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ABSTRACT 
 
 

Exploring Trends in Middle School Students’ Computational Thinking 
 

in the Online Scratch Community: A Pilot Study 
 
 

by 
 
 

Kevin N. Lawanto, Master of Science 
Utah State University, 2016 

 
 
Major Professor: Sheri Haderlie, Ph.D. 
Department: Instructional Technology and Learning Sciences 
 
 

Teaching computational thinking has been a focus of recent efforts to broaden the 

reach of computer science (CS) education for today’s students who live and work in a 

world that is heavily influenced by computing principles. Computational thinking (CT) 

essentially means thinking like a computer scientist by using principles and concepts 

learned in CS as part of our daily lives. Not only is CT essential for the development of 

computer applications, but it can also be used to support problem solving across all 

disciplines. Computational thinking involves solving problems by drawing from skills 

fundamental to CS such as decomposition, pattern recognition, abstraction, and algorithm 

design.  

The present study examined how Dr. Scratch, a CT assessment tool, functions as 

an assessment for computational thinking. This study compared strengths and weaknesses 

of the CT skills of 360 seventh- and eighth-grade students who were engaged in a Scratch 

programming environment through the use of Dr. Scratch. The data were collected from a 
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publicly available dataset available on the Scratch website. The Mann-Whitney U 

analysis revealed that there were specific similarities and differences between the 

seventh- and eighth-grade CT skills. The findings also highlight affordances and 

constraints of Dr. Scratch as a CT tool and address the challenges of analyzing Scratch 

projects from young Scratch learners. Recommendations are offered to researchers and 

educators about how they might use Scratch data to help improve students’ CT skills. 

(79 pages) 
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PUBLIC ABSTRACT 
 
 

Exploring Trends in Middle School Students’ Computational Thinking 
 

in the Online Scratch Community: A Pilot Study 
 
 

Kevin N. Lawanto 
 

We live in a century in which technology has become part of our lives, and it is 

crucial that we become active creators and not merely passive users of technology. One 

characteristic that might distinguish someone who uses the ideas of others from one who 

innovates his own ideas is the ability to computer program. Computer programming is 

more than just learning how to code; it also exposes students to computational thinking 

(CT), which involves problem-solving using computer science (CS) concepts, such as 

decomposition, pattern recognition, abstraction, and algorithm design. 

The rationale for introducing computing in K-12 in order to advance CT is 

compelling. While currently the need to introduce CT skills is prioritized at the high 

school level, there is a growing belief among researchers that CS experiences need to 

start at an earlier age. This study examines the elements of CT found in the projects of 

7th- and 8th- grade students. Specifically, I used Dr. Scratch to examine whether there 

were patterns in the students’ computational thinking skills. In order to explore the 

elements of CT found in the students’ Scratch projects, datasets of 360 student projects 

from a publicly available repository of projects on the Scratch website were analyzed.  

The results from the study suggested that there were specific similarities and 

differences between the seventh- and eighth-grade CT skills. The results also highlighted 
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affordances and constraints of Dr. Scratch as a CT tool and addressed the challenges of 

analyzing Scratch projects from young learners. Recommendations are offered to 

researchers and educators about how they might use Scratch data to help improve 

students’ CT skills. 
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CHAPTER I 

 
INTRODUCTION 

 
 

 Teaching computational thinking (CT) has been a focus of recent efforts to 

broaden the reach of computer science (CS) education. Among many researchers, Barr 

and Stephenson (2011) pointed out that modern students live and work in a world that is 

heavily influenced by computing principles. A report by the National Council for 

Research (2010) introduced a similar idea that CT is a cognitive skill that the average 

person needs to possess. The report highlighted that  

(1) students can learn thinking strategies such as CT as they study a discipline, (2) 
teachers and curricula can model these strategies for students, and (3) appropriate 
guidance can enable students to learn to use these strategies independently. (p. 62) 
 

Thus, the term CT has quickly become a prerequisite skill for many endeavors of the 21st 

century (Wing, 2008). CT is broadly defined as a mental activity for abstracting problems 

and formulating solutions that can be automated (Pulimood, Pearson, & Bates, 2016; 

Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014).  

The use of CT has received significant attention most recently among educators of 

K-12 students. Computer Science for All is an initiative supported by President Obama to 

empower K-12 students to learn CS and to become equipped with the CT skills needed to 

emerge as active creators and not merely passive users of technology (Smith, 2016). 

During President Obama’s State of the Union 2016 Keynote Address, he mentioned that 

the economy is rapidly shifting, and both educators and business leaders are increasingly 

recognizing CS as a basic skill that is necessary for economic opportunity and social 

mobility. Learning how to computer program is one effective way to address the need 
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and teach CT skills, considered by many as one of the most important skills of the 21st 

century (Smith, 2016; Wing, 2006, 2011). Despite its importance, computer 

programming courses have not been widely implemented in the U.S. K-12 education 

system, and educators generally agree that the greatest lack of implementation exists in 

grades K-8 (Computer Science Teachers Association [CSTA], 2012; Lee, Martin, & 

Apone, 2014; Mannila et al., 2014). Recently, the CSTA created CS standards for K-12 

education; however, only a handful of states have adopted these standards into their 

school systems (e.g., Massachusetts and Washington; Close, Janisiewicz, Brasiel, & 

Martin, 2015). 

Historically, exposing high school students to CS principles has been prioritized 

by teachers; however, there is a growing belief that experiences with computer 

programming must start at an earlier age (Grover, 2014). Research has shown that when 

students are introduced to science, technology, engineering, and mathematics (STEM) 

curricula early, it can positively impact their perceptions, encouraging them to continue 

to develop important STEM skills (Bagiati, Yoon, Evangelou, & Ngambeki, 2010; Bybee 

& Fuchs, 2006; DeJarnette, 2012). Computer science classes in middle school are 

particularly important in that they can support the development of CT skills and 

ultimately influence career choices (Barendsen et al., 2015; Repenning, Webb, & 

Ioannidou, 2010; Settle et al., 2012).   

Wing (2006) introduced the term computational thinking (CT) to describe the 

collection of diverse skills related to problem solving which were determined after 

studying the nature of computation. Since then, studies have shown that some teachers 

who use computer programming to teach CT struggle to identify and assess its 
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components (Grover & Pea, 2013). As a result, the focus in this topic area has shifted to 

tackling the more practical questions of how to promote and assess the development of 

CT (Grover & Pea, 2013; Werner, Denner, & Campe, 2015; Werner, Denner, Campe, & 

Kawamoto, 2012) and how to integrate it into the K-12 system (Lee et al., 2014). To 

address this problem, many researchers have tried to define CT skills, tools, and 

techniques that may be used to support students in CS education. More recently, Moreno-

León and Robles (2015) listed seven important components of CT that teachers should 

know and implement when teaching computer programming: abstraction, parallelism, 

logical thinking, synchronization, flow control, data representation, and user interactivity. 

The above-referenced CT components have far-reaching implications for solving 

problems and understanding systems across the school curriculum. By implementing the 

CT concepts into the classroom, teachers will be able to teach step-by-step approaches to 

solve problems by first identifying key information in a problem.  

Although there is a need to integrate CT concepts into classroom practices, there 

are barriers that teachers must overcome prior to doing so. One barrier is the lack of tools 

that support educators and researchers in the assessment of student projects. Recently, 

several tools have become available that teachers may use to analyze students’ Scratch 

data, but currently there is inadequate evidence to support the effectiveness of the tools 

(Moreno-León & Robles, 2015). Thus, the present study seeks to contribute to this need 

by empirically investigating Dr. Scratch as an example of a user-friendly CT assessment 

tool to analyze students’ Scratch projects. Specifically, Dr. Scratch allows researchers 

and instructors to visually assess students’ CT by evaluating components used by 

students in their Scratch games and highlighting where improvement is needed. The goal 
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of the study was twofold: (1) use Dr. Scratch to build an understanding of middle school 

students’ strengths and weaknesses in CT, and (2) identify affordances and constraints of 

how Dr. Scratch functions as a CT assessment tool. An important objective is to inform 

educators and researchers with methods to intervene and support student learning and 

design and implement CT assessment tools in CS education classrooms.  
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CHAPTER II 
 

REVIEW OF LITERATURE 
 
 

The present study was grounded in three key areas of research. The first area 

summarized important findings from literature which has studied the place of CS in the 

digital age, including an exploration of how CS and CT are related. The second area 

highlighted research on CT teaching in K-12 classrooms: what is known and what 

remains to be learned. The third area studied existing CT assessment tools for K-12 

classrooms.  

