

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

XSRL: AN XML WEB-SERVICES REQUEST LANGUAGE

Mike Papazoglou, Marco Aiello,
Marco Pistore and Jian Yang

2002

Technical Report # DIT-02-0079

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11828926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

XSRL: An XML web-services request language

Mike Papazoglou{1,2}, Marco Aiello1, Marco Pistore3 and Jian Yang2

1. DIT — Univ. of Trento, Via Sommarive, 14, 38050 Trento, Italy

email: aiellom@dit.unitn.it, http://www.dit.unitn.it/~aiellom

2. INFOLAB — Tilburg Univ., PO Box 90153, NL-5000 LE Tilburg, The Netherlands

email: {mikep,jian}@kub.nl, http://infolab.kub.nl/people/{mikep,jian}

3. ITC-IRST, Via Sommarive,18, 38050 Trento, Italy

email: pistore@irst.itc.it, http://sra.itc.it/people/pistore

Abstract

One of the most serious challenges that web-service enabled e-marketplaces face is the

lack of formal support for expressing service requests against UDDI-resident web-services

in order to solve a complex business problem.

In this paper we present a web-service request language (XSRL) developed on the

basis of AI planning and the XML database query language XQuery. This framework

is designed to handle and execute XSRL requests and is capable of performing planning

actions under uncertainty on the basis of refinement and revision as new service-related

information is accumulated (via interaction with the user or UDDI) and as execution

circumstances necessitate change.

1 Introduction

The current phase of the e-business revolution is driven by enterprises that look to B2B solu-

tions to improve communications and provide a fast and efficient method of transacting with

one another. E-marketplaces are the vehicles that provide the desired B2B functionality. An

e-marketplace is an electronic trading community that brings multiple customers, suppliers,

distributors and commerce service providers in any geographical location together to conduct

business with each other through the exchange of XML based messages (over the Internet) in

order to produce value for end-customers and for each other.

1

Industry-based (or vertical) e-marketplaces, e.g., semiconductors, chemicals, travel indus-

try, aerospace, etc, provide to their members a unified view of sets of products and services

and enable them to transact business using diverse mechanisms, such as web-services. The

goal of web-services when used within the context of e-marketplaces is to enable business

solutions by assembling and programming pre-built software components offering business

functionality on the Web. Each of these components behaves like a self-contained, modular

mini-application with its own interface described in WSDL that can be published and invoked

over the Internet. This allows companies to conduct electronic business, by invoking web-

services, with all partners in a marketplace rather than with just the ones with whom they

have collaborative business agreements. Service offers are described in such a way, e.g., WSDL

over UDDI, that they allow automated discovery to take place and offer request matching on

functional and non-functional service capabilities.

One of the biggest challenges that web-service enabled e-marketplaces face is the lack of

support for appropriate service request languages that retrieve and aggregate services that

contribute to the solution of a business problem. Users typically require services from an

e-marketplace based on their characteristics and functionality. A service request language

provides for a formal means of describing desired service attributes and functionality, including

temporal and non-temporal constraints between services, and service scheduling preferences.

Currently, there are no formal specification mechanisms for formulating user requests and

no automated support for expressing requests over UDDI-resident services other than the

primitive enquiry portion of the UDDI API. Requests based on the UDDI enquiry API are

programmed within application programs and need serious re-coding efforts every time that

there is need for a new request or an extension to a previous request.

The research presented herein concentrates on developing a service request language for

XML-based web-services in e-marketplaces that contains a set of appropriate constructs for

expressing requests and constraints over requests as well as scheduling operators. We name

this language XSRL for XML Service Request Language. XSRL expresses a request over

web-services and returns a set of documents as the result of the request, e.g., by constructing

an end-to-end holiday package (documents) comprising a number of optimised flight and

accommodation choices. Loosely speaking, the response documents can be perceived as a

series of plans that potentially satisfy a request. In expressing an XSRL request it is important

that a user is enabled to specify the way that the request needs to be planned and executed.

Hence, it is our conviction that a service request language, such as XSRL, should comprise

2

two inter-dependent components:

1. A “pure” request specification component that enables users to develop definitions that

express in formal terms the core entities of a request and enables complex formulations

over these core entities,

2. and a scheduling or goal component that expresses user objectives (goals) as well as

scheduling preferences and dependencies among the requested services.

A request written in XSRL is input to an automated planner/scheduler. After receiving

the requests from a user, the planner generates a schedule for interacting with the service

providers without further interaction from the user. The request language allows the planner

to select suitable initial and final actions for requested service combinations and plan its

actions so that it meets the original constraints of the user. Accordingly, a request expressed

in XSRL results in the generation of executable plans describing both the sequence of plan

actions to be carried out in order to satisfy the user request and all necessary information

and constraints essential to develop each planned action in correct and consistent manner.

The field of AI planning offers high potential for solving problems by instilling web-

based planning and scheduling capabilities into distributed decision-making agents in order

to manage resource-constrained domains [1]. Recently, different planning approaches have

been proposed (see [2, 3, 4]), most of which focus on gathering information from the web

and on applying deterministic planning. In our view, AI planning provides core facilities for

developing a web-services request language and for checking the correctness of the plans that

are generated by it.

