

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Improving Data Quality: Data Consistency,

Deduplication, Currency and Accuracy

Wenyuan Yu
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2013

Abstract

Data quality is one of the key problems in data management. An unprecedented

amount of data has been accumulated and has become a valuable asset of an orga-

nization. The value of the data relies greatly on its quality. However, data is often dirty

in real life. It may be inconsistent, duplicated, stale, inaccurate or incomplete, which

can reduce its usability and increase the cost of businesses. Consequently the need for

improving data quality arises, which comprises of five central issues of improving data

quality, namely, data consistency, data deduplication, data currency, data accuracy and

information completeness. This thesis presents the results of our work on the first four

issues with regards to data consistency, deduplication, currency and accuracy.

The first part of the thesis investigates incremental verifications of data consisten-

cies in distributed data. Given a distributed database D, a set Σ of conditional functional

dependencies (CFDs), the set V of violations of the CFDs in D, and updates ∆D to D, it

is to find, with minimum data shipment, changes ∆V to V in response to ∆D. Although

the problems are intractable, we show that they are bounded: there exist algorithms to

detect errors such that their computational cost and data shipment are both linear in

the size of ∆D and ∆V, independent of the size of the database D. Such incremental

algorithms are provided for both vertically and horizontally partitioned data, and we

show that the algorithms are optimal.

The second part of the thesis studies the interaction between record matching and

data repairing. Record matching, the main technique underlying data deduplication,

aims to identify tuples that refer to the same real-world object, and repairing is to make

a database consistent by fixing errors in the data using constraints. These are treated as

separate processes in most data cleaning systems, based on heuristic solutions. How-

ever, our studies show that repairing can effectively help us identify matches, and vice

versa. To capture the interaction, a uniform framework that seamlessly unifies re-

pairing and matching operations is proposed to clean a database based on integrity

constraints, matching rules and master data.

The third part of the thesis presents our study of finding certain fixes that are abso-

lutely correct for data repairing. Data repairing methods based on integrity constraints

are normally heuristic, and they may not find certain fixes. Worse still, they may even

introduce new errors when attempting to repair the data, which may not work well

when repairing critical data such as medical records, in which a seemingly minor er-

ror often has disastrous consequences. We propose a framework and an algorithm to

i

find certain fixes, based on master data, a class of editing rules and user interactions.

A prototype system is also developed.

The fourth part of the thesis introduces inferring data currency and consistency for

conflict resolution, where data currency aims to identify the current values of entities,

and conflict resolution is to combine tuples that pertain to the same real-world entity

into a single tuple and resolve conflicts, which is also an important issue for data dedu-

plication. We show that data currency and consistency help each other in resolving

conflicts. We study a number of associated fundamental problems, and develop an

approach for conflict resolution by inferring data currency and consistency.

The last part of the thesis reports our study of data accuracy on the longstanding

relative accuracy problem which is to determine, given tuples t1 and t2 that refer to the

same entity e, whether t1[A] is more accurate than t2[A], i.e., t1[A] is closer to the true

value of the A attribute of e than t2[A]. We introduce a class of accuracy rules and an

inference system with a chase procedure to deduce relative accuracy, and the related

fundamental problems are studied. We also propose a framework and algorithms for

inferring accurate values with users’ interaction.

ii

Acknowledgements

First and foremost, I would like to express my deep gratitude to my supervisor, Profes-

sor Wenfei Fan, for all his support, guidance, patience, encouragement and inspiration.

He led me into the area of databases study, and trained me the right way of doing re-

search. Because of his hardworking, talent and preciseness, he is my esteemed role

model in my scientific endeavour.

I am very grateful to my collaborators, including Yang Cao, Professor Floris

Geerts, Professor Jianzhong Li, Professor Shuai Ma and Dr. Nan Tang. Thanks must

also go to my colleagues, Dr. Xibei Jia, Dr. Yinghui Wu and Dr. Xin Wang, for their

extended support. They have been very generous in sharing their rich and valuable

knowledge and experience. It has been a happy time to work around people like them.

I thank the examiners of my thesis: Professor Peter Buneman and Professor

Marcelo Arenas, for taking time to read my thesis and providing encouraging and

constructive feedback. I am grateful for their thoughtful and detailed comments.