 
Computer Science in the Digital Age 

 
 

The most commonly cited rationale for including CS in K-12 instruction is the 

growing demand for CS skills in the workplace (CSTA, 2003, 2010, 2012; Israel, 

Pearson, Tapia, Wherfel, & Reese, 2015; Wilson & Moffat, 2010). In 2014, research 

revealed that CS received less than 1% of the educational funding allocated to schools for 

STEM (Partovi, 2014). Furthermore, as recently as 2015, CS curriculum was unavailable 

in the vast majority of schools in the U.S. (Barendsen et al., 2015).  

The majority of American computer and technology companies have responded to 

the lack of CS-trained American workers by lobbying the federal government to allow 

more technology-credentialed workers from other countries to work in the U.S. (Preston, 

2015). The efforts are significant because the CS industry is responsible for much of the 

economic growth and opportunity in STEM (Partovi, 2014). Furthermore, technology 

companies in the United States have pushed hard for a fast-track, green card application 
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process for foreign graduates who excel in CS education and other STEM-related areas, 

and for doubling the number of visas awarded through the H1-B program (Preston, 

2015). 

Due to the urgency of the situation, President Obama introduced numerous 

campaigns and initiatives such as: The Educate to Innovate Campaign in 2009, the 

TechHire Initiative in 2015, and more recently the Computer Science for All Initiative in 

2016. The initiatives represent a collaborative effort between the government, private 

sector, nonprofit, and research communities to provide multimillion-dollar funding to 

encouraging youth, especially those from underrepresented groups, to become involved 

in STEM fields and to pursue technology-related careers (“Fact Sheet,” 2015, 2016; 

Holdren, Lander, & Varmus, 2010; Smith, 2016). The President expressed his belief that 

great teaching is an important part of any child’s success, and that the Initiatives will help 

to prepare more teachers in the STEM areas and to introduce them to different 

technologies and tools that can be implemented in the classroom (Repenning et al., 2015). 

The President also mentioned that developing the technology skills of our 

workforce is important for our economic future and is a critical need for employers today. 

Over half a million of today’s job openings are in technology fields such as software 

development and cyber security, many of which did not exist a decade ago (“Fact Sheet,” 

2016). According to the White House, the average salary for a job that requires 

information technology (IT) and CS skills is 50% higher than an average job in the 

private sector. The campaigns and initiatives created by the government call for various 

governmental and educational institutions as well as IT companies to empower 

Americans with the skills they need through traditional (e.g., school) and nontraditional 
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(e.g., web-based tutoring and classes) approaches.  

A primary example of a nontraditional approach to introduce CS was the Hour of 

Code Initiative (http://code.org). Every year during the Computer Science Education 

Week, the Initiative challenges millions of users (mainly targeted at the K-12 levels) 

worldwide to spend at least one hour in a coding exercise (Israel et al., 2015). One of the 

benefits of using the nontraditional approach to introduce CS is that users could learn CS 

on their own, in their leisure time, and at their pace. The traditional and nontraditional 

methods to learn CS could improve individual skills in daily life and be advantageous for 

job-searching purposes. 

 
Computing Education in K-12 

 
 

One of the exciting things about learning CS is that users learn new and 

fundamental ways of thinking and problem solving, called computational thinking (CT). 

Computational thinking is one of the big advantages of studying computer science, and 

there is a growing interest in incorporating it in reading, writing, and math as a core 

ability that every student should learn (Wing, 2006, 2011). One way to introduce CT is to 

put a new curriculum into the K-12 systems in which teachers can introduce CT to 

children as early as the kindergarten level, so that as they grow they can become more 

proficient in problem solving and logical thinking, algorithmically and recursively. In the 

following sections, research studies that have been conducted in the K-12 environment 

are highlighted in which teachers were introduced to CT training.  
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Teaching CT 

As CT becomes a fundamental skill for the 21st century, K-12 teachers should be 

exposed to computing principles. Yadav, Zhou, Mayfield, Hambrusch, and Korb (2011) 

conducted a study that looked at preservice teachers’ attitudes toward CT in a required 

educational psychology course at a large university in the Midwest. Researchers surveyed 

100 preservice teachers: 55% were preparing to teach at the elementary level and 45% at 

the secondary level. The results suggested that 95% of preservice teachers’ attitudes 

toward CS became more favorable after the researchers implemented a 1-week module 

on CT in the course. Specifically, the educators were more likely to integrate computing 

principles in their future teaching.  

In another study, Bell, Frey, and Vasserman (2014) investigated methods of how 

to introduce programming to preservice teachers by teaching a workshop held for sixth- 

through ninth-grade students. Five art and music preservice teachers and one inservice 

teacher participated in the study. During each of four week-long sessions, the teachers-in-

training gradually took over more teaching responsibilities by modifying and presenting 

lessons that incorporated their own music and art expertise into the programming 

activities. Student surveys showed that self-efficacy towards programming, enjoyment of 

programming, and interest in continuing to program increased over the course of the 

sessions. Meanwhile, after the initially skeptical teachers were trained in programs such 

as Scratch, they expressed an interest in continuing to use the tools in their teaching (Bell 

et al., 2014).  

Despite the growing need to integrate CS into K-12 education, many inaccurate 

perceptions of CS exist that influence attitudes toward CS learning and careers (Armoni, 
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2011; Israel et al., 2015). Research suggests some of the reasons for the declining 

enrollment in CS are related to teachers’ attitudes that the only computing experiences 

available to students occur through learning programming languages such as Java or C++ 

(Burke & Kafai, 2012; Goode, 2007; Siegfried, Chays, & Herbert, 2008; Wilson & 

Moffat, 2010). Because complex programming languages are introduced to provide 

computing experiences, students often think that CS is boring, confusing, and too 

difficult to master (Israel et al., 2015; Wilson & Moffat, 2010). 

Research is also needed to understand how to best support teachers to improve 

their attitude towards CS and develop their capacity to teach CS skills to their students in 

engaging ways. Currently, the longest running CS teaching program in the U.S. is the 

Exploring Computer Science (ECS) Initiative (Goode, Margolis, & Chapman, 2014; 

Margolis, Goode, & Ryoo, 2014). The program, started in 2012 and targeted initially at 

students in Los Angeles, has grown from a local to a national one. Margolis et al. noted 

that ECS is not just a program that teaches CS skills to students, but it also includes the 

ECS professional development program for teachers. The course was developed around a 

framework of both CS content and computational practice. The preliminary findings of 

the study indicated that ECS participation produced a robust and significant increase in 

students’ self-assessment of their CS-related knowledge and skills. The findings also 

indicated a significant increase in students’ interest in pursuing CS-related coursework 

and motivation when dealing with computer problem-solving activities. 

When looking at CS education reform in the U.S., it is helpful to learn from 

similar efforts in other countries. For example, the United Kingdom (UK) has 

implemented a computing curriculum in which CT concepts and skills were taught, even 
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though many of its teachers had no computing background and were unprepared to 

implement the new curriculum changes in their classrooms (Curzon, McOwan, Plant, & 

Meagher, 2014). Scholars in the UK (e.g., Curzon et al., 2014) have examined the 

effectiveness of using unplugged computing methods to introduce teachers to CT topics. 

Unplugged computing is an approach to teaching computer concepts using constructivist 

activities away from computers. The activities introduce teachers to basic CT ideas 

through concepts such as debugging, binary numbers, algorithms and data compression, 

through the use of board games and puzzles. The activities provide teachers with a 

“programming-free” way to think about algorithms and problem solving without having 

to worry about the details that actual codes and programming languages impose 

(Lamagna, 2015; Taub, Armoni, & Ben-Ari, 2012).  