Our research todate has concentrated on combining a goal language for expressing ex-

tended goals in non-deterministic domains [5] with a system-level planning language for in-

teracting with web services [6]. In [7] we sketched a high-level architectural view and the initial

language support requirements of a system allowing to express requests over UDDI-resident

web-services. Our contribution in this paper focuses in request languages for web-services

and concentrates on introducing high-level lightweight language constructs for XSRL. Thus,

we have chosen to: (1) use an AI planner for non-deterministic domains, such as, for instance

open travel; and (2) work with a combination of an extended temporal language and XQuery

constructs for expressing requests against UDDI-resident web-services. XSRL can express in-

formation both about the request, the succession of activities needed to satisfy a request and

over the parameters of the planned actions. In addition, the plans generated by the language

3

are capable of dealing with non-determinism, interleaving and constraint satisfaction.

This paper is organised as follows: in Section 2, we discuss the importance and require-

ments for modelling a business domain and the use of activity diagrams for this purpose.

Section 3 presents a conceptual view of the architectural framework for supporting requests

over UDDI-resident services. In Section 4, we introduce a service request language (XSRL)

for web-services, describe its syntax and formal semantics, and explain how XSRL requests

are executed and implemented. In Section 5, we discuss related work, while in Section 6 we

present our summary and conclusions.

2 Modelling the business domain

In order for enterprises to conduct electronic business with each other in an e-marketplace,

they must first discover each other and the products and services they have to offer. Sub-

sequently, they must determine which business processes and documents are necessary to

obtain those products and services. Finally, they need to determine how the exchange of

information will take place and then agree on contractual terms and conditions. Once all of

these activities are accomplished, then they can exchange information and products/services

according to these agreements.

To facilitate this endeavour, vertical e-marketplaces provide an infrastructure for efficiently

managing interactions between buyers and sellers. A vertical e-marketplace provides data

and business process definitions including relationships and cross-references and a business

terminology organized on a per industry domain basis. For example, business standards such

as RosettaNet and ebXML describe business processes, as well as e-business interactions that

should be carried out so that transactions can be executed across organisations by exchanging

business documents, such as purchase orders, invoices, tender requests and so on.

For each domain model specified by a vertical e-marketplace we require at least three

elements in order to enable automated e-business exchanges and application development:

1. Standard business processes that formally describe business interactions between organ-

isations. In the world of web-services business processes are published via e-business

directories such as the UDDI. For example, ebXML uses the UN/FECACT Meta Model

(UMM) as a mechanism to allow trading partners to capture the details for a specific

business scenario using a consistent modelling methodology.

2. A document model for defining structured XML business documents exchanged between

4

trading partners or service requesters and providers over the Internet. This includes

request (input) and reply (output) business documents for business actions that are

part of standard business processes.

3. A business lexicon that provides standard business terminology definitions including

relationships and cross-references as expressed in the business terminology and organized

by industry domain.

?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace=http://www.opentravel.org/OTA

xmlns="http://www.opentravel.org/OTA"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:include schemaLocation="PkgCommonElements.xsd"/>

<xs:complexType name="PkgTravelSegment">

<xs:annotation>

<xs:documentation> A full definition of a travel segment.

</xs:documentation>

</xs:annotation>

<xs:choice>

<xs:element name="AirSegment" type="PkgAirSegmentType"/>

<xs:element name="FerrySegment"type="PkgFerrySegmentType"/>

</xs:choice>

</xs:complexType>

<xs:complexType name="PkgAirSegmentType">

<xs:sequence>

<xs:element name="DepartureAirport"

type="PkgTravelLocationName" minOccurs="0"/>

<xs:element name="ArrivalAirport"

type="PkgTravelLocationName" minOccurs="0"/>

<xs:element name="AvailableSeats" minOccurs="0">

......

</xs:element>

</xs:sequence>

<xs:attribute name="Duration" type="xs:string">

</xs:attribute>

<xs:attribute name="CarrierCode" type="xs:string"

use="optional">

</xs:attribute>

<xs:attribute name="CarrierName" type="xs:string"

use="optional">

</xs:attribute>

......

</xs:schema>

Figure 1: An excerpt of the AirSegment XML schema.

In this paper, we base our application scenario on the business domain of e-travelling

where we consider an application booking flight segments and making hotel reservations for

travellers. We base our example on the specifications of the open travel agency [8]. OTA

has specified a set of standard business processes for availability searching and reservation

booking in the airline, hotel and car rental industry, as well as the purchase of travel insurance

5

in conjunction with these services. OTA specifications use XML for structured data messages

to be exchanged over the Internet.

An excerpt from the OTA schema (document model) for an air segment reservation is

illustrated in Figure 1. This business process specifies the format of an air segment schema in

XML as well as the request and response formats for the air segment schema in an open-travel

marketplace that offers web-service functionality. The input (request) document necessary

for the air flight segment includes departure and arrival airports, arrival and departure dates,

desirable price ranges and seat numbers. The output document may include similar informa-

tion with actual destinations, dates and prices that are supplied after interacting with service

providers. A comparable schema exists for hotel reservation purposes. This example was

chosen for illustrative purposes and for ease of understanding.

User

Application

Travel

Agent

Tour

Operator

Plan

Package

Create

Package

Revise

Package

Reject

Package

Request

Package

send

Package

Request

Booking

Receive

Invoice

Receive

Booking

Reference

Create

Booking

Entity

Receive

Payment

Send

Invoice

Send

Payment

Package

Availability

Reserve

Capacity

Payment

Refused

Accept

Package

Send

Confirmation

Details

Receive

Confirmation

Details

Evaluate

Package

Create

Alternative

PackagesDe
pt.

 ai
rpo

rt,
 ar

riv
.

air
po
rt,

 ar
riv

. &

dep
t. d

ate
s,

nr.
 of

 se
ats

air-
seg

ment

det
ails

air
-se

gm
en
t d

eta
ils

cr
ed
it
ca
rd

de
ta
ils

credit card details

invoice

payment

authorisation

booking reference

voucher

air-segment

details

Dept. airport, arriv.
airport, arriv. &
dept. dates,
nr. of seats

Request

document

Responce

document

Figure 2: The AirSegment activity diagram.