I thank all my fellow colleagues in the database group, for the helpful seminars,

discussions, and all the fun memories I have had through the years.

Finally, I would like to thank my family: my parents for their unconditional support

throughout my life; and my wife Cheng for her love, encouragement and understand-

ing. Their support and encouragement was in the end what made this thesis possible.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Wenyuan Yu)

iv

Table of Contents

1 Introduction 1
1.1 Central Issues of Data Quality . 2

1.2 Thesis Organization . 4

1.3 Contributions . 7

1.4 List of Publications . 12

2 Incremental Detection of Inconsistencies in Distributed Data 14
2.1 Introduction . 14

2.2 Error Detection in Distributed Data 19

2.2.1 Conditional Functional Dependencies 19

2.2.2 Data Fragmentation . 20

2.2.3 Detecting CFD Violations in Distributed Data 20

2.3 Incremental Detection: Complexity 22

2.4 Algorithms for Vertical Partitions . 28

2.5 Optimization for Vertical Partitions 35

2.6 Algorithms for Horizontal Partitions 41

2.7 Experimental Study . 45

3 Towards Certain Fixes with Editing Rules and Master Data 51
3.1 Introduction . 51

3.2 Editing Rules . 56

3.3 Certain Fixes and Certain Regions 59

3.4 Static Analyses of Fundamental Problems 62

3.4.1 Reasoning about Editing Rules 63

3.4.2 The Complexity of Computing Certain Regions 65

3.5 An Interactive Framework for Certain Fixes 70

3.5.1 TransFix: Generating Correct Fixes 73

v

3.5.2 Suggest: Generating New Suggestions 76

3.6 CerFix: A System for Cleaning Data with Certain Fixes 81

3.6.1 The CERFIX System . 81

3.6.2 How the CERFIX works . 86

3.7 Experimental Study . 90

4 Interaction Between Record Matching and Data Repairing 99
4.1 Introduction . 99

4.2 Data Quality Rules . 104

4.2.1 Conditional Functional Dependencies 104

4.2.2 Positive and Negative Matching Dependencies 105

4.3 A Uniform Framework for Data Cleaning 107

4.3.1 A Rule-based Logical Framework 107

4.3.2 A Tri-level Data Cleaning Solution 110

4.4 Fundamental Problems for Data Cleaning 111

4.4.1 Reasoning about Data Quality Rules 111

4.4.2 Analyzing the Data Cleaning Problem 112

4.5 Deterministic Fixes with Data Confidence 114

4.5.1 Deterministic Fixes . 114

4.5.2 Confidence-based Data Cleaning 115

4.6 Reliable Fixes with Information Entropy 119

4.6.1 Measuring Certainty with Entropy 119

4.6.2 Entropy-based Data Cleaning 121

4.6.3 Resolving Conflicts with a 2-in-1 Structure 123

4.7 Experimental Study . 125

5 Inferring Data Currency and Consistency for Conflict Resolution 130
5.1 Introduction . 130

5.2 A Conflict Resolution Model . 135

5.2.1 Data Currency . 135

5.2.2 Data Consistency . 137

5.2.3 Conflict Resolution . 138

5.3 A Conflict Resolution Framework 139

5.4 Fundamental Problems . 141

5.5 Algorithms for Conflict Resolution 154

5.5.1 Validity Checking . 154

vi

5.5.2 Deducing True Values . 157

5.5.3 Generating Suggestions . 160

5.6 Experimental Study . 170

6 Determining the Relative Accuracy of Attributes 177
6.1 Introduction . 177

6.2 A Model for Relative Accuracy . 182

6.2.1 Rules for Specifying Relative Accuracy 182

6.2.2 Inferring Relative Accuracy 184

6.3 Fundamental Problems . 187

6.4 A Framework for Deducing Target Tuples 191

6.5 Checking the Church-Rosser Property 192

6.6 Computing Top-k Candidate Targets 195

6.6.1 RankJoinCT: An Algorithm based on Rank Join 196

6.6.2 TopKCT: A Brodal Queue Based Algorithm 198

6.6.3 TopKCTh: A Heuristic Algorithm 201

6.7 Experimental Study . 201

7 Conclusion and Future Work 209
7.1 Summary . 209

7.2 Future Work . 210

Bibliography 213

vii

List of Figures

2.1 Example CFDs and their violations 15

2.2 An EMP relation D0 . 17

2.3 Example HEV-indices and an IDX for ϕ1 30

2.4 Single Insertion/Deletion for Vertical Partitions 31

2.5 Batch Updates for Vertical Partitions 33

2.6 Example of minimizing eqid shipment (base hash tables used only lo-