 
Tools for Learning CT 

While many efforts have focused on helping young programmers to become more 

interested in coding, the use of programming to teach problem-solving skills in K-12 

declined significantly after the creation of Logo, a computer programming language 

created by Seymour Papert (Lye & Koh, 2014). However, in recent years, there has been 

a renewed interest in introducing programming to K-12 students (Grover & Pea, 2013; 

Kafai & Burke, 2013). The interest has been fueled by the availability of visual 

programming languages, such as: Scratch, Google Blockly, Tynker, Greenfoot, and 

Storytelling Alice. 

With the recent developments in the visual programming languages for K-12, 

there is a renewed interest to consider how computer programming can benefit K-12 
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students (Barr & Stephenson, 2011; Grover & Pea, 2013; Resnick et al., 2009). 

Furthermore, Resnick et al. provided suggestions about features of effective tools for 

teaching CT in K-12 education. The term “low floor, high ceiling” that he suggested 

essentially means that though it should be easy for a beginning student to create a 

working program (low floor), the tool should be complex enough to fulfill the needs of 

advanced programmers (high ceiling). To make these types of CT-rich environments a 

reality, teachers must present to students the tools that have low floors and high ceilings 

(Grover & Pea, 2013). The tools for learning CT must adequately scaffold student 

learning, enable knowledge transfer, support equity, and be systemic and sustainable 

(Grover & Pea, 2013; Repenning et al., 2010).  

 
Interest and Engagement in CT 

When selecting tools for teaching CT, one should note that effective tools have 

the potential to increase student interest and excitement. Lye and Koh (2014) reviewed 27 

articles that mentioned the term computational thinking. Of those, only nine studies were 

conducted in the K-12 environment, and most of them reported positive outcomes 

including increased positive attitudes about computing and CS (Lambert & Guiffre, 2009; 

Lin, Yen, Yang, & Chen, 2005) as well as increased skills in computer programming 

(Baytak & Land, 2011; Kwon, Kim, Shim, & Lee, 2012).  

Efforts to prepare precollege students for a career in computer science typically 

use two strategies: increase student interest and excitement about computing, and 

introduce them to computational concepts and skills (Denner, Werner, & Ortiz, 2012). In 

2012, the CSTA revised its CS standards that targeted mainly high school students, 
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providing researchers and instructors with information about how to improve 

implementation of CS skills at the high school level. Roughly two thirds of the 50 states 

have no CS standards for secondary school education (Barendsen et al., 2015; Wilson, 

Sudol, Stephenson, & Stehlik, 2010). Despite its importance as an academic field, few 

states count CS as a core academic subject for graduation (CSTA, 2012).  

At the K-8 level, more work needs to be done to encourage instruction in the area 

of CS. Even when they exist, computer science standards at the K-8 level often confuse 

CS with the use of software applications (CSTA, 2012). Furthermore, educators remain 

wary of introducing new core subjects into curricula already challenged by high-stakes 

test preparation and accountability measures (Burke & Kafai, 2010). More resources are 

needed to support successful integration of CS into core subjects, especially at the K-8 

level. By successfully introducing and integrating CS in early education, students could 

become better critical thinkers and problem solvers, a set of skills that many scientists 

described as computational thinking.  

 
Computational Thinking 

 
 

 A topic that has been discussed recently in the context of K-12 education involves 

the use of computer programming as an approach to introduce CT to children. Although 

the idea of CT is not new, establishing a definition that everyone agrees with has proven 

difficult for the CS education community (Mannila et al., 2014). Specifically, there has 

been little agreement regarding what CT encompasses (Allan, Barr, Brylow, & 

Hambrusch, 2010; Barr & Stephenson, 2011; Berland & Lee, 2011; National Research 

Council, 2010), and even less agreement regarding what strategies to use for assessing 
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the development of CT in youth (Brennan & Resnick, 2012). According to Wing (2006, 

2008), the computer scientist who coined the term CT, it means thinking like a computer 

scientist and using principles and concepts learned in CS as part of one’s daily life. A 

couple of examples of CT key concepts include problem decomposition, which is 

breaking down a problem into smaller, manageable parts, and algorithmic design, which 

is developing step-by-step instructions for solving problems. 

While other researchers have attempted to define CT (e.g., Ater-Kranov, Bryant, 

Orr, Wallace, & Zhang, 2010; Denning, 2009; Guzdial, 2011), Steve Furber (2012) from 

the Royal Society offered a more concise definition that it is using the methods of CS to 

understand a wide variety of topics. It has also been suggested that CT is the process of 

recognizing aspects of computation and applying tools and techniques from CS to 

understand natural and artificial systems and processes (Nickerson, Brand, & Repenning, 

2015). However, even with the available definitions of CT, there are few specifics as to 

what skills comprise CT and how to achieve those skills. Researchers and CS educators 

for the most part now work broadly with the aforementioned definitions of CT.  

 
Components of CT 

Although the definitions of CT vary widely, researchers (e.g., Brennan & Resnick, 

2012; Grover & Pea, 2013; & Moreno-León & Robles, 2015) identified core components 

to provide a working definition of CT. For example, Brennan and Resnick introduced 

seven key concepts through the CT programming language, Scratch, including sequences, 

loops, parallelism, events, conditionals, operators, and data. Additionally, Grover and Pea 

examined essential concepts of CT suitable for use in K-12 education, including: 
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abstractions and pattern generalizations; systematic processing of information; symbol 

systems and representations; algorithmic notions of flow of control; structured problem 

decompositions; iterative, recursive, and parallel thinking; conditional logic; efficiency 

and performance constraints; and debugging and systematic error detection. The concepts 

they proposed have been endorsed by the CSTA.  

Over the years, researchers have attempted to clarify and improve the 

understanding of CT components. Even though CT components continue to shift as the 

definition progresses, the new components are nonetheless consistent with the nine key 

components suggested by Grover and Pea (2013). For example, Moreno-León and Robles 

(2015) created their own list by highlighting seven components of CT that included: 

abstraction and problem decomposition, parallelism, logical thinking, synchronization, 

flow control, user interactivity, and data representation. Table 1 shows how the different 

perspectives on CT vary and establishes some common components. In the present study, 

I used the CT tool that Moreno-León and Robles developed to assess the CT skills of 

middle school students through the use of Dr. Scratch. 

 
Assessing CT 

 Despite the efforts aimed at the assessment of CT (Basawapatna, Koh, Repenning, 

Webb, & Marshall, 2011; Fields, Searle, Kafai, & Min, 2012; Grover, Pea, & Cooper, 

2014; Meerbaum-Salant, Armoni, & Ben-Ari, 2013; Werner et al., 2015), evaluating the 

learning of CT concepts and constructs in a programming environment such as Scratch 

remains a challenge. The use of surveys has been one of the main methods used to 

analyze CT (Bell et al., 2014; Clark, Rogers, Spardling, & Pais, 2013; Mishra, Balan,  



15 
	
  
Table 1 

Components of Computational Thinking Referenced in the Prior and Present Studies 

Components of CT 
Moreno-León & 
Robles (2015) 

Grover & Pea 
(2013) 

Brennan & 
Resnick (2012) 

Present 
study 

Abstraction ! ! ! ! 

Parallelism  ! ! ! ! 

Logical thinking (e.g., conditional 
logic, operators, events) 

! ! ! ! 

Synchronization !  ! ! 

Algorithmic notions of flow of 
control 

! !  ! 

User interactivity !  ! ! 

Data representation  !  ! ! 

Iterative and recursive thinking 
(e.g., loops) 

 ! !  

Efficiency and performance 
constraints 

 !   

Debugging and systematic error 
detection 

 !   

Pattern generalization  !   

Systematic processing of 
information 

 !   

 

 
Iyer, & Murthy, 2014). Even though the results from surveys provide answers to some 

important questions, surveys alone are inadequate to detail how CT has been assessed 

(Grover et al., 2014). Thus, more research is needed to better assess CT. 

Researchers have developed new methods for measuring student growth in CT 

using available CT evaluation tools, such as Scrape (Riversound Media, n.d.; Wolz, 

Hallberg, & Taylor, 2011), Hairball (Boe et al., 2013), and Dr. Scratch (Moreno-León & 

Robles, 2015). Nonetheless, there is a lack of tools that support educators in the 
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assessment of the development of CT and the evaluation of projects programmed by 

students. Several researchers (e.g., Boe et al., 2013; Close et al., 2015) proposed different 

approaches for evaluating the development of CT by analyzing students’ projects, but 

most tools require intermediate knowledge of programming skills, which make them less 

suitable for educators who are not confident with such environments.  