6

In Figure 2, we use an activity diagram as an aid to formally represent business process

specifications. In particular, this figure represents a standard air segment reservation business

process. Solid arrows in this diagram represent flows of control while dashed arrows represent

flow of messages. Each node in the diagram represents an activity. Following the UML

convention, we use solid filled circles to denote initial states and circles surrounding a small

solid circle to denote end states. This formalism allows for cycles shown as outgoing arrows

from end states. There are two business processes in this activity diagram, a travel agent

business process and a tour operator business process. Business processes specify how agents,

e.g., a booking application (user application in Figure 2), a travel agent, and a tour operator,

in an e-travelling marketplace interact in order to satisfy a traveller’s requests. The interaction

between roles takes place as a choreographed set of business steps or actions. Each business

action is expressed as an exchange of data in the form of XML electronic business documents.

In Figure 2, the business process is initiated by a traveller who provides the request

document necessary for an air flight segment (arrival airports, dates, seat quantity, as shown

in the input document in Figure 1). This triggers a request activity at some travel agent,

which in turn triggers a package availability request from some tour operator. Air segment

reservation information messages are exchanged until the traveller is able to choose between

rejecting, modifying or accepting the air segment offered by the service providers. Potential

users (travellers) can come up with requests to book their holidays on the basis of the business

process described by this activity diagram. A similar process can be used for hotel reservation

purposes.

Formalising the OTA specification with an activity diagram is just one of many possible

options, which is used for illustration purposes only. Here we are not concerned with which is

the most expressive formalism for modelling web-service interactions, rather we are interested

in presenting an architecture for interaction with e-marketplace based web-services that is

independent from the chosen business modelling formalism.

3 Conceptual view of the planning framework

There are a number of requirements that a web-services centred planner should satisfy. The

plans should have an “open dynamic structure” and be situated in the context of execution.

This means that plans should deal with non-deterministic behaviour in the business domain

and the set of potentially executable actions may change during the course of planning. For

instance, once a travel plan has been generated and proposed to the user, the user may decide

7

to change some of the parameters connected to an action, e.g., hotel booking preferences

and parameters, by dynamically reconfiguring the plan. Hence, plans should be amenable to

refinement and revision as new information is accumulated (via interaction with the user or

UDDI) and as execution circumstances necessitate change. As plans inevitably do not execute

as expected there is the constant need to be able to identify critical constraints and decision

trade-offs, and for evaluation of alternative options. In the planning parlance, this means

that it should be possible to deal with interleaved plans, interactive plans, reactive plans

that deal with exogenous events, e.g., information supplied by the UDDI, and contingency

plans that deal with uncertain outcomes of non-deterministic actions. The need for dynamic

planning capabilities is at direct odds with classical planning research that assumes complete

knowledge of the conditions in which the plan will be executed, deterministic execution and

actions with predictable outcomes and little space for incremental changes. In addition to

these requirements, there is also the core requisite of being able to prove the correctness of

the correspondence between a request and the plans generated by the request language as a

response to this request.

Web-service

definitions-interface

Web-service providers

Web-service access
UDDIPlanner

XML

Schemas

XML

return

Schemas

Business

Process

specification

Domain Model
e-Marketplace

return XML-

schema

compliant plan

instances

XQuery

XSRL- extension

XSRL-processor

Figure 3: The E-Marketplace architecture.

Figure 3 presents a conceptual view of the planning framework for web-services. As shown

8

in this figure, a user submits a request expressed in XSRL that is received by the planner.

Subsequently, the planner plans a series of actions that need to be executed on the basis of

information supplied by the domain model. The domain model contains information such as

the XML schemas for the business processes in the domain, e.g., air segment reservation in

Figure 1, as well as the request and response formats for these XML schemas. The actions that

are planned are based on a business process specification for formally describing the actions

within and between business processes. More specifically, in the context of our running exam-

ple, the planner plans the actions of the air flight segment booking (user) application Figure 2,

e.g., create-package, evaluate-package, receive-package, and so on. It also plans their

interactions with actions that are external to the user application, e.g., request-package,

send-package, etc. Other actors in the business model such as the TravelAgent and Tour-

Operator support these external actions. Actions internal to the business processes provided

by the TravelAgent and TourOperator are the responsibility of these service-providers and

are external to the planner. The planner makes only certain that business process interfaces

and actions of user applications and those provided by service providers are conformant and

consistent with respect to one another.

Once the planner has generated an initial plan of how to satisfy a request expressed in

XSRL, it interacts with UDDI-based service providers and their web-services. The planner

generates a series of XML documents in response to plans executed on the basis of data

supplied by web-service operations offered by UDDI resident service-providers and which are

compliant with the XML input schema. These XML documents are passed to the user for

inspection and include return schema compliant data, such as arrival airports, arrival and

departure dates, and price ranges.

In this paper we focus on the service request part of the planning framework and describe

its syntax and formal semantics on the basis of our running example.

4 The request language XSRL

When users interact with e-marketplace based web-services, ideally they wish to specify only

their goals and to obtain the desired results. Consequently, the basic premise of our approach

is to equip the user with an expressive service request language so that s/he can specify his

objectives clearly and unambiguously. The language should be lightweight and comprehensive.