cally are omitted) . 34

2.7 Heuristic algorithm for minimizing eqid shipment 40

2.8 Batch updates for horizontal partitions 44

2.9 Experimental results for TPCH and DBLP data 46

2.10 Number of eqid’s shipped for vertical partitions 48

2.11 Experimental results for refined batch algorithms 50

3.1 Example input tuples and master relation 52

3.2 Framework overview . 71

3.3 Algorithm CertainFix . 72

3.4 An example dependency graph . 73

3.5 Procedure TransFix . 75

3.6 Procedure Suggest . 79

3.7 A sample BDD . 79

3.8 Procedure Suggest+ . 81

3.9 The CERFIX Architecture. 82

3.10 Management of editing rules. 84

3.11 Data monitor. 85

3.12 Data auditing. 88

3.13 Recall values w.r.t. the number of interactions 94

3.14 Tuple-level fixes when varying one of d%, |Dm| and n% 94

viii

3.15 Attribute-level fixes when varying one of d%, |Dm| and n% 95

3.16 Efficiency and Scalability . 96

4.1 Example master data and database 100

4.2 Framework Overview . 110

4.3 Algorithm cRepair . 117

4.4 Algorithm eRepair . 120

4.5 Example dependency graph . 121

4.6 Example relation of schema R . 123

4.7 Example data structure for variable CFDs 124

4.8 Experimental results . 127

5.1 V-J Day . 131

5.2 Instances E1 for entity Edith and E2 for George 132

5.3 Currency constraints and constant CFDs 132

5.4 Framework overview . 140

5.5 Algorithm DeduceOrder . 158

5.6 Algorithm NaiveDeduce . 160

5.7 Sample compatibility graph . 163

5.8 Algorithm Suggest . 165

5.9 Procedure TrueDer . 166

5.10 Procedure CompGraph . 167

5.11 Procedure GetSug . 169

5.12 Experimental results . 176

6.1 MJ’s return . 179

6.2 Single chase steps . 186

6.3 Framework overview . 191

6.4 Algorithm IsCR . 195

6.5 Algorithm TopKCT . 198

6.6 Experimental results . 202

ix

List of Tables

3.1 Summary of notations of Section 3.2 59

3.2 Summary of notations of Section 3.3 62

3.3 Summary of complexity results . 68

4.1 Summary of notations . 114

6.1 Entity instance stat for Michael Jordon in the 1994-95 season 177

6.2 Master data nba . 178

6.3 Accuracy rules . 178

6.4 Truth Discovery on Rest . 208

x

Chapter 1

Introduction

We have entered an era of Big Data, with 2.5 quintillion (2.5× 1018) bytes of data

being created everyday [IBM12]. Big Data is all about better analytics on a broader

spectrum of data, and therefore represents an opportunity to create greater value for

businesses [PCZ12]. Besides the challenges of dealing with the unprecedented quan-

tity of data, it also poses the challenges which arise with the quality of data that, in

order to get better analytics of data, the data is expected to be consistent, without du-

plication, up-to-date, accurate, and complete.

Unfortunately, the real-world data is often dirty: inconsistent, duplicated, stale, in-

accurate or incomplete. Indeed, data error rates of approximately 1%–5% are typically

found in enterprises, and for some companies it is above 30% [Red98]. In most data

warehouse projects, it takes 30%-80% of the development time and budget [ST98], to

improve the quality of the data instead of developing the systems. When it comes to

incomplete information, it is estimated that “pieces of information perceived as being

needed for clinical decisions were missing from 13.6% to 81% of the time” [MJYE05].

As for data currency, it is believed that “2% of records in a customer file become obso-

lete in one month” [Eck02]. That is to say, in a database of 500 000 customer records,

10 000 records may become stale per month, 120 000 records per year, and in two years

about 50% of all the records may become obsolete [FG12]. Dirty data is also costly. It

is known that dirty data costs US businesses 600 billion dollars annually [Eck02], and

that erroneously priced data in retail databases costs US consumers $2.5 billion each

year [Eng00]. These facts highlight the need for improving data quality.