In one study, Fields, Giang, and Kafai (2014) examined ways to provide teachers 

with information about what CT scores revealed from four groups of Scratch youth 

programmers. The profiles of the four groups were identified as: beginner, intermediate, 

advanced, and experienced. Individuals considered as beginners were those who created a 

simple Scratch project using relatively few loops and almost no other advanced concepts. 

Intermediate students used more complex programming concepts, except Boolean. And 

advanced and experienced were those who used all programming concepts, including 

Boolean. The length and complexity of the students’ Scratch projects were the main 

factors that the researchers used to determine whether students were in the advanced or 

experienced groups. The programming profiles were also introduced in the Dr. Scratch 

community to help Scratch users to determine their CT progress. 

 
Context of Current Study 

 
 
Scratch 

 Scratch programming has risen in prominence as a useful programming language 

for K-12 CS curricula (Boe et al., 2013). Visually based programming languages such as 

Scratch facilitate K-12 students’ CT, because traditional programming syntax is reduced 

(Lye & Koh, 2014). Using Scratch, students may create their own interactive stories, 
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games, and simulations. An example of the different types of Scratch genre that users can 

create and choose from is shown in Figure 1.  

Using an intuitive drag-and-drop code mechanism helped reduce the cognitive 

load of Scratch users, making the testing and debugging process less demanding (Resnick 

et al., 2009). The mechanism enabled students to develop computational problem-solving 

practices more easily and focus on the logic and structures involved in programming 

rather than worrying about the mechanics of writing programs (Kelleher & Pausch, 

2005). Through the use of Scratch, students learn mathematical and computational 

concepts, as well as think creatively, improve reasoning skills, and work collaboratively. 

 

 

Figure 1. An example of different types of Scratch genre. 
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Dr. Scratch 

The Scratch community includes users, developers, and scholars. A group of 

developers created Dr. Scratch, a digital instrument that is easy to use without the need 

for background or programming knowledge. Dr. Scratch is a user-friendly, free/open-

source web application tool that allows researchers and instructors to visually analyze 

students’ CT, and it can automatically measure the degree of CT evidenced in a certain 

Scratch project (Moreno-León & Robles, 2015). Dr. Scratch focuses on the elements of 

CT most easily interpretable, such as: abstractions and problem decomposition, 

parallelism, logical thinking, synchronization, flow control, user interactivity, and data 

representation (see http://drscratch.programamos.es/ for more information). Below are 

short definitions of the CT elements measured by Dr. Scratch. 

● Abstractions and problem decomposition are defined as the ability to filter out 
information that is unnecessary to solve a problem and at the same time 
generalize information that is necessary. It is also the ability to break down a 
task into minute details so that the process may be clearly explained to another 
person or to a computer, or even to write notes for ourselves (Google for 
Education, n.d.). 

● Parallelism is defined as the ability to engage in a thinking process where the 
focus is split in specific directions and involves many repetitions (Dr. Scratch, 
n.d.).  

● Logical thinking is the ability to use an “if-then-else” construct. It requires a 
student to think globally about the local consequences of the truth-value of a 
given statement (Berland & Lee, 2011). 

● Synchronization is the ability to thoroughly understand available information 
through careful attention, deep thinking, and intensive reasoning. Thereafter, 
connecting one piece of information to another is the next step to make sense 
of a particular problem (Chaiken & Ledgerwood, 2012). 

● Flow control is the ability to create a data “recipe” or set of instructions. In its 
simple form, it is the planning of actions for events that are taking place. In its 
complex form, it is planning for unknown events (Berland & Lee, 2011).  
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● User interactivity is the ability to input information that would change the 
program, such as integrating audio or video into the programming codes in 
order to trigger certain actions (Dr. Scratch, n.d.). 

● Data representation is the ability to display the correct order of programming 
codes so that the program can run properly (Dr. Scratch, n.d.). 

For each of these measures, users can earn 0 to 3 points. For example, a user 

might earn 0 points for synchronization if they only used “wait commands” to sync up 

two or more scripts. A user can earn 1 point for broadcasting messages to other scripts, 2 

points if the broadcasted messages have complex wait commands that ensure scripts run 

in a certain order, or 3 points if the user fulfills all of the criteria described by Dr. Scratch 

(for another example, see Table 2). 

The information was then organized into user-friendly dashboards that showed 

student progress and allowed teachers to personalize instruction and to cater to individual 

student needs. Dr. Scratch provided scores related to each individual CT component. A 

score of 3, for example, indicated student proficiency in that area, while zero meant that 

the skill was not evident. The scores were then totaled, creating a programming profile 

(beginner, developing, and master) to show the user’s competence in CT. Depending on 

the overall CT score (which could range from 0 to 21), distinct data were displayed on 

the dashboard page and suggestions on how to improve their programming habits were 

offered. The tool also provides links to information that could be used to improve skills 

related to CT components. Teachers need resources like these to support successful 

integration of CT into core subjects, especially at the K-8 level. 
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Table 2 

Scoring System Measuring User Interactivity 

Points Evidence Example code 

0 Uses only the most basic interactive 
block “When green flag is pressed” 
block. 

 
1 Uses other types of interactive blocks 

utilizing mouse clicking, mouse 
positioning, question asking blocks, and 
sprite clicking. 

 
2 Uses complex interactive blocks 

utilizing webcam and microphone input. 

 
3 If all of the requirements for user 

interactivity according to Dr. Scratch are 
met. Scratch blocks are in chronological 
working order. 
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Study Overview 
 
 

 This study was built on past research and addressed the growing need to teach and 

implement CT in classrooms, especially for middle school students. Even though 

educators are now able to implement CT skills in classrooms, little is known about the 

struggles that students experience during the development of CT. This study addressed 

this gap in the literature by answering the following research questions. 

1. How does Dr. Scratch function as an assessment for CT? 

a. Among the seven CT components used in student projects, which are 

common areas of strength and weaknesses for the seventh- and eighth-

grade students? 

b. What were some of affordances and constraints of Dr. Scratch as a CT 

tool? 
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CHAPTER III 
 

METHODS 
 
 

Research Design 
 
 

In this study I used a quantitative research approach to explore students’ strengths 

and weaknesses related to CT skills while learning with Scratch. Scratch was used 

because it has a large youth user community with publicly available data. Furthermore, 

the Scratch interface allows an easier interpretation of core CT constructs. I conducted a 

secondary data analysis of an extant dataset collected from seventh- and eighth-grade 

students during the 2013 to 2015 school year, which is publicly available from the 

Scratch website (https://scratch.mit.edu/).  

I designed the study to address two research questions to understand the 

effectiveness of Dr. Scratch as a tool to assist programming learners: (a) among the seven 

CT components used in student’s projects, what were common areas of strength and 

weakness for the seventh- and eighth-grade students? and (b) what were some 

affordances and constraints of Dr. Scratch as a CT tool? The research objective related to 

the first research question is to examine where seventh- and eighth-grade students excel 

and are challenged when considering the CT components described by Moreno-Leon and 

Robles (2015). Whereas the objective for the second research question is to find strengths 

and weaknesses of Dr. Scratch as a tool to evaluate students Scratch projects, I will 

discuss the procedures I used to collect data for 360 students and to evaluate students’ 

strengths and weaknesses. 
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Sample 
 
 

I collected the extant data from publicly available information on the Scratch 

website. This study was approved as an exempt study by the University Institutional 

Review Board (IRB), given the analysis of publicly available data (see Appendix D). I 

found the data by searching the MIT Scratch website using keywords such as: middle 

school projects, seventh-grade Scratch projects, and eighth-grade Scratch projects. I 

selected data from one Scratch project curator (a teacher) for the study because of his 

frequent updates to his students’ Scratch projects since 2013.  

The curator of the Scratch projects was a teacher from the East Coast of the 

United States who taught CS to middle school students. No contact with the teacher was 

made before or after the study, and the information regarding school information was 

provided in his Scratch profile website. The dataset was comprised of 360 seventh- and 

eighth-grade student projects published from the 2013 to 2015 academic years. From the 

2013 to 2014 school year, there were 102 seventh- and 75 eighth-grade student projects, 

while from the 2014 to 2015 school year, there were 93 seventh- and 90 eighth-grade 

student projects. Demographic information such as age, gender, and race of the students 

was not publicly available on Scratch so I was not able to include that information as part 

of the study. Although the specific classroom practices and demographics of the 

participants were unknown, all seventh- and eighth-grade students were taught by the 

same teacher. Thus, it was reasonable to assume that students received similar 

instructions for their respective grades. 

