8,729 research outputs found

    Responsible research and innovation in science education: insights from evaluating the impact of using digital media and arts-based methods on RRI values

    Get PDF
    The European Commission policy approach of Responsible Research and Innovation (RRI) is gaining momentum in European research planning and development as a strategy to align scientific and technological progress with socially desirable and acceptable ends. One of the RRI agendas is science education, aiming to foster future generations' acquisition of skills and values needed to engage in society responsibly. To this end, it is argued that RRI-based science education can benefit from more interdisciplinary methods such as those based on arts and digital technologies. However, the evidence existing on the impact of science education activities using digital media and arts-based methods on RRI values remains underexplored. This article comparatively reviews previous evidence on the evaluation of these activities, from primary to higher education, to examine whether and how RRI-related learning outcomes are evaluated and how these activities impact on students' learning. Forty academic publications were selected and its content analysed according to five RRI values: creative and critical thinking, engagement, inclusiveness, gender equality and integration of ethical issues. When evaluating the impact of digital and arts-based methods in science education activities, creative and critical thinking, engagement and partly inclusiveness are the RRI values mainly addressed. In contrast, gender equality and ethics integration are neglected. Digital-based methods seem to be more focused on students' questioning and inquiry skills, whereas those using arts often examine imagination, curiosity and autonomy. Differences in the evaluation focus between studies on digital media and those on arts partly explain differences in their impact on RRI values, but also result in non-documented outcomes and undermine their potential. Further developments in interdisciplinary approaches to science education following the RRI policy agenda should reinforce the design of the activities as well as procedural aspects of the evaluation research

    Computer Programming Effects in Elementary: Perceptions and Career Aspirations in STEM

    Full text link
    The development of elementary-aged students’ STEM and computer science (CS) literacy is critical in this evolving technological landscape, thus, promoting success for college, career, and STEM/CS professional paths. Research has suggested that elementary- aged students need developmentally appropriate STEM integrated opportunities in the classroom; however, little is known about the potential impact of CS programming and how these opportunities engender positive perceptions, foster confidence, and promote perseverance to nurture students’ early career aspirations related to STEM/CS. The main purpose of this mixed-method study was to examine elementary-aged students’ (N = 132) perceptions of STEM, career choices, and effects from pre- to post-test intervention of CS lessons (N = 183) over a three-month period. Findings included positive and significant changes from students’ pre- to post-tests as well as augmented themes from 52 student interviews to represent increased enjoyment of CS lessons, early exposure, and its benefits for learning to future careers

    Student Authored Digital Games as Authentic Learning: Using the \u3cem\u3eCan You Create a Game Challenge\u3c/em\u3e in Elementary Classrooms

    Get PDF
    This embedded single-case study examined an elementary classroom implementation of a digital game authoring challenge aligned with state mandated content standards. Teachers used the game challenge over four 50 minute class periods during a three month period of time. A total of twenty five (n=25) 4th grade students, nine (n=9) 5th grade students and three (n=3) STEM teachers participated in the study. The central research question for this study is: How do elementary teachers use a game challenge specifically aligned with Common Core/Next Generation Science (NGSS) state standards for instruction? Qualitative data, drawn from participating teacher interviews, classroom observations, student project reflections and document analysis of the student-authored digital games, were analyzed using Hatch’s (2002) typological analysis. Findings suggest that, while using a standards-based gaming task within instruction is effective in promoting dimensions of an authentic learning environment for students, more research is needed in the areas of 1) professional development for teachers in game design and computational thinking; 2) the use of a digital game task as an assessment for students with disabilities or who struggle in other content areas; 3) the use of a digital game task for assessment in other content areas; and 4) how the computational thinking skills and the dispositions of teachers affect the flow of knowledge in classrooms using a digital game task

    Exploring Trends in Middle School Students\u27 Computational Thinking in the Online Scratch Community: A Pilot Study

    Get PDF
    Teaching computational thinking has been a focus of recent efforts to broaden the reach of computer science (CS) education for today’s students who live and work in a world that is heavily influenced by computing principles. Computational thinking (CT) essentially means thinking like a computer scientist by using principles and concepts learned in CS as part of our daily lives. Not only is CT essential for the development of computer applications, but it can also be used to support problem solving across all disciplines. Computational thinking involves solving problems by drawing from skills fundamental to CS such as decomposition, pattern recognition, abstraction, and algorithm design. The present study examined how Dr. Scratch, a CT assessment tool, functions as an assessment for computational thinking. This study compared strengths and weaknesses of the CT skills of 360 seventh- and eighth-grade students who were engaged in a Scratch programming environment through the use of Dr. Scratch. The data were collected from a publicly available dataset available on the Scratch website. The Mann-Whitney U analysis revealed that there were specific similarities and differences between the seventh- and eighth-grade CT skills. The findings also highlight affordances and constraints of Dr. Scratch as a CT tool and address the challenges of analyzing Scratch projects from young Scratch learners. Recommendations are offered to researchers and educators about how they might use Scratch data to help improve students’ CT skills

    Understanding Teacher Perspectives and Experiences after Deployment of AI Literacy Curriculum in Middle-school Classrooms

    Full text link
    Artificial Intelligence (AI) and its associated applications are ubiquitous in today's world, making it imperative that students and their teachers understand how it works and the ramifications arising from its usage. In this study, we investigate the experiences of seven teachers following their implementation of modules from the MIT RAICA (Responsible AI for Computational Action) curriculum. Through semi-structured interviews, we investigated their instructional strategies as they engaged with the AI curriculum in their classroom, how their teaching and learning beliefs about AI evolved with the curriculum as well as how those beliefs impacted their implementation of the curriculum. Our analysis suggests that the AI modules not only expanded our teachers' knowledge in the field, but also prompted them to recognize its daily applications and their ethical and societal implications, so that they could better engage with the content they deliver to students. Teachers were able to leverage their own interdisciplinary backgrounds to creatively introduce foundational AI topics to students to maximize engagement and playful learning. Our teachers advocated their need for better external support when navigating technological resources, additional time for preparation given the novelty of the curriculum, more flexibility within curriculum timelines, and additional accommodations for students of determination. Our findings provide valuable insights for enhancing future iterations of AI literacy curricula and teacher professional development (PD) resources.Comment: Published at 16th annual International Conference of Education, Research and Innovation (ICERI) 202

    Computational Thinking in Education: Where does it fit? A systematic literary review

    Get PDF
    Computational Thinking (CT) has been described as an essential skill which everyone should learn and can therefore include in their skill set. Seymour Papert is credited as concretising Computational Thinking in 1980 but since Wing popularised the term in 2006 and brought it to the international community's attention, more and more research has been conducted on CT in education. The aim of this systematic literary review is to give educators and education researchers an overview of what work has been carried out in the domain, as well as potential gaps and opportunities that still exist. Overall it was found in this review that, although there is a lot of work currently being done around the world in many different educational contexts, the work relating to CT is still in its infancy. Along with the need to create an agreed-upon definition of CT lots of countries are still in the process of, or have not yet started, introducing CT into curriculums in all levels of education. It was also found that Computer Science/Computing, which could be the most obvious place to teach CT, has yet to become a mainstream subject in some countries, although this is improving. Of encouragement to educators is the wealth of tools and resources being developed to help teach CT as well as more and more work relating to curriculum development. For those teachers looking to incorporate CT into their schools or classes then there are bountiful options which include programming, hands-on exercises and more. The need for more detailed lesson plans and curriculum structure however, is something that could be of benefit to teachers
    • …
    corecore