In other words, it should be possible to state a request in as much or as little detail as the

case may require. Key capability for a service request language would be to satisfy a user

9

request by transparently assembling service solutions from different service providers in the

e-marketplace dynamically by aggregating and composing services, e.g., by constructing an

end-to-end holiday package comprising a number of optimised flight and accommodation

choices.

4.1 The request language

The services request language XSRL is partly based on the XQuery language and extends it

appropriately with constructs from a formal AI planning language, called EaGLe [5], that is

used for expressing extended goals.

The basic form of a request expressed in XSRL is:

request ::= ‘<XSRL>’ xquery expression goal formula ‘</XSRL>’

The results of a request formulated in XSRL are presented in an XML document as specified

in the XQuery part of the request.

XQuery is a powerful typed functional language [9], capable of selecting and extracting

complex patterns from XML documents and of reformulating them into results in arbitrary

ways. An XQuery statement is built from expressions (called queries) which can be composed

arbitrarily. Expressions can be nested and variables are always passed by value. Types can

be imported form XML schemas and XQuery can then perform operations based on these

types. The BNF definition of the xquey expression inside an XSRL request follows:

xquery expression ::= ‘<XQuery>’ FlwrExpr ‘</XQuery>’

XQuery introduces FLWR subexpressions that contain: FOR, LET, WHERE, and RETURN

statements. The BNF productions in the XQuery grammar that define a FLWR expression

are as follows [9]:
FlwrExpr ::= (ForClause | letClause)+ whereClause? returnClause

ForClause ::= ‘FOR’ Binding Var ‘IN’ Expr

(‘,’ Binding Var ‘IN’ Expr)*

LetClause ::= ‘LET’ Binding Var ‘::=’

Expr (‘,’ Binding Var ‘::=’ Expr)*

WhereClause ::= ‘WHERE’ Expr

ReturnClause ::= ‘RETURN’ Expr

An FLWR statement consists of a series of one or more FOR and/or LET clauses, followed

by an optional WHERE and terminated by a mandatory RETURN.

10

The EaGLe language is closely related to the known temporal logic CTL [10]. It inherits

from CTL the possibility of declaring properties on the non-deterministic temporal evolu-

tions of a system, and extends CTL with constructs that are useful for expressing complex

planning goals, such as sequencing of goals, and goal preferences. The BNF definition of the

goal formula is an extension of EaGLe with XML and service-related constructs. Its pur-

pose is to allow users to associate intensions (goals) with a service request. The goal formula

is expressed as follows in terms of BNF:

goal formula ::= ‘<Goal>’ goal ‘</Goal>’

goal ::= basic goal | ‘<And>’ goal goal ‘</And>’

‘<Then>’ goal goal ‘</Then>’ |

‘<Fail>’ goal goal ‘</Fail>’ |

‘<Repeat>’ goal ‘</Repeat>’|

‘<Vital>’ basic goal ‘</Vital>’ |

‘<Optional>’ basic goal ‘</Optional>’ |

‘<MaintainVital>’ property ‘</MantainVital>’ |

‘<MaintainOptional>’ property ‘</MaintainOptional>’

basic goal ::= Process (‘(’ Binding Var (‘,’ Binding Var)* ‘)’)? |

‘<BooleanNot>’ basic goal ‘</BooleanNot>’

‘<BooleanOr>’ basic goal basic goal ‘</BooleanOr>’ |

‘<BooleanAnd>’ basic goal basic goal ‘</BooleanAnd>’

property ::= Constraint (‘(’ Binding Var (‘,’ Binding Var)* ‘)’)? |

‘<BooleanNot>’ property ‘</BooleanNot>’

‘<BooleanOr>’ property property ‘</BooleanOr>’ |

‘<BooleanAnd>’ property property ‘</BooleanAnd>’

where the Binding Var expression is an XQuery variable name and Process is the name of a

standard process found in the e-marketplace business process specification. Basic goals, de-

fined by the basic goal production rule, can be simple Process (Binding Var, Binding Var,...)

expressions or Boolean compositions. Vital and optional statements over basic goals and

maintaining statements over properties form goals, which can be combined in more complex

goals with And, Then, Fail, Repeat statements. This is defined by the goal production

rule.

XSRL allows for expressing conditions that are vital to reach (e.g., <Vital> a($v) </Vital>)

or to maintain (e.g., <MaintainVital> c($v) </MaintainVital>), as well as conditions that

are optional or desired (<Optional> a($v)</Optional> or <MaintainOptional> c($v) </MaintainOptional>),

11

<XSRL>

<XQUERY> {

FOR $a in document(PkgTravelSegment.xml)//AirSegment

[CarrierName = "Alitlaia"| "United Airlines" AND

DepartureAirport = "NewYork" AND

ArrivalAirport = "Rome" | "Venice" AND

(Price <= 800 AND Price >=500) AND

SeatQty = 3 AND

ArrivalDate = "1 June, 2002" AND

DepartureDate = "10 June, 2002"]

RETURN

<ArrivalAirport>{ $a/ArrivalAirport}</ArrivalAirport>

<price>{ $a/price}</price>

<ArrivalDate>{ $a/ArrivalDate}</ArrivalDate>

<DepartureDate>{ $a/DepartureDate}</DepartureDate>

<HotelList> {

FOR $h in document (hotelReference.xml)//HotelReference

[ChainHotel = "Hilton"]

WHERE ($h/Area =$a/ArrivalAirport AND

$h/HotelArrivalDate = $a/ArrivalDate + 1 AND

$h/HotelDepartureDate = $a/DepartureDate 1)