Within this dataset, all seventh-grade student projects from 2013 to 2015 school 
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years were maze games. The eighth-grade student projects from both school years had 

more project genre variation, which might have been due to teacher expectation or 

assignment constraints, though the majority of the eighth graders (75% and 91%, for 

2013 to 2014 and 2014 to 2015, respectively) also created a game-based project (see 

Figure 2). 

 
Measures 

 
 

I used Dr. Scratch to analyze students’ Scratch projects. The amount of 

information Dr. Scratch provided about a given project was dependent on the resulting 

CT score. If the CT level was low, Dr. Scratch assumes the user was a novice 

programmer, and Dr. Scratch shows only basic information of the most important 

improvements to perform in the Scratch project (see Figure 3). As the scores increase and 

users became more advanced at programming, more detailed information is provided by 

 

 
Figure 2. Scratch projects genres for seventh- and eighth-grade students across 2013 to 
2015 academic years. 
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Figure 3. An example of Dr. Scratch analysis results for a project with a basic CT score.  

 

Dr. Scratch for a project, including bad programming habits, such as: duplicated scripts, 

default sprite naming, and dead/useless Scratch blocks (see Figure 4). Although Moreno-

León and Robles (2015) did not address specifically how they came up with the score of 

0 to 21 nor how they related the scores to the programming profiles, the scores were an 

important part of this study and provided me with information regarding a student’s area 

of difficulty with individual CT components.  

Using Dr. Scratch, I analyzed projects for evidence of seven CT components 

(abstraction, parallelism, logic, synchronization, flow control, user interactivity, and data 

representation) on a scale from 0 to 3 points. For example, in the abstraction and problem 

decomposition category, students who used more than one script or sprite earned 1 point; 

students who defined their own blocks earned 2 points; students who used clones earned 

3 points. Students with none of these coding sequences or blocks earned 0 points. 
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Figure 4. An example of Dr. Scratch analysis results for a project with an advanced CT 
score. 
 
 

Likewise, for each category, Dr. Scratch searched for particular pieces of code or certain 

blocks (see Table 3). 

The results from individual Scratch projects that were analyzed by Dr. Scratch 

allowed me to address the specific CT components in which students were lacking. Also, 

the results offered suggestions regarding how students could improve their programming 

habits by providing best practice information that students could follow. 

 
Procedures 

 
 

Each individual Scratch project URL was copied from the Scratch website for the 

sample of seventh- and eighth-grade students for projects created during the 2013 to 
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Table 3 
 
Rubric for Scoring CT Components 
 

CT Component 

Score 
─────────────────────────────────────────────── 

1 Point 2 Points 3 Points 

Flow control 
 

Used sequence of blocks Used repeat and forever 
blocks 

Used repeat until block 

Data representation Used modifiers for sprite 
properties 

Used operations on 
variables 

Used operations on lists 

Abstraction Used more than one script 
and more than one sprite 

Defined own block Used clones 

User interactivity Used green Flag block Used key pressed, sprite 
clicked, ask and wait, 
mouse blocks 

Used video and audio 
features 

Synchronization Used wait block Used broadcast, when I 
receive message, stop all, 
stop program, stop 
programs sprite 

Used wait until, when 
backdrop change to, 
broadcast and wait 
blocks 

Parallelism Used two scripts on green 
flag 

Used two scripts on key 
pressed, two scripts on 
sprite clicked on the 
same sprite 

Used two scripts on 
when I receive message 
block, create clone, two 
scripts on backdrop 
change to block 

Logic Used if block Used if/else block Used logic operations 
 

 
2015 academic years. Next, the individual projects were analyzed using the Dr. Scratch 

tool, and the results were transferred to an Excel spreadsheet. Further statistical analysis 

was conducted using SPSS statistical software. 

 
Data Analysis 

 
 

A primary focus of this research dealt with understanding how Dr. Scratch could 

function as an assessment for CT. Thus, two research questions were developed in order 

to assess the effectiveness of Dr. Scratch as a tool to assist programming learners: (a) 
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among the seven CT components used in student’s projects, what were common areas of 

strength and weakness for the seventh- and eighth-grade students? and (b) what were 

some affordances and constraints of Dr. Scratch as a CT tool? To answer these questions, 

first, I created an Excel spreadsheet that contained the following information: student 

grade, project name, student Scratch username, Scratch project genre (i.e., games, stories, 

music, animations, and art), and the seven CT components that Dr. Scratch measured. 

Second, I analyzed individual Scratch projects using Dr. Scratch, and the score (up to 3 

points) for each CT component for an individual student’s project was transferred to an 

Excel spreadsheet. To address the first research question, to understand strengths and 

weaknesses in the seven CT components, I used descriptive statistics (mean and standard 

deviation of each CT component) with formulas in Excel. After I analyzed the projects of 

all 360 students, I did a visual analysis of common trends related to which CT 

components most middle school students missed or achieved a low score on as well as 

which they achieved the highest scores on.  

I used the Mann-Whitney U test to determine significant similarities or 

differences between the two grade levels. The Mann-Whitney U test is a nonparametric 

method designed to detect whether two or more samples come from the same distribution 

or to test whether medians between comparison groups are different, under the 

assumption that the shapes of the underlying distributions are the same. However, if the 

two distributions have a different shape, the test may be used to compare mean ranks. I 

used the Mann-Whitney U test to compare the mean rank of each of the seven CT 

components between the seventh- and eighth-grade students’ projects. 

To answer the second research question that dealt with affordances and 
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constraints of Dr. Scratch, I looked at seventh- and eighth-grade students’ programming 

profiles provided by Dr. Scratch. The programming profiles were displayed next to the 

students’ CT scores. There were three different programming profiles that Dr. Scratch 

provided (i.e., beginner, developing, and master), depending on the students’ overall CT 

scores. Lastly, I highlighted several bad programming habits that Dr. Scratch identified 

for the students. Specifically, Moreno-León and Robles (2015) summarized bad 

programming habits into four categories (i.e., sprite naming, sprite attributes, duplicated 

scripts, and dead codes) in order to assist evaluators to detect the malpractices and to 

propose ideas to try to avoid such situations. Dr. Scratch identified the profile and any 

areas of bad programming habits as part of its analysis output. 
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CHAPTER IV 
 

RESULTS 
 
 

Publicly available Scratch data were compiled, cleaned, and analyzed in 

Microsoft Excel 2016 and IBM SPSS version 21. Descriptive statistics were obtained to 

determine which CT components most middle school students missed, as well as which 

ones they excelled on. Then, the Mann-Whitney U test was used to determine significant 

similarities or differences between seventh- and eighth-grade levels. The following 

section discusses the findings based on the statistical tests conducted.  

 
Strengths and Weaknesses in Students’ CT 

 

The first part of the research question was: Among the seven CT components 

used in student’s project, what are common areas of strengths and weaknesses for the 

seventh- and eighth-grade students? To answer the question, the means of all student (n = 

360) scores for each CT measurement were calculated. The results showed that students 

were, on average, best at synchronization, parallelism, and flow control. These strengths 

were followed by user interactivity and logic, with relative weaknesses in data 

representation and abstraction (see Appendices A and B for means and standard 

deviations for each CT measurement). The data indicated that common strengths and 

weaknesses existed among middle school students and, in particular, that middle school 

students excelled at synchronization, parallelism, and flow control, but struggled with 

abstraction and data representation.  

A histogram was also created to examine specific difference in seventh- and 
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eighth-grade students’ Scratch projects. Histograms of student projects from both 2013 to 

2014 and 2014 to 2015 school years showed the distribution of CT component scores. 

The comparisons are provided in Figure 5. Based on the histograms, there were 

similarities for abstraction and user interactivity, showed by a similar bar trend for both 

school years. The two histograms showed that both seventh- and eighth-grade students 

achieved a low score on abstraction and a moderate score on user-interactivity. Other CT  

 

 
 
 
 
 
 
  
 
 
 
 

 

 

Figure 5. Histograms comparing seventh- and eighth-grade abstraction and user 
interactivity component scores from 2013 to 2014 (left) and 2014 to 2015 (right) school 
years. 