1

Chapter 1. Introduction 2

1.1 Central Issues of Data Quality

There are five central issues of improving data quality that have been identified

in [FG12], namely, data consistency, data deduplication, data currency, data accuracy

and information completeness.

Data Consistency. It refers to the validity and integrity of data representing real-world

entities [FG12]. It aims to find out inconsistencies in the data. Inconsistencies may

exist in a single tuple, across multiple tuples in the same relation, or between tuples

across multiple relations.

Data dependencies (a.k.a. integrity constraints [AHV95]) have been developed to

ensure the consistency of the data, such as functional dependencies (FDs) [Cod72],

conditional functional dependencies (CFDs) [BFG+07] and inclusion dependencies

(INDs) [CFP84]. Inconsistencies typically emerge as violations of data dependencies.

Data consistency involves two tasks: detection and repairing, where detection is to

identify the violations of data dependencies, and repairing is to fix errors (inconsisten-

cies).

Data repairing is regarded as one of the two central tasks for data clean-

ing [FLM+11a], along with record matching (see below).

We study the the detection problem in the incremental and distributed setting in

Chapter 2. We also study the data repairing problem in Chapter 3 and Chapter 4, where

in Chapter 3, we focus on data monitoring (i.e., repair data at the time of data entry)

and guaranteeing correctness of fixes, while in Chapter 4, we investigate the interaction

between the two central data cleaning tasks: data repairing and record matching.

Data Deduplication. It aims to identify a single tuple with true values to replace

duplicate tuples that refer to the same real-world entity. It consists of record matching

and conflict resolution.

(1) Record matching aims to identify tuples in one or more relations that refer to the

same real-world entity. Along with data repairing, it is regarded as the other central

task of data cleaning.

Record matching is a fundamental process for eliminating the duplicate records in a

database. There has been a host of work on record matching (e.g., [ARS09, BSIBD09,

CGGM03, FJLM09, HS98, WBGM09]); see [EIV07, HSW09a] for surveys. Most

data cleaning systems on the market support record matching, with some providing the

functionality of data repairing at the same time.

Chapter 1. Introduction 3

(2) Conflict resolution aims to resolve conflicts by finding a single tuple with the true

values to represent the entity.

Conflict resolution is challenging because it involves other central issues of data

quality: the identified true values should be correct, consistent, up-to-date, and com-

plete. It has been studied for decades, starting from [Day83]. It aims to combine data

from different sources into a single representation (see [BN08, DN09] for surveys). In

that context, inconsistencies are typically resolved by selecting the max,min,avg,any

value [BN08].

As mentioned earlier, in Chapter 4, we study the interaction between record match-

ing and data repairing. We present our findings on conflict resolution by utilizing data

consistency and data currency (see below) in Chapter 5.

Data Currency. It is also known as timeliness. It aims to identify the current values

of entities represented by tuples in a database, and to answer queries with the current

values [FG12].

The problem of data currency would be trivial when data values carried valid

timestamps. In practice, however, timestamps are often unavailable or inaccurate

[ZDI10]. Worse still, data values are often copied or imported from other sources

[BESD+09, DBEHS10, DBES09a, DBES09b], which may not share a uniform scheme

of timestamps. These make it much more challenging to identify the “latest” values of

entities from the data in a database.

Data currency has been studied in [FGW11], and a notion of currency orders and

denial constraints has been used to infer the data currency. However, most cases identi-

fied in [FGW11] are intractable. This highlights the quest for a new class of simplified

constraints and effective methods for identifying data currency.

We propose a new class of constraints and effective methods for inferring data

currency. Also we use these constraints and methods with integrity constraints for

conflict resolution. We report our findings in Chapter 5.

Data Accuracy. It refers to the closeness of values in a database to the true values

of the entities that the data in the database represent [FG12]. The relative accuracy

problem is to determine, given tuples t1 and t2 that refer to the same entity e, whether

t1[A] is more accurate than t2[A], i.e., t1[A] is closer to the true value of the A attribute

of e than t2[A]. This has been a longstanding issue for data quality, and is challenging

when the true values of e are unknown. The need for studying this is evident in decision

making [Gel10], information systems [Epp06] and data quality management [FLR94].