RETURN

<HotelName>{ $h/HotelName }</HotelName>

<HotelAddress>{ $h/HotelAddress }</HotelAddress>

}</HotelList>

}</XQUERY>

<GOAL>

<Then><Vital>receive_confirmation($a)</Vital>

<Optional> receive_confirmation ($h)</Optional></Then>

</GOAL>

</XSRL>

Figure 4: An XSRL request.

where a($v) signifies a certain process and c($v) denotes a constraint over a binding vari-

able. Moreover, it allows for expressing concatenation of goals. For example, the expression

<Then> <BooleanOr>a1($v) a 2($v′) </BooleanOr> a3($v′′)</Then> states the fact that

process a3($v′′) has to occur after at least one of the processes a1($v) or a2($v′) has hap-

pened. It also allows expressing preferences between goals. For example, the expression

<Fail> <Optional> a1($v) </Optional> <Vital> a2($v′) </Vital> </Fail> states the fact

that the preferred goal is to achieve process a1($v), however if that is not possible, then it

is vital to achieve at least a2($v′). We refer to [5] for a complete description and for the full

semantics of the EaGLe language.

12

XSRL is quite a powerful language to express requests against complex web services or

compositions of web services. In the following, we introduce a simple XSRL request on the ba-

sis of the XML schemas for the definition of a travel segment (http://www.opentravel.org/

OTA/PackageTravelSegment.xsd) and for the hotel references (http://www.opentravel.

org/OTA/HotelReference.xsd) which are part of the running example introduced in Sec-

tion 3.

The code snippet in Figure 4 is the request of a traveller who wishes to travel from New

York to a destination in Italy such as Rome or Venice. This traveller wants to use Alitalia

or United Airlines as flight carrier, spend between 500 and 800 dollars, reserve 3 seats on the

flight, leave on the 1st of June and return on the 10th. These are the input parameters required

by the standard XML schemas and business process specification of the OTA marketplace.

The traveller also requires accommodation for the same destination, in an hotel of the Hilton

chain. Furthermore, the traveller finds it vital to have a flight ticket, but would still travel

even if s/he did not have a hotel reservation. Obviously, the passenger does not wish to

reserve accommodation without a confirmed flight ticket.

The XQuery part of the request in Figure 4 is rather straightforward. However the goal

part deserves some explanation. The goal is subdivided into two subgoals to be achieved

sequentially; this is captured by the ‘<Then>’ statement. The first subgoal is considered to

be vital, therefore the ‘<Vital>’ statement is used. The activity in this statement is that

of receiving a confirmation for the part of the request designated by the air travel segment

variable $a. The second subgoal is optional and is indicated by the ‘<Optional>’ statement.

The action in this statement is to receive a confirmation for the request designated by the

hotel variable $h. In both cases, the receive confirmation action is the final action in its

respective business process. This indicates that the AirSegment and Hotel reference business

processes must complete. This can only happen if the action receive confirmation($a)

is successful for the AirSegment and the action receive confirmation($h) is successful for

the Hotel business process.

The above example has illustrated some of the main construct of XSRL. XSRL can be

used to code fairly complicated examples involving web service interactions, synchronization

sequences, and temporal constraints over interacting web-services.

13

4.2 Execution of an XSRL request

An XSRL request needs a number of interacting building blocks to be executed. The planning

framework presented in Figure 3 is responsible for executing the various tasks associated with

an XSRL request: interpreting the planning instructions in the goal expression, interacting

with UDDI, enforcing the user’s constraints and interacting with the user in order to allow him

to choose among alternative solutions and to refine the request. These tasks are illustrated

in Figure 5. This figure gives a high level view of the execution phases of an XSRL request.

UDDI

Domain Model

Plan

acceptance

Plan

rejection

Plan

revision

Plan action

sequence

Generic

plan

Constraint

enforcement

invoke

UDDI-API

XQuery-result

serialization

instantiated plans

XML

domain

schemas

Business

Process

specification

XML

return

schemas

fail

ok

XSRL

request

Figure 5: Execution steps of an XSRL request.

The process of executing an XSRL request is initiated by a user who is aware of the

format of the input and the output parameters as defined in the XML schemas and the

business process specifications for a particular domain. These are part of the domain model

available to the planner as illustrated in Figure 5. The purpose of these XML schemas and

business process specification is to assist the user in forming a correct XSRL request. Note

that the XSRL request includes also the manner in which the output is presented. This

14

capability is inherited from the XQuery portion of the language and this is the reason why

the user needs to also consult the XML return schemas. The planner module in Figure 5

is a Model Based Planner (MBP) [11] that interprets the goal portion of the XSRL request

and identifies the sequence of activities that need to be performed in order to achieve the

specified goal traversing business process paths. The planner checks the consistency of the

request with respect to the business process specification by finding appropriate paths of

activities leading to the final activity specified in the goal part of XSRL. Intuitively, the

paths are computed by executing the request against a business process specification, e.g., an

activity diagram such as the one illustrated in Figure 2. If the request is consistent with the

domain model specifications, it returns a generic plan for further processing. If the request

is inconsistent, then the user is prompted for reformulation of the request. Note that the

planner returns activity paths along the business process specification that could potentially

satisfy the request. However, at this stage the planner is not concerned with the values of the

schema elements and attributes tied to the actions in the business process, e.g., actual ticket

prices, destinations and so on. We refer to this type of plan as a generic plan. An example

of a generic plan for the request of Figure 4 is presented in Figure 6.

