and process configuration: an approach to reduce computation time with an experimental evaluation

    Get PDF
    International audienceConcurrent configuration of a product and its associated production process is a challenging problem in customer/supplier relations dealing with customisable or configurable products. It gathers in a single model multiple choices and constraints which come simultaneously from products (choices of components or functionalities), from processes (choices of resources and quantities) and from their mutual interrelations. Considering this problem as a Constraint Satisfaction Problem (CSP), the aim of this article is to improve its optimisation, while considering multiple objectives. Using an existing evolutionary optimisation algorithm as a basis, we propose an approach that reduces the computation time required for optimisation. The idea is first to quickly compute a rough Pareto of solutions, then ask the user to select an area of interest, and finally to launch a second computation on this restricted area. After an introduction to the problem, the approach is explained and the algorithm adaptations are presented. Then various computation experiments results demonstrate that computation times are significantly reduced while keeping the optimality level

    Set-based design of mechanical systems with design robustness integrated

    Get PDF
    This paper presents a method for parameter design of mechanical products based on a set-based approach. Set-based concurrent engineering emphasises on designing in a multi-stakeholder environment with concurrent involvement of the stakeholders in the design process. It also encourages flexibility in design through communication in terms of ranges instead of fixed point values and subsequent alternative solutions resulting from intersection of these ranges. These alternative solutions can then be refined and selected according to the designers’ preferences and clients’ needs. This paper presents a model and tools for integrated flexible design that take into account the manufacturing variations as well as the design objectives for finding inherently robust solutions using QCSP transformation through interval analysis. In order to demonstrate the approach, an example of design of rigid flange coupling with a variable number of bolts and a choice of bolts from ISO M standard has been resolved and demonstrated

    Designing a regional e-logistics portal

    Get PDF
    A variety of optimization and negotiation technologies hold the promise of delivering value to the logistics processes of businesses both small and large, yet they tend to remain inaccessible to SMEs (largely due to price and complexity concerns). This paper describes the early-phase steps in a project to develop a regional e- logistics portal. The project seeks to make constraint-based optimization and automated negotiation technologies accessible to SMEs within a portal that also serves their information needs. The paper highlights several novel aspects of the design of the portal, as well as a novel requirements gathering process involving community consultation

    XSRL: An XML web-services request language

    Get PDF
    One of the most serious challenges that web-service enabled e-marketplaces face is the lack of formal support for expressing service requests against UDDI-resident web-services in order to solve a complex business problem. In this paper we present a web-service request language (XSRL) developed on the basis of AI planning and the XML database query language XQuery. This framework is designed to handle and execute XSRL requests and is capable of performing planning actions under uncertainty on the basis of refinement and revision as new service-related information is accumulated (via interaction with the user or UDDI) and as execution circumstances necessitate change

    SANTO: Social Aerial NavigaTion in Outdoors

    Get PDF
    In recent years, the advances in remote connectivity, miniaturization of electronic components and computing power has led to the integration of these technologies in daily devices like cars or aerial vehicles. From these, a consumer-grade option that has gained popularity are the drones or unmanned aerial vehicles, namely quadrotors. Although until recently they have not been used for commercial applications, their inherent potential for a number of tasks where small and intelligent devices are needed is huge. However, although the integrated hardware has advanced exponentially, the refinement of software used for these applications has not beet yet exploited enough. Recently, this shift is visible in the improvement of common tasks in the field of robotics, such as object tracking or autonomous navigation. Moreover, these challenges can become bigger when taking into account the dynamic nature of the real world, where the insight about the current environment is constantly changing. These settings are considered in the improvement of robot-human interaction, where the potential use of these devices is clear, and algorithms are being developed to improve this situation. By the use of the latest advances in artificial intelligence, the human brain behavior is simulated by the so-called neural networks, in such a way that computing system performs as similar as possible as the human behavior. To this end, the system does learn by error which, in an akin way to the human learning, requires a set of previous experiences quite considerable, in order for the algorithm to retain the manners. Applying these technologies to robot-human interaction do narrow the gap. Even so, from a bird's eye, a noticeable time slot used for the application of these technologies is required for the curation of a high-quality dataset, in order to ensure that the learning process is optimal and no wrong actions are retained. Therefore, it is essential to have a development platform in place to ensure these principles are enforced throughout the whole process of creation and optimization of the algorithm. In this work, multiple already-existing handicaps found in pipelines of this computational gauge are exposed, approaching each of them in a independent and simple manner, in such a way that the solutions proposed can be leveraged by the maximum number of workflows. On one side, this project concentrates on reducing the number of bugs introduced by flawed data, as to help the researchers to focus on developing more sophisticated models. On the other side, the shortage of integrated development systems for this kind of pipelines is envisaged, and with special care those using simulated or controlled environments, with the goal of easing the continuous iteration of these pipelines.Thanks to the increasing popularity of drones, the research and development of autonomous capibilities has become easier. However, due to the challenge of integrating multiple technologies, the available software stack to engage this task is restricted. In this thesis, we accent the divergencies among unmanned-aerial-vehicle simulators and propose a platform to allow faster and in-depth prototyping of machine learning algorithms for this drones

    The APT/ERE planning and scheduling manifesto

    Get PDF
    The Entropy Reduction Engine, ERE project, is focusing on the construction of integrated planning and scheduling systems. Specifically, the project is studying the problem of integrating planning and scheduling in the context of the closed loop plan use. The results of this research are particularly relevant when there is some element of dynamism in the environment, and thus some chance that a previously formed plan will fail. After a preliminary study of the APT management and control problem, it was felt that it presents an excellent opportunity to show some of the ERE Project's technical results. Of course, the alignment between technology and problem is not perfect, so planning and scheduling for APTs presents some new and difficult challenges as well
    • 

    corecore