Chapter 1. Introduction 4

While data accuracy has long been advocated [BS06, FLM09, NJE+09], most of

the previous studies have focused on metrics for accuracy measurement; we are not

aware of any formal treatment of relative accuracy in the absence of true values.

In Chapter 6, we present our study on inferring relative accuracy.

Information Completeness. It concerns whether our database has the complete in-

formation to answer our queries [FG12]. Given a database D and a query Q, we want

to know whether Q can be completely answered by using only the data in D. If the

information in D is incomplete, the answer to Q can hardly be accurate or even correct.

In practice the databases often do not have sufficient information to answer queries

at hand. Both attribute values and tuples may be missing from our databases. Incom-

plete information introduces serious problems to enterprises, ranging from mislead-

ing analytical results to biased decisions, which leads to loss of credibility, customers

and revenues[FG12]. The problems of information completeness has been studied

in [FG10, RN11, SPPN12].

Information completeness is not studied in this thesis.

1.2 Thesis Organization

The reminder chapters of this thesis is organized as follows.

(2) Incremental Detection of Inconsistencies in Distributed Data. In Chapter 2, we

first investigate incremental detection of errors in distributed data. Given a distributed

database D, a set Σ of conditional functional dependencies (CFDs), the set V of viola-

tions of the CFDs in D, and updates ∆D to D, it is to find, with minimum data shipment,

changes ∆V to V in response to ∆D. The need for the study is evident since real-life

data is often dirty, distributed and frequently updated. It is often prohibitively expen-

sive to recompute the entire set of violations when D is updated. We show that the

incremental detection problem is NP-complete for database D that is partitioned either

vertically or horizontally, even when Σ and D are fixed. Nevertheless, we show that it

is bounded: there exist algorithms to detect errors such that their computational cost

and data shipment are both linear in the size of ∆D and ∆V, independent of the size

of the database D. We provide such incremental algorithms for vertically partitioned

data and horizontally partitioned data, and show that the algorithms are optimal. We

further propose optimization techniques for the incremental algorithm over vertical

partitions to reduce data shipment. We experimentally verify, using real-life data on

Chapter 1. Introduction 5

Amazon Elastic Compute Cloud (EC2), that our algorithms substantially outperform

their batch counterparts.

The problems studied in Chapter 2 are related to the issue of data consistency (de-

tection).

(3) Towards Certain Fixes with Editing Rules and Master Data. In Chapter 3, we

propose a method for finding certain fixes, based on master data, a notion of certain

regions, and a class of editing rules. A certain region is a set of attributes that are

assured correct by the users. Given a certain region and master data, editing rules tell

us what attributes to fix and how to update them. We show how the method can be used

in data monitoring and enrichment. We also develop techniques for reasoning about

editing rules, to decide whether they lead to a unique fix and whether they are able to

fix all the attributes in a tuple, relative to master data and a certain region. Furthermore,

we present a framework and an algorithm to find certain fixes, by interacting with the

users to ensure that one of the certain regions is correct. We experimentally verify the

effectiveness and scalability of the algorithm.

The problems studied in Chapter 3 are related to the issue of data consistency (re-

pairing).

(4) Interaction Between Record Matching and Data Repairing. Chapter 4 studies

a new problem, namely, the interaction between record matching and data repairing.

We show that repairing can effectively help us identify matches, and vice versa. To

capture the interaction, we propose a uniform framework that seamlessly unifies re-

pairing and matching operations, to clean a database based on integrity constraints,

matching rules and master data. We give a full treatment of fundamental problems as-

sociated with data cleaning via matching and repairing, including the static analyses of

constraints and rules taken together, and the complexity, termination and determinism

analyses of data cleaning. We show that these problems are hard, ranging from NP- or

coNP-complete, to PSPACE-complete. Nevertheless, we propose efficient algorithms to

clean data via both matching and repairing. The algorithms find deterministic fixes and

reliable fixes based on confidence and entropy analysis, respectively, which are more

accurate than possible fixes generated by heuristics. We experimentally verify that our

techniques significantly improve the accuracy of record matching and data repairing

taken as separate processes, using real-life data.

The problems studied in Chapter 4 are related to the issue of data consistency (re-

pairing) and data deduplication (record matching).