We can formally describe a generic plan as a triple:

GP = 〈Ip, A,Rp〉

where Ip is the set of input parameters that should be provided in order to enable the execution

of the plan, A is a planed path of activities, and Rp is the set of result parameters that are

returned once the plan is executed successfully. The results parameters constitute the answer

to the XSRL request. For generic plans, the values of input and result parameters are left

unspecified. The sets Ip and Rp need not be disjoint, i.e., it is possible that Ip
⋂

Rp 6= ∅,

as shown in the plan example in Figure 6. The planed path A describes the activities to be

performed in order to achieve the goal portion of an XSRL request. It consists of a set of basic

actions that are combined with control operators. The basic actions in the plan correspond

to the actions in the activity diagram that are under the control of the user application.

In Figure 6, we show an example of a generic plan for the request of Figure 4. The

<input-params> tags enclose the XSRL input parameters where an entire set of input pa-

rameters are attached to a binding variable, e.g., the travel data and constraints on the trip

are attached to the binding variable $a. Output parameters are specified in the same manner

(<result-params>). The action tags <action-path> enclose the action paths generated by

the MBP. In the plan of Figure 6, we can distinguish actions that require interaction with

15

the service providers (e.g., CreatePackage or AcceptPackage) and actions that require an

interaction with the user (e.g., EvaluatePackage). The control operators permit to specify

sets of actions that should be performed in sequence, conditional activities to be performed

only under certain circumstances (e.g., actions ReceiveConfirmationDetails is executed

only if the user accepts a given package), as well as actions that should be iterated until a

desired condition is achieved (e.g., the user can keep revising the package, as specified by the

external <repeat>...</repeat> in the plan). Special constructs <success>...</success>

and <failure>...</failure> represent plan termination with success or failure.

Once the generic plan has been produced, the planner interacts with the service providers

and with the user according to the path of actions specified in the generic plan, by appro-

priately invoking the UDDI enquiry API. The serialized information returned by the service

providers via the UDDI is matched against the constraints supplied by the XQuery portion

of the XSRL request. Subsequently, the constraint enforcer module checks the consistency of

these constraints.

The plan executor, also referred to as constraint enforcer in parts of the paper, produces

a number of instantiated plans corresponding to the generic plan that satisfy the constraints

specified in the XQuery portion of the XSRL. We can formally describe an instantiated plan

as a 4-tuple:

P = 〈Pid, Ip,A,Rp〉

where Pid is a unique identifier signifying an instance of a generic plan GP . Ip is the set of

instantiated input parameters, A a planed path of actions, and Rp the set of result parameters

for the instantiated plan P . The set of input parameters Ip correspond to those of the generic

plan, but at this stage values are specified for the input parameters. The planed sequence

of actions for the instantiated plan is identical to its corresponding generic plan. The set of

return parameters Rp correspond to those of the generic plan with the exception that values

are now specified for these parameters.

The instantiated plans are the means of providing answers, viz. values, to a user’s request

such as, for instance, different flight carrier possibilities, destinations, prices, duration, etc.

The process of querying the UDDI and enforcing constraints has produced a number of instan-

tiated plans corresponding to the original generic plan. During plan execution the user has

the possibility to interact with the planner and to choose which instantiated plans to accept,

which to revise, and which to reject (for example we refer to the activity EvaluatePackage).

User’s choice is expressed by means of the interactive part of XSRL and results in a new

16

<plan>

<input-params>

<param name="$ta" type="TravelAgent"></param>

<param name="$a" type="AirPackage"></param>

<param name="$ha" type="HotelAgent"></param>

<param name="$h" type="HotelPackage"></param>

<param name="$cc" type="CreditCard"></param>

</input-params>

Ip

<action-path>

<repeat> -- create the travel package

<do action="CreatePackage">

<send value="request($a)" to="$ta"></send>

<result value="air-segment-details($a)"></result>

</do>

<ask-user activity="EvaluatePackage">

<result value="reject">

<do action="RejectPackage"></do>

<failure></failure>

</result>

<result value="revise">

<do action="RevisePackage"></do>

</result>

<result value="accept">

<do action="AcceptPackage">

<send value="credit-card-details($cc)" to="$ta"></send>

<result value="voucher($a)"></result>

</do>

<do action="ReceiveConfirmationDetails"></do>

<repeat> -- create the hotel package

[...]

</repeat>

<success></success>

</result>

</ask-user>

</repeat>

A

<result-params>

<param name="$a" type="AirPackage"></param>

<param name="$h" type="HotelPackage"></param>

</result-params>

Rp

<plan>

Figure 6: An example of a generic plan.

17

interaction with the planner. The BNF definition of the interactive XSRL (iXSRL) language

is the following:
iXSRL ::= accept | reject | revise

accept ::= ‘<Accept>’ ‘<PId>’ Pid ‘</PId>’ ‘</Accept>’

reject ::= ‘<Reject>’ ‘<PId>’ Pid ‘</PId>’ ‘</Reject>’

revise ::= ‘<Revise>’ ‘<PId>’ Pid ‘</PId>’ ‘WITH’

(attribute XQuery expression operator val)+ (ReturnClause)*

where Pid is the instantiated plan identifier, a is an attribute or element name present in Ip

of the instantiated plan P , and ReturnClause is as defined in Section 4.1. The interpretation

of the accept and reject expressions is straightforward. The revise statements requires

some explanation as it is the only means for a user to request further interaction with the

planner. The user may specify alternative values for some of the Ip parameters and may also

optionally change the format of the return parameters. For example, one may wish to revise

an instantiated plan corresponding to the request of Figure 4 by specifying an alternative

residential area as target of the hotel reservation process.

