17,498 research outputs found

    Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 um for controllable Forster energy transfer

    Full text link
    We present the first time-resolved cryogenic observations of Forster energy transfer in large, monodisperse lead sulphide quantum dots with ground state transitions near 1.5 um (0.83 eV), in environments from 160 K to room temperature. The observed temperature-dependent dipole-dipole transfer rate occurs in the range of (30-50 ns)^(-1), measured with our confocal single-photon counting setup at 1.5 um wavelengths. By temperature-tuning the dots, 94% efficiency of resonant energy transfer can be achieved for donor dots. The resonant transfer rates match well with proposed theoretical models

    Controlling the localization and migration of optical excitation

    Get PDF
    In the nanoscale structure of a wide variety of material systems, a close juxtaposition of optically responsive components can lead to the absorption of light by one species producing fluorescence that is clearly attributable to another. The effect is generally evident in systems comprising two or more light-absorbing components (molecules, chromophores or quantum dots) with well-characterised fluorescence bands at similar, differentiable wavelengths. This enables the fluorescence associated with transferred energy to be discriminated against fluorescence from an initially excited component. The fundamental mechanism at the heart of the phenomenon, molecular (resonance) energy transfer, also operates in systems where the product of optical absorption is optical frequency up-conversion. In contrast to random media, structurally organised materials offer the possibility of pre-configured control over the delocalization of energy, through molecular energy transfer following optical excitation. The Förster mechanism that conveys energy between molecular-scale components is strongly sensitive to specific forms of correlation between the involved components, in terms of position, spectroscopic character, and orientation; one key factor is a spectroscopic gradient. Suitably designed materials offer a broad scope for the widespread exploitation of such features, in applications ranging from chemical and biological sensing to the detection of nanoscale motion or molecular conformations. Recently, attention has turned to the prospect of actively controlling the process of energy migration, for example by changing the relative efficiencies of fluorescence and molecular energy transfer. On application of static electric fields or off-resonant laser light - just two of the possibilities - each represents a means for achieving active control with ultrafast response, in suitably configured systems. As the principles are established and the theory is developed, a range of new possibilities for technical application is emerging. For example, applications can be envisaged for new forms of all-optical switching and transistor action. There is also interest in engaging with the interplay of optical excitation and local nanoscale force, exploiting local responses to changes in dispersion forces, accompanying molecular energy transfer

    The UA9 experimental layout

    Full text link
    The UA9 experimental equipment was installed in the CERN-SPS in March '09 with the aim of investigating crystal assisted collimation in coasting mode. Its basic layout comprises silicon bent crystals acting as primary collimators mounted inside two vacuum vessels. A movable 60 cm long block of tungsten located downstream at about 90 degrees phase advance intercepts the deflected beam. Scintillators, Gas Electron Multiplier chambers and other beam loss monitors measure nuclear loss rates induced by the interaction of the beam halo in the crystal. Roman pots are installed in the path of the deflected particles and are equipped with a Medipix detector to reconstruct the transverse distribution of the impinging beam. Finally UA9 takes advantage of an LHC-collimator prototype installed close to the Roman pot to help in setting the beam conditions and to analyze the efficiency to deflect the beam. This paper describes in details the hardware installed to study the crystal collimation during 2010.Comment: 15pages, 11 figure, submitted to JINS

    Status of the ArDM Experiment: First results from gaseous argon operation in deep underground environment

    Full text link
    The Argon Dark Matter (ArDM-1t) experiment is a ton-scale liquid argon (LAr) double-phase time projection chamber designed for direct Dark Matter searches. Such a device allows to explore the low energy frontier in LAr. After successful operation on surface at CERN, the detector has been deployed underground and is presently commissioned at the Canfranc Underground Laboratory (LSC). In this paper, we describe the status of the installation and present first results on data collected in gas phase.Comment: 21 pages, 20 figure

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa
    • …
    corecore