32 
	
  
components such as flow control, logic, synchronization, data representation, and 

parallelism, showed a fluctuation and a slight difference in their CT components scores, 

in which typically the seventh-grade students overall achieved lower scores compared to 

the eighth-grade students. It may be concluded that the eighth-grade students were more 

experienced in programming with Scratch compared to the seventh-grade students (see 

Appendix C).  

When comparing the descriptive statistics of seventh- and eighth-grade students’ 

projects, there was a similarity in students’ CT average scores from 2013 to 2014 and 

2014 to 2015 academic years. In both academic periods, a small standard deviation (SD = 

0.11) occurred in user interactivity, which revealed little variance in user scores; 

however, logic scores varied greatly (SD = 1.01). From 2014 to 2015, students’ project 

synchronization was highly variable (SD = 0.89), which suggested that they showed 

strong differentiation in synchronization and logic skills, but very little in user 

interactivity skills. From 2013 to 2014, students’ project synchronization (SD = 0.60) was 

not as highly variable as in the later years, which suggested that they showed a somewhat 

strong differentiation in synchronization and logic skills, but little in user interactivity 

skills. The numbers were beginning to show intrinsic characteristics of certain CT 

elements. 

Further analysis revealed common CT strengths and weaknesses. If such a 

common pattern existed, one would expect the strengths and weaknesses of seventh- and 

eighth-grade students to be similar, inasmuch as they are typically separated in age by 

only 1 year. The mean scores of seventh and eighth graders for each of the CT 

components within the entire dataset for the 2013 to 2015 school years are highlighted in 
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Tables A1 and B1 in Appendices A and B. Using the mean scores, I created similar web-

like figures (see Figure 6), as shown in the Analyze your Scratch Projects with Dr. 

Scratch paper (Moreno-León & Robles, 2015) to show students’ mean distributions 

among CT components. On the web-like figures, the mean scores of the CT components 

near the edge indicated higher levels of mastery, while mean scores near the middle 

indicated a lower level. Therefore, if there was a common pattern of strengths and 

weaknesses to detect, one would expect the webs of seventh and eighth graders to have a 

similar shape. As shown in Figure 6, the shapes were similar, indicating a common 

pattern of strengths and weaknesses. The student projects from 2014 to 2015 showed a 

better CT performance overall, as indicated by the web figure that was more spread out 

compared to the figure from the previous school year. Eighth-grade students showed 

higher scores in every category, except for user interactivity. Furthermore, the Mann-

Whitney U test was also used to highlight significant similarities or differences between 

seventh- and eighth-grade students’ Scratch projects. 

The Mann-Whitney U test indicated that there were slight variations between the 

two school years. For the 2013 to 2014 school year, the test indicated that three of the 

seven CT components (parallelism, logic, and data representation) were greater for eighth 

graders than for seventh-grade students. Furthermore, in the 2014 to 2015 school year, 

the test indicated that five of the seven CT components (flow control, synchronization, 

parallelism, logic, and data representation) were greater for eighth-grade students than for 

seventh graders (both p < 0.05; also see Table 4 for results). 

In the 2013 to 2014 school year, the lowest U scores occurred in data 

representation, logic, and parallelism, indicating the greatest level of variability between 
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Figure 6. CT skill development for seventh and eighth graders from 2013 to 2014 (top) 
and 2014 to 2015 (bottom) school years. 
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Table 4 

Mann-Whitney U Scores Across CT Components 

 
CT components 

───────────────────────────────────────────────────────────── 

School year Flow control Abstraction 
User 

interactivity Synchronization Parallelism Logic 
Data 

representation 
2013 to 2014 

U 3586.5 3732 3774 3596.5 3027.5 2951.5 1818 
p .378 .413 .244 .368 .001* .003* .001* 

2014 to 2015 
U 2780.5 4001.5 4140 3375 3401 2635 2034 
p .001* .169 1.000 .001* .003* .001* .001* 

* p < .05. 

 

seventh- and eighth-grade grade students. In other words, eighth-grade student projects 

resulted in significantly better CT scores for those three CT components. The remaining 

CT components indicated that differences for flow control, abstraction, user interactivity, 

and synchronization were not significant.  

The lowest U scores were exhibited in data representation, logic, and flow control 

components, indicating the greatest level of variability between seventh- and eighth-

grade students. In other words, eighth-grade student projects exhibited significantly better 

CT scores for flow control, synchronization, parallelism, logic, and data representation, 

with the greatest differences being in flow control, logic, and data representation. User 

interactivity and abstraction mean differences were not significant.  

The findings illustrate potential strengths and weaknesses in CT for students in 

grades 7 and 8. The findings also suggest that CT does not develop evenly, as a unified 

construct, but rather, certain elements (e.g., data representation and logic) likely develop 

more drastically than others.  
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Affordances and Constraints of Dr. Scratch 
 
 

The second part of the research questions involved understanding some of the 

affordances and constraints of the Dr. Scratch tool. Currently, few research studies on CT 

and Scratch have used Dr. Scratch as a tool to help measure users’ CT skills and abilities, 

inasmuch as Dr. Scratch itself is a relatively new tool. Thus, this study examined Dr. 

Scratch and explored its affordances and constraints as a CT tool.  

In this section, two examples were used to examine the affordances and 

constraints of Dr. Scratch. The examples are provided from seventh- and eighth-grade 

projects from 2013 to 2015 school years, in the developing and master categories. The 

developing group consisted of students who scored 8 to 14, and the master group 

included those who scored 15 to 21. No students in the seventh- and eighth-grade classes 

from either school year scored 7 or below, which was considered the basic category.  

 

Developing 
 
 

When comparing students’ projects from the 2013 to 2015 school years in the 

developing category, the results indicated that there were more students in the seventh-

grade group (n = 134), compared to those in the eighth-grade group (n = 49) who were in 

the same category. The majority of the seventh-grade students in the category received a 

score of 13 (n = 63), while the majority of the eighth-grade students received a score of 

14 (n = 19). From the data analysis, the average CT scores across seven CT components 

indicated that there were similar trends in which both seventh- and eighth-grade students 

were low in three different CT areas (see Table 5): data representation (µ = 1.10, µ =  
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Table 5 
 
CT Average Scores for Seventh- and Eighth-Grade Students in the Developing Category 
 

Grade 
Flow 

control 
Data 

representation Abstraction 
User 

interactivity Synchronization Parallelism Logic 
Seventh        
 CT avg. score 2.03 1.10 1.01 2.00 2.40 2.37 1.23 
 SD .17 .31 .12 .00 1.08 .84 .62 

Eighth        
 CT avg. score 2.04 1.41 1.01 1.96 2.73 2.57 1.06 
 SD .41 .50 .14 .20 .57 .71 .56 

 

 
1.41, respectively), abstraction (µ = 1.01 for both grades), and logic (µ = 1.23, µ = 1.06, 

respectively). In Figure 7, an example is provided of one of the seventh-grade student’s 

projects in the developing category. Also shown is what they saw on their dashboard 

once their project was assessed by Dr. Scratch. 

When a student received a score that placed him or her in the developing stage, 

Dr. Scratch would only yield two types of information that could be used to improve their 

Scratch project: sprite naming and sprite attributes. Dr. Scratch developers, Moreno-León 

and Robles (2014), considered these two types of information to be bad programming 

habits. When a student starts to program with Scratch, it is typical to leave the naming of 

the sprite with the default name. When Scratch users have a few sprites, it is easy to 

know the name of each of the characters; however, when the number of sprites increases, 

it is more complicated to detect errors in their Scratch codes. Therefore, it is a good 

practice to name each individual sprite in a project differently, because the programs may 

then be read more efficiently. 
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Figure 7. Example dashboard for one seventh-grade student in the developing category. 

 
The second bad programming habit, according Moreno and Robles (2014), is 

attribute initialization. One of the mistakes that many programmers repeat when they 

learn to program is to initialize incorrectly the objects’ attributes. Sprite attributes are the 

characters’ features that can be modified in the execution of a project, for instance, their 

position, size, color, and orientation. 

