26 research outputs found

    Interaction between record matching and data repairing

    Get PDF

    Improving data quality : data consistency, deduplication, currency and accuracy

    Get PDF
    Data quality is one of the key problems in data management. An unprecedented amount of data has been accumulated and has become a valuable asset of an organization. The value of the data relies greatly on its quality. However, data is often dirty in real life. It may be inconsistent, duplicated, stale, inaccurate or incomplete, which can reduce its usability and increase the cost of businesses. Consequently the need for improving data quality arises, which comprises of five central issues of improving data quality, namely, data consistency, data deduplication, data currency, data accuracy and information completeness. This thesis presents the results of our work on the first four issues with regards to data consistency, deduplication, currency and accuracy. The first part of the thesis investigates incremental verifications of data consistencies in distributed data. Given a distributed database D, a set S of conditional functional dependencies (CFDs), the set V of violations of the CFDs in D, and updates ΔD to D, it is to find, with minimum data shipment, changes ΔV to V in response to ΔD. Although the problems are intractable, we show that they are bounded: there exist algorithms to detect errors such that their computational cost and data shipment are both linear in the size of ΔD and ΔV, independent of the size of the database D. Such incremental algorithms are provided for both vertically and horizontally partitioned data, and we show that the algorithms are optimal. The second part of the thesis studies the interaction between record matching and data repairing. Record matching, the main technique underlying data deduplication, aims to identify tuples that refer to the same real-world object, and repairing is to make a database consistent by fixing errors in the data using constraints. These are treated as separate processes in most data cleaning systems, based on heuristic solutions. However, our studies show that repairing can effectively help us identify matches, and vice versa. To capture the interaction, a uniform framework that seamlessly unifies repairing and matching operations is proposed to clean a database based on integrity constraints, matching rules and master data. The third part of the thesis presents our study of finding certain fixes that are absolutely correct for data repairing. Data repairing methods based on integrity constraints are normally heuristic, and they may not find certain fixes. Worse still, they may even introduce new errors when attempting to repair the data, which may not work well when repairing critical data such as medical records, in which a seemingly minor error often has disastrous consequences. We propose a framework and an algorithm to find certain fixes, based on master data, a class of editing rules and user interactions. A prototype system is also developed. The fourth part of the thesis introduces inferring data currency and consistency for conflict resolution, where data currency aims to identify the current values of entities, and conflict resolution is to combine tuples that pertain to the same real-world entity into a single tuple and resolve conflicts, which is also an important issue for data deduplication. We show that data currency and consistency help each other in resolving conflicts. We study a number of associated fundamental problems, and develop an approach for conflict resolution by inferring data currency and consistency. The last part of the thesis reports our study of data accuracy on the longstanding relative accuracy problem which is to determine, given tuples t1 and t2 that refer to the same entity e, whether t1[A] is more accurate than t2[A], i.e., t1[A] is closer to the true value of the A attribute of e than t2[A]. We introduce a class of accuracy rules and an inference system with a chase procedure to deduce relative accuracy, and the related fundamental problems are studied. We also propose a framework and algorithms for inferring accurate values with users’ interaction

    Approximation Measures for Conditional Functional Dependencies Using Stripped Conditional Partitions

    Get PDF
    Conditional functional dependencies (CFDs) have been used to improve the quality of data, including detecting and repairing data inconsistencies. Approximation measures have significant importance for data dependencies in data mining. To adapt to exceptions in real data, the measures are used to relax the strictness of CFDs for more generalized dependencies, called approximate conditional functional dependencies (ACFDs). This paper analyzes the weaknesses of dependency degree, confidence and conviction measures for general CFDs (constant and variable CFDs). A new measure for general CFDs based on incomplete knowledge granularity is proposed to measure the approximation of these dependencies as well as the distribution of data tuples into the conditional equivalence classes. Finally, the effectiveness of stripped conditional partitions and this new measure are evaluated on synthetic and real data sets. These results are important to the study of theory of approximation dependencies and improvement of discovery algorithms of CFDs and ACFDs

    i-VOTING USING TRIP

    Get PDF
    ABSTRACT: Data imputation aims at filling in missing attribute values in databases

    A comprehensive insight towards Pre-processing Methodologies applied on GPS data

    Get PDF
    Reliability in the utilization of the Global Positioning System (GPS) data demands a higher degree of accuracy with respect to time and positional information required by the user. However, various extrinsic and intrinsic parameters disrupt the data transmission phenomenon from GPS satellite to GPS receiver which always questions the trustworthiness of such data. Therefore, this manuscript offers a comprehensive insight into the data preprocessing methodologies evolved and adopted by present-day researchers. The discussion is carried out with respect to standard methods of data cleaning as well as diversified existing research-based approaches. The review finds that irrespective of a good number of work carried out to address the problem of data cleaning, there are critical loopholes in almost all the existing studies. The paper extracts open end research problems as well as it also offers an evidential insight using use-cases where it is found that still there is a critical need to investigate data cleaning methods

    Recognizing Determinism in Prioritized Repairing of Inconsistent Databases

    Get PDF
    Abstract. A repair of an inconsistent database is traditionally defined as a consistent database that differs from the inconsistent one in a "minimal way." As there are often reasons to prefer one repair over another, researchers have introduced and investigated the framework of preferred repairs, where a priority relation between facts is lifted towards a priority relation between consistent databases, and repairs are restricted to ones that are optimal in the lifted sense. In this paper we describe our recent results on the complexity of deciding whether the priority relation suffices to clean the database unambiguously, or in other words, whether there is exactly one optimal repair. In particular, we show that different conventional semantics of priority lifting entail highly different complexities

    Improving Data Quality by Leveraging Statistical Relational Learning

    Get PDF
    Digitally collected data su ↵ ers from many data quality issues, such as duplicate, incorrect, or incomplete data. A common approach for counteracting these issues is to formulate a set of data cleaning rules to identify and repair incorrect, duplicate and missing data. Data cleaning systems must be able to treat data quality rules holistically, to incorporate heterogeneous constraints within a single routine, and to automate data curation. We propose an approach to data cleaning based on statistical relational learning (SRL). We argue that a formalism - Markov logic - is a natural fit for modeling data quality rules. Our approach allows for the usage of probabilistic joint inference over interleaved data cleaning rules to improve data quality. Furthermore, it obliterates the need to specify the order of rule execution. We describe how data quality rules expressed as formulas in first-order logic directly translate into the predictive model in our SRL framework
    corecore