4.3 Implementing the planner framework

An experimental system for execution of service requests and resulting plans is under con-

struction. We have represented the business process specification of the open travel domain

(activity diagram in Figure 2) in terms of NuPDDL, a non-deterministic extension of the

PDDL language which is the standard Planning Domain Description Language for AI ap-

plications [12]. NuPDDL describes domains in terms of actions which have preconditions,

postconditions, input parameters and effects. These are formal complete descriptions of a

domain which can be used to plan actions, verify plans and check environment behaviours.

The NuPDDL domain description and a simulated version of an XSRL request is then

fed to the planner. An excerpt of an NuPDDL domain model specification for the OTA

schema for the air segment reservation document model is shown if Figure 7:

This example indicates that in the domain model there are three actions to be per-

formed with respect to a user application dealing with air segment reservations, namely

CreatePackage, EvaluatePackage and AcceptPackage. The NuPDDL model contains a

complete specification of the effects and the possible succession of actions that need to be

taken when planning within an e-marketplace domain such as the open travel. This specifica-

tion contains pre- and post-conditions attached to actions as well as constructs for expressing

non-deterministic behaviour (the oneof operator in the EvaluatePackage action above).

18

(:action CreatePackage

:parameters (?a - AirPackage ?ta - TravelAgent)

:effect (done_CreatePackage ?a))

(:action EvaluatePackage

:parameters (?a - AirPackage ?ta - TravelAgent)

:precondition (done_CreatePackage ?a)

:postcondition (and (not (done_CreatePackage ?a))

(done_EvaluatePackage ?a)

(oneof (= (result_EvaluatePackage ?a) reject)

(= (result_EvaluatePackage ?a) revise)

(= (result_EvaluatePackage ?a) accept))))

(:action AcceptPackage

:parameters (?a - AirPackage ?cc - CreditCard ?ta - TravelAgent)

:precondition (and (done_EvaluatePackage ?a)

(= (result_EvaluatePackage ?a) accept))

:postcondition (and (not (done_EvaluatePackage ?a))

(done_AcceptPackage ?a)))

Figure 7: An excerpt from a NuPDDL specification for the OTA schema.

The second main component in the implementation is the model based planner (MBP)

[11]. The MBP is an advanced prototype system for the generation of plans that either

creates a correct plan or returns an explanation of why there is no plan satisfying a given

goal. The MBP produces a generic plan according to a business process specification encoded

in NuPDDL, or rejects the request. Instantiated plans are generated on the basis of a generic

plan by simulating hypothetical inputs of service providers from the UDDI repository.

The planning framework involves a domain design and an implementation phase. The de-

sign phase is e-marketplace specific and defines the NuPDDL models required for interaction

with the planner and execution of e-marketplace specific XSRL requests. The implementa-

tion infrastructure is the foundation for the planning framework. Figure 8 illustrates the

connection between the design and implementation phases.

During the design phase, formalisms and techniques are used for analysing e-business

requirements, processes and models, which are then represented by means of rich description

languages such as NuPDDL. This is essential input for the implementation infrastructure

of the web-services planning framework. Some initial work that falls under this effort can be

found in [13].

The implementation phase of the framework that plans actions in response to XSRL

requests involves the following components:

19

XSRL

Model Based

Planner

Plan

executor

Plan

executor

UDDI

XQuery-result

serialization

Non-

deterministic

Planning Domain

Description

Language

Business

Process

specification

Design

Figure 8: Implementation steps.

• XSRL parser: the XSRL parser parses XRSL requests and passes them to the planning

framework for further processing. It includes a standard parser for XML expressions and

a dispatcher module for passing parsed expressions to the MBP and the plan executor.

• Model Based Planner: the implementation of the MBP is built on top of a symbolic

model checker and relies on Binary Decision Diagrams (BDDs). BDDs provide a gen-

eral interface that allows for a direct mapping of symbolic representation mechanisms

such as prepositional formulae representing sets of states and state transitions. More

information on the MBP can be found in [11].

• Plan executor: this module is responsible for interacting with UDDI enquiry con-

formant APIs and coordinates the execution of generic plans obtained from the MBP,

which it instantiates and executes. This part of the system is under construction.

20

5 Related Work

In Section 1 we briefly mentioned work which is related to web-resources planning and schedul-

ing. There are currently no research activities on providing either formal or automated

support for service-based request processing other than low-level discovery mechanisms for

web-services provided by the UDDI enquiry APIs. It is, however, worth mentioning some

loosely related work (mainly on services composition and coordination) in the area of inter-

organisational workflows.

Work on flexible workflows has focused on dynamic process modification [14]. In this

publication, workflow changes are specified by transformation rules composed of a source

schema, a destination schema and of conditions. The workflow system checks for parts of the

process that are isomorphic with the source schema and replaces them with the destination

schema for all instances for which the conditions are satisfied. They also propose a migration

language for managing instance-specific migrations.

The work reported in [15] focuses on methods and tools for defining processes that compose

services that are provided by different companies. An advanced workflow model with special

purpose primitives manages coordination among services. The model allows definition of

application-specific states and operations. Designers specify composite services (processes)

by defining control flow conditions based on the states of component services and when

application-specific operations should be invoked on the component service.

The approach described in [16] allows for automatic process adaptation. The authors

present a workflow model that contains a placeholder activity, which is an abstract activity

replaced at run-time with a concrete activity type. This concrete activity must have the same

input and output parameter types as those defined as part of the placeholder. In addition,

the model allows to specify a selection policy to indicate which activity should be executed.