When students have blocks that modify the features of a character, they should 

always assign the value of their starting point. For example, students should have the 

block “go to” under the block “when green flag clicked,” in order to place the character 

in its initial position (see Figure 8). 
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Figure 8. Example of an incorrect attribute initialization (left) and a correct attribute 
initialization (right). 
 

Master 
 
 

Unlike the results in the developing category, when comparing master category 

seventh- and eighth-grade students’ projects from 2013 to 2015 school years, the results 

indicated that there were more students in the eighth-grade group (n = 116) compared to 

students in the seventh-grade group (n = 61). The majority of the eighth-grade students 

received a score of 17 (n = 50), while the majority of the seventh-graders received a score 

of 16 (n = 31). It should be pointed out that most of the seventh-grade students from the 

previous school year (2013 to 2014) were in the eighth grade currently and had become 

better at making their Scratch projects more complex (as shown by the improvement in 

their CT average score), compared to the previous year. From the data analysis shown in 

Table 6, the average CT scores across the seven CT components indicated that the 

seventh-grade students in the 2013 to 2015 academic years were low in data  
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Table 6 

Computational Thinking Average Scores for Seventh- and Eighth-Grade Students in the 
Master Category 
 

Grade 
Flow 

control 
Data 

representation Abstraction 
User 

interactivity Synchronization Parallelism Logic 
Seventh        
 CT avg. score 2.67 1.57 1.05 2.00 2.84 2.93 3.00 
 SD .47 .50 .28 0.00 .37 .25 0.00 

Eighth        
 CT avg. score 2.59 1.92 1.09 2.01 2.90 2.96 2.91 
 SD .49 .30 .40 .09 .31 .24 .41 

 
 

representation (µ = 1.57) and abstraction (µ = 1.05), while eighth-grade students from the 

same period were low in only abstraction (µ = 1.09). In Figure 9, an example is provided 

of one of the eighth-grade student’s projects scored by Dr. Scratch as being in the master 

category.  

In addition to changing the sprite names and attributes, Dr. Scratch also added 

two more bad programming habits for students in the master category: duplicated scripts 

and dead codes. As a novice programmer, it is typical for students to duplicate their 

Scratch scripts to do the same tasks repeatedly. In this scenario, it was recommended that 

students make their own block to define the behavior and to use the new block in all 

programs where needed. Thus, if students wanted to change the outcome, they merely 

went to the block they defined (see Figure 10). 

The fourth bad programming habit, according Moreno-León and Robles (2014), 

occurs when students put a dead code in their Scratch scripts. Dead codes are parts of 

programs that are never executed. Typically, dead codes are formed when students forget 

to include an events block (e.g., when the green flag or the sprite are clicked) or when  
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Figure 9. Example dashboard for one eighth-grade student in the master category. 

 

 
Figure 10. Example of efficient script duplication. 
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there is a program that is waiting for a message that is never sent (see Figure 11). The 

presence of a dead code could cause the Scratch project to not work as expected or to not 

run efficiently. 

 
Summary 

 
 

Results of the study yielded common CT strengths and weaknesses among the 

360 seventh- and eighth-grade students analyzed. An analysis of the students’ Scratch 

projects showed that both groups were strong in synchronization, parallelism, and flow 

control, and relatively weak in data representation and abstraction. Translated into a day-

to-day context, it may be concluded that the students were likely to understand and 

reason through complex information with which they were presented (synchronization), 

to focus their thinking process in more than one direction (parallelism), and to create 

plans that allow them to succeed when presented with both known and unknown events 

(flow control). The results also indicated that the students were unlikely to be proficient 

at filtering out what information was necessary to solve a problem (abstraction), and were 

 

 
Figure 11. Examples of a “dead code” (left) and correct code initialization (right). 
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less likely to demonstrate the ability to prioritize in a way that allows them to solve their 

problems efficiently (data representation).  

Affordances and constraints of Dr. Scratch as a tool were also apparent during the 

data analyses and interpretation process. One of the affordances of Dr. Scratch is that it 

can help inform the users of their degree of CT development in a particular Scratch 

project by giving a score and to show a programming profile (i.e., beginner, developing, 

or master) to the users. This information could become extremely useful for teachers to 

identify students who might excel or struggle in particular CT skills. Another benefit of 

Dr. Scratch is that it can help users to identify bad programming habits (i.e., sprite 

naming, sprite attributes, duplicated scripts, and dead codes). The identification can help 

teachers to assist their students to become more efficient and better programmers, not just 

in Scratch but also when using other computer programs in the future.  

There are a few constraints of Dr. Scratch. One is that it can only analyze one 

Scratch project at a time. Currently there is no simple way for teachers to analyze 

students’ Scratch projects as a group. Thus, for teachers to see patterns in students’ CT 

skills strengths and weaknesses, they must analyze their students’ Scratch project one by 

one using Dr. Scratch. A second drawback is that there were several occurrences in which 

the Scratch project looked great visually, and when it was analyzed by Dr. Scratch, the 

result showed that the student received a good score on each of the CT components as 

indicated by a high total score (i.e., 17); however, when I played the game on the Scratch 

website, I noted that the game did not work as I expected or there were glitches in the 

game made by the students. As shown in Figure 12, someone else (a user) also 

commented that the game created by a particular student was not working. 
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Figure 12. Example of one eighth-grade student who received a total score of 17 and had 
Scratch code glitches. 
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CHAPTER V 
 

DISCUSSION AND CONCLUSIONS 
 
 

Discussion 
 
 

The purpose of this pilot study was to explore how Dr. Scratch functions as an 

assessment for CT. Two research questions were developed in order to assess the 

effectiveness of Dr. Scratch as a tool to assist programming learners: (a) among the seven 

CT components used in student’s projects, what were common areas of strength and 

weakness for the seventh- and eighth-grade students? and (b) what were some 

affordances and constraints of Dr. Scratch as a CT tool? Valuable insights can be gleaned 

from the results of this study to not only guide practitioners, but also to direct future 

research. In the next section I provide recommendations for improving students’ CT 

skills, suggestions for instructors implementing CT in the classroom, suggestions for 

researchers, and conclusions of the study. 

 
Supporting Student CT 

 The rationale for introducing computing in K-12 in order to improve students’ CT 

skills is indeed compelling (Grover & Pea, 2013; Grover, Pea, & Cooper, 2016; 

Stephenson, Gal-Ezer, Haberman, & Verno, 2005; Wing, 2006). While the need to 

introduce CT is currently prioritized at the high school level, there is a growing belief that 

it should start at an earlier age. Many researchers (e.g., Grover et al., 2016; Tai, Liu, 

Maltese, & Fan, 2006) have suggested the middle school level as the optimum period to 

introduce computing. Middle school years are formative and key for cognitive and social 
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development in the K-12 schooling journey, especially with regard to future engagement 

with STEM fields (Tai et al., 2006).  

This study focused on 360 seventh- and eighth-grade students. Overall, the 

eighth-grade students performed better in terms of their CT skills than did the seventh-

grade students. This may be because many of the eighth-grade students had received 

Scratch training from the previous school year. The analysis results indicate that many of 

the seventh- and eighth-grade students particularly excelled in synchronization, 

parallelism, and flow control, were moderate in logical thinking and user interactivity, 

but struggled with abstraction and data representation.  

Results indicate that students tend to be missing out on two important CT skills— 

abstraction and data representation, which is the ability to simplify a task and identify 

what is important and also the ability to solve problems that they are facing more 

efficiently. These two CT skills are considered by many as possibly two of the most 

important problem solving skills that each of us needs to have (Barr, Harrison, & Conery, 

2011; Lee et al., 2011; Wing, 2008).  

Currently there are competing explanations as to why many of the students 

struggled with these two particular CT skills. One possibility for their difficulty could be 

due to their age, meaning that they have yet to understand the need to use abstraction and 

data representation in their daily life, or it could also be because the task that they were 

given in class did not require the two CT skills (i.e., abstraction and data representation). 

For this study I used information that was publicly available on the Internet, thus there 

are limits to the information that I could get to give detailed explanations of these two 

areas of weakness, such as information about the Scratch instructor and the type of 
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assignment given in class. Specific information about the students and the project they 

were given might have helped provide context for the findings. 