Chapter 1. Introduction 6

(5) Inferring Data Currency and Consistency for Conflict Resolution. Chapter 5

introduces a new approach for conflict resolution: given a set of tuples pertaining to

the same entity, it is to identify a single tuple in which each attribute has the latest and

consistent value in the set. This problem is important in data integration, data cleaning

and query answering. It is, however, challenging since in practice, reliable timestamps

are often absent, among other things. We propose a model for conflict resolution, by

specifying data currency in terms of partial currency orders and currency constraints,

and by enforcing data consistency with constant conditional functional dependencies.

We show that identifying data currency orders helps us repair inconsistent data, and

vice versa. We investigate a number of fundamental problems associated with conflict

resolution, and establish their complexity. In addition, we introduce a framework and

develop algorithms for conflict resolution, by integrating data currency and consistency

inferences into a single process, and by interacting with users. We experimentally

verify the accuracy and efficiency of our methods using real-life and synthetic data.

The problems studied in Chapter 5 are related to the issue of data consistency, data

currency and data deduplication (conflict resolution).

(6) Determining the Relative Accuracy of Attributes. Chapter 6 proposes a model

for determining relative accuracy. (1) We introduce a class of accuracy rules and an

inference system with a chase procedure, to deduce relative accuracy. (2) We identify

and study several fundamental problems for relative accuracy. Given a set Ie of tuples

pertaining to the same entity e and a set of accuracy rules, these problems are to decide

whether the chase process terminates, is Church-Rosser, and leads to a unique target

tuple te composed of the most accurate values from Ie for all the attributes of e. (3) We

propose a framework for inferring accurate values with user interaction. (4) We pro-

vide algorithms underlying the framework, to find the unique target tuple te whenever

possible; when there is no enough information to decide a complete te, we compute

top-k candidate targets based on a preference model. (5) Using real-life and synthetic

data, we experimentally verify the effectiveness and efficiency of our method.

The problems studied in Chapter 6 are related to the issue of data accuracy.

(7) Conclusion and Future Work. Chapter 7 concludes the thesis and the future

works to be done.

Chapter 1. Introduction 7

1.3 Contributions

In this thesis, the studies on the first four central issues of data quality, namely, data

consistency, data deduplication, data currency, data accuracy and the interactions be-

tween them are reported.

Incremental Detection of Inconsistencies in Distributed Data. We establish the

complexity bounds and provide efficient algorithms for incrementally detecting the

violations of CFDs in fragmented and distributed data, either vertically or horizontally

(Chapter 2).

1. We formulate incremental detection as an optimization problem, and establish its

complexity bounds (Section 2.3). We show that the problem (decision version) is

NP-complete even when both D and CFDs are fixed, i.e., when only the size |∆D|
of updates varies. Nevertheless, we show that the problem is bounded [RR96]:

there exist algorithms for incremental detection such that their communication

costs and computational costs are functions in the size of the changes in the input

and output (i.e., |∆D| and |∆V|), independent of the size of database D. This tells

us that incremental detection can be carried out efficiently, since in practice, ∆D

and ∆V are typically small.

2. We develop an algorithm for incrementally detecting violations of CFDs for ver-

tical partitions (Section 2.4). We show that the algorithm is optimal [RR96]:

both its communication costs and computational costs are linear in |∆D| and

|∆V|. Indeed, |∆D| and |∆V| characterize the amount of work that is absolutely

necessary to perform for incremental detection [RR96].

3. We develop optimization methods (Section 2.5) to further reduce data shipment

for error detection in vertical partitions. The idea is to identify and maximally

share indices among CFDs such that when multiple CFDs demand the shipment

of the same tuples, only a single copy of the data is shipped. We show that the

problem (the decision version) for building optimal indices is NP-complete, but

provide an efficient heuristic algorithm.

4. We also provide an incremental detection algorithm for horizontal partitions

(Section 2.6). We show that the algorithm is also optimal, as for its vertical

counterpart.

5. Using TPCH for large scale data and DBLP for real-life data, we conduct exper-

iments on Amazon EC2. We find that our incremental algorithms outperform

their batch counterparts by two orders of magnitude, for fairly large updates (up

Chapter 1. Introduction 8

to 10GB for TPCH). Moreover, our methods scale well with both the size of data

and the number of CFDs. We also find the optimization strategies effective.