In [17] the authors describe how workflow technology can be extended in order to support

e-business interactions. The authors propose a framework that links B2B interactions with

internal workflow systems. The proposed framework can be used for the development of

new business processes that potentially support B2B interaction standards, e.g., RosettaNet

PIPs, CBL and cXML, and the enhancement of existing business processes by seeding B2B

interaction capabilities.

Work related to coordination/composability can also be found in CSCW and groupware

publications [18]. In this publication, the authors examine the potential of using coordina-

tion technology to model electronic business activities and illustrate the benefits of such an

21

approach. Furthermore, the authors demonstrate that control-oriented, event-driven coordi-

nation models and languages are more suitable for supporting electronic business applications

rather than the conventional data-driven approaches which are based on accessing an open

shared communication medium in almost unrestricted ways.

6 Summary and future work

In this paper, we have presented XSRL, a formal language for expressing request against

e-marketplace registered web-services. The language is an amalgamation of internet XML

query language and AI planning constructs. We have given full semantics of the constructs

of the XSRL that subsume the planning composition language we proposed in [6]. There we

introduced constructs at the systems-level to support web-service composition, whereas the

XSRL includes constructs such as alternative activities, vital vs. optional activities, precondi-

tions, postconditions, invariants, and expression operators over quantitative values that can

be employed at the user-level when formulating a goal. The novelty of this approach lies in the

automatic generation and verification of plans over web-services residing in an e-marketplace

once a user request is concretely expressed and formally specified. This framework provides

genericity and flexibility and can be used as a basis for effective planning for different types

of applications dealing with interacting web-services.

Currently, XSRL distinguishes between vital and optional activities and allows user pref-

erences to be specified in a strictly sequential order (total order). However, one may consider

further extensions to the language where partial orders of preferences can also be specified.

For instance, one may wish to specify that a traveller has an equal preference over Hilton and

Marriott chains and that these are preferable to Best Western hotels. Future extensions of

XSRL that can be of importance for interacting with web-services may also include similarity

operators. There are three levels at which such semantic operators may work:

1. at the level of XQuery functions: a user could specify that s/he wants something similar

to a compact car (topology), or some location close to a given city (proximity), etc.

2. at the service level: a user could specify that s/he wants a semantic functionality similar

to that provided by a specific service, e.g., a train service may replace a plane service

for the goal of travelling—provided that there is a semantic similarity of the operations

of the services.

3. at the plan level: a user could specify a goal similar to that obtained by an already

22

existing (and successful) plan, e.g., make a trip similar to the one s/he has previously

requested or done.

References

[1] S. Smith, D. Hildum, and D.R. Crimm. Toward the design of web-based planning and

scheduling services. In Int. Workshop on Automated Planning and Scheduling Technolo-

gies in New Methods of Electronic, Mobile and Collaborative Work, 2001.

[2] D. McDermott. Estimated-regression planning for interactions with Web Services. In

6th Int. Conf. on AI Planning and Scheduling. AAAI Press, 2002.

[3] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, I. Muslea, A. G. Philpot, and

S. Tejada. The ariadne approach to web-based information integration. International

the Journal on Cooperative Information Systems, 2002. Special Issue on Intelligent In-

formation Agents: Theory and Applications, Forthcoming.

[4] C. A. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accurately and reliably extracting

data from the web: A machine learning approach. Data Engineering Bulletin, 2002. To

appear.

[5] U. Dal Lago, M. Pistore, and P. Traverso. Planning with a language for extended goals.

In 18th National Conference on Artificial Intelligence (AAAI-02), 2002.

[6] J. Yang and M. Papazoglou. Web component: A substrate for web service reuse and

composition. In 14th Int. Conf. on Advanced Information Systems Engineering CAiSE02,

2002.

[7] Aiello et al. A request language for web-services based on planning and constraint

satisfaction. In VLDB Workshop on Technologies for E-Services (TES02), 2002.

[8] OTA Open Travel Alliance. 2001C specifications, 2001. http://www.opentravel.org.

[9] XQuery. An XML Query Language, 2002. http://www.w3.org/TR/xquery.

[10] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, Volume B: Formal Models and Semantics. Elsevier, 1990.

23

[11] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP: A Model Based

Planner. In n Proc. IJCAI’01 Workshop on Planning under Uncertainty and Incomplete

Information, 2001.

[12] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld,

and D. Wilkins. PDDL—The Planning Domain Definition Language. In R. Simmons,

M. Veloso, and S. Smith, editors, 4th Int. Conf. on AI Planning and Scheduling, 1998.

[13] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking early require-

ments specifications in Tropos. In Proceedings Fifth IEEE International Symposium on

Requirements Engineering (RE01), 2001.

[14] G. Joeris and O. Herzog. Managing evolving workflow specifications with schema ver-

sioning and migration rules, 1999. TZI Technical Report 15, University of Bremen.

[15] D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki. Integrating Workflow Man-

agement Systems with Business-to-Business Interaction Standards. Information Systems,

24(6), 1999.

[16] D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki. Managing escalation of

collaboration processes in crisis mitigation situations. In Proceedings of Int’l Conf. On

Data Engineering ICDE 2000, 2000.

[17] M. Sayal, F. Casati, U. Dayal, and M Chien Shan. Integrating Workflow Management

Systems with Business-to-Business Interaction Standards. In Proceedings of Int’l Conf.

On Data Engineering ICDE 2000, 2002.

[18] G. A. Papadopoulos and F. Arbab. Modelling electronic commerce activities using

control-driven coordination. In Ninth International IEEE Workshop on Database and

Expert Systems Applications, 1998.

24