Furthermore, there are a few suggestions that I will provide to teachers on 

improving students CT skills. Many researchers’ believe that repetitive training, doing 

the same activity day after day, and getting multiple feedback from teachers are key to 

students’ successful acquisition of knowledge and integration of skills (Bosse et al., 2015; 

Brookes et al., 2012). Teachers should continue creating similar instructions that can help 

students retain the CT skills they feel like they have mastered, in this case 

synchronization, parallelism, and flow control. Furthermore, teachers need to also think 

about creating instructions that foster a student’s logical thinking, user interactivity, and 

especially in the two CT components where students in this study struggled the most—

abstraction and data representation. The first step that could help them improve their 

instructions in those key areas, is to understand what these components mean. On their 

website, Dr. Scratch provides a clickable link that allow teachers to see the definitions on 

each of the CT components and also provides examples on how to improve students’ 

skills on the CT components that students are still currently lacking. Teachers can use 

this information to create new assignments that consist of abstraction and data 

representation in the future. 

 
Dr. Scratch as a Tool to Evaluate Scratch 

As a relatively new tool to evaluate users’ Scratch projects, Dr. Scratch did an 

impressive job in breaking down Scratch projects into their respective CT components. 

Even with its impressiveness, the tool is by no means perfect and teachers should not rely 
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solely on it to evaluate students’ CT skills. Findings indicate that Dr. Scratch is especially 

well-suited to inform users of the degree of their CT development within Scratch by 

presenting scores from 0 to 3 in each CT component. The scores can also help teachers in 

identifying students’ strengths and weaknesses in particular CT components. Dr. Scratch 

can also identify bad programming habits in students. The bad programming habits (i.e., 

sprite naming, attribute initialization, duplicated scripts, and dead codes) can be used to 

inform users of ways they can improve their Scratch projects, and to guide teachers in 

helping their students to become more efficient and better programmers. 

Despite its strengths, Dr. Scratch has a number of limitations. First, Moreno-León 

and Robles (2015) mentioned that the tool is currently still in Beta mode; thus, the current 

Dr. Scratch is unstable. There were several occurrences where Dr. Scratch did not 

produce evaluation results. Due to its inconsistency, it could be unreliable to evaluate 

users’ Scratch projects. Second, there are no user accounts built into the website. 

Therefore, students and teachers are unable to keep a log of their Scratch analyses. The 

log could be useful for the students to look at their progress over time and also for 

teachers to keep track of their students’ progress. Third, as mentioned in the Dr. Scratch 

paper, the developers were also uncertain whether the use of particular Scratch blocks or 

a group of blocks was enough to confirm student fluency on certain CT concepts. Dr. 

Scratch could not measure some of the key CT components that Grover and Pea (2013) 

described, such as: debugging, efficiency and recursive thinking, and pattern 

generalization. There was no specific reason why the CT components could not be 

implemented and measured in the current version of Dr. Scratch. In a future version, 

Moreno-León and Robles noted that they planned to provide more information on how to 
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improve each of the aspects where there is room for improvement by the learner. Fourth, 

Dr. Scratch cannot differentiate between individual and group work. There needs to be a 

way to indicate in Scratch that students are switching users, so that Dr. Scratch can track 

who contributed what code. This is not necessarily for fair division of labor, but for a 

more accurate measure of student CT abilities. Last but not least, Dr. Scratch cannot 

differentiate between the different Scratch projects, that is, original or a remix.  

In Scratch, the term remixing refers to the creation of any new version of a 

Scratch program by adding, removing, or changing the programming blocks, images, or 

sounds. Nonetheless, one may contend that remixing can be conducive to creating a 

better product. This stems essentially from “borrowing” from the expertise and know-

how of other colleagues and reaping the fruits of their design reflections, which is 

implicit in their final products. The decisions that go into the design (content, examples, 

structure) are implicit testimony to the design process. When someone engages in remix, 

he or she is borrowing not only the content, but also the expertise and the thought process 

that is embedded in design. Thus, the act of remixing from an existing Scratch project 

could result in misinterpretation of students’ CT abilities by the teachers. Furthermore, by 

creating an original Scratch project, teachers will be able to assess individual students CT 

skills more accurately when the project is analyzed using Dr. Scratch. By having more 

accurate CT scores, teachers will also be able to tailor a specific instructional plan to the 

student to address their CT weaknesses.  

Even considering its above-mentioned flaws. I would still recommend this tool to 

K-12 educators because of its intuitive website that is organized and easy to understand 

through the layout and figures along with useful information to support users in 
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improving their CT skills. Nonetheless, when using this tool, teachers must be careful in 

assigning the task (e.g., no remixing allowed) and conservative in evaluating their 

students’ work. By creating an in-depth and well thought out lesson plan, hopefully 

teachers can effectively help students improve their CT skills. Furthermore, with the 

development of new, additional tools and the enhancement of Dr. Scratch teachers will be 

able to better assess each student’s strengths and weaknesses in each of the CT 

components. Hopefully more innovations that could address the aforementioned 

limitations will result in improvements in CT education and future research. 

 
Conclusions 

 

Scratch is a free web tool that allows teachers to introduce computer 

programming to K-12 students, and it provides a way to analyze Scratch projects. This 

allows educators and researchers to automatically assign a CT score to student projects, 

as well as to detect potential bad programming habits. The aim is to help learners to 

develop CT skills as well as an interest in CS, and to support educators in evaluating 

outcomes from their instruction.  

The development of CT skills has the potential to improve students’ self-efficacy 

in relation to the field of CS, and to prepare them for greater success in the 21st century 

workplace. It is anticipated that this research will provide educators, students, and 

researchers with a better understanding of why CT skills are so important, and specific 

things they can do to help improve CT. It is also hoped that the findings will support 

other researchers interested in improving strategies for assessing CT in K-12 schools 

through the use of learning analytics tools, such as Dr. Scratch. 
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Appendix A 
 

Summary of Computational Thinking Average Scores for each Component  
from 2013 to 2014 School Year
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Table A1 
 
Summary of Computational Thinking Average Scores for each Component from 2013 
to 2014 School Year 
 

CT components Grade 7 (n = 102) Grade 8 (n = 75) All students (n = 177) 

Flow Control    
CT avg. scores .44 .52 .48 
SD 2.26 2.32 2.29 

Data representation    
CT avg. scores 1.24 1.76 1.46 
SD .43 .43 .50 

Abstraction    
CT avg. scores 1.03 1.07 1.05 
SD .17 .30 .30 

User interactivity    
CT avg. scores 2.00 1.99 1.99 
SD 0.00 .12 .11 

Synchronization    
CT avg. scores 2.66 2.75 2.69 
SD .65 .52 .60 

Parallelism    
CT avg. scores 2.52 2.87 2.67 
SD .78 .38 .66 

Logic    
CT avg. scores 1.89 2.35 2.08 
SD .99 .97 1.01 
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Appendix B 
 

Summary of Computational Thinking Average Scores for each Component 
from 2014 to 2015 School Year
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Table B1 
 
Summary of Computational Thinking Average Scores for each Component from 2014 to 
2015 School Year 
 

CT components Grade 7 (n = 93) Grade 8 (n = 90) All students (n = 183) 

Flow Control    
CT avg. scores 2.19 2.51 2.35 
SD .39 .52 .49 

Data representation    
CT avg. scores 1.27 1.78 1.52 
SD .44 .44 .51 

Abstraction    
CT avg. scores 1.02 1.08 1.05 
SD .21 .37 .30 

User interactivity    
CT avg. scores 2.00 2.00 2.00 
SD 0.00 .15 .11 

Synchronization    
CT avg. scores 2.40 2.93 2.66 
SD 1.17 .25 .89 

Parallelism    
CT avg. scores 2.57 2.82 2.69 
SD .73 .53 .65 

Logic    
CT avg. scores 1.67 2.38 2.01 
SD .93 .97 1.01 
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Appendix C 
 

Histograms Comparing Seventh- and Eighth-Grade CT Component Scores from  
2013 To 2014 (Left) And 2014 To 2015 (Right) School Years
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Figure C1. Histograms comparing seventh- and eighth-grade CT component scores from 
2013 to 2014 (left) and 2014 to 2015 (right) school years.  
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