Towards Certain Fixes with Editing Rules and Master Data. We propose a method

for data monitoring and certain fixes, by capitalizing on editing rules, master data and

user interactions (Chapter 3).

1. We present an interactive framework to find certain fixes (Section 3.5). A set

of certain regions are first recommended to the users, derived from a set Σ of

editing rules and master data Dm available, by using an algorithm of [FLM+10].

For an input tuple t, the users may only ensure that t[X] is correct, for a set X of

attributes of t. If t[X] matches any of the certain regions, the rules guarantee to

find t a certain fix. Otherwise we deduce what other attributes Y of t are implied

correct by t[X] and the rules, and moreover, suggest a minimal set S of attributes

such that as long as t[S] is assured correct, Y ∪ S covers a certain region and

hence, a certain fix to the entire t is warranted. The interactive process proceeds

until the users are guided to reach a certain region.

2. We show that it is NP-complete to find a minimum suggestion S (decision ver-

sion). Nonetheless, we develop an efficient heuristic algorithm to find a set of

suggestions, and introduce effective optimization techniques. These yield a prac-

tical data entry solution to clean data.

3. We develop CERFIX, a data cleaning system that finds certain fixes for input

tuples at the point of data entry. It differs from other systems that also ask for user

feedback (e.g., [CCC+10]) in what feedback is requested and how the feedback

is used. CERFIX consists of (a) a region finder to identify certain regions; (b)

a data monitor to find certain fixes for input tuples, by guiding users to validate

a minimal number of attributes via a javascript plug-in that can be embedded in

any web forms; and (c) an auditing module to show what attributes are fixed and

where the correct values come from.

4. We experimentally verify the effectiveness and scalability of the algorithm, us-

ing real-life hospital data and DBLP (Section 3.7). We find that the algorithm

effectively provides suggestions, such that most input tuples are fixed with two

or three rounds of interactions only. We also show that it scales well with the

size of master data, and moreover, that the optimization techniques effectively

reduce the latency during interactions.

Interaction Between Record Matching and Data Repairing. We approach this

Chapter 1. Introduction 9

problem by unifying record matching and data repairing, and to provide a data cleaning

solution that stresses accuracy (Chapter 4).

1. We investigate a new problem, stated as follows.

Given a database D, master data Dm, and data quality rules consisting of CFDs

Σ and matching rules Γ, the data cleaning problem is to find a repair Dr of D

such that (a) Dr is consistent (i.e., satisfying the CFDs Σ), (b) no more tuples in

Dr can be matched to master tuples in Dm by rules of Γ, and (c) Dr minimally

differs from the original data D.

As opposed to record matching and data repairing, the data cleaning problem

aims to fix errors in the data by unifying matching and repairing, and by lever-

aging master data. Here master data (a.k.a. reference data) is a single repository

of high-quality data that provides various applications with a synchronized, con-

sistent view of its core business entities [Los09]. It is being widely used in

industry, supported by, e.g., IBM, SAP, Microsoft and Oracle. To identify tuples

from D and Dm, we use matching rules that are an extension of MDs [FJLM09]

by supporting negative rules (e.g., a male and female may not refer to the same

person) [ARS09, WBGM09].

2. We propose a uniform framework for data cleaning. We treat both CFDs and MDs

as cleaning rules, which tell us how to fix errors. This yields a rule-based logical

framework, which allows us to seamlessly interleave repairing and matching

operations. To assure the accuracy of fixes, we make use of (a) the confidence

placed by the user in the accuracy of the data, (b) entropy measuring the certainty

of data, by the self-information of the data itself [CT91, SV10], and (c) master

data [Los09]. We distinguish three classes of fixes: (i) deterministic fixes for

the unique solution to correct an error; (ii) reliable fixes for those derived using

entropy; and (iii) possible fixes for those generated by heuristics. The former

two are more accurate than possible fixes.

3. We investigate fundamental problems associated with data cleaning via both

matching and repairing. We show the following. (a) When CFDs and match-

ing rules are taken together, the classical decision problems for dependencies,

namely, the consistency and implication analyses, are NP-complete and coNP-

complete, respectively. These problems have the same complexity as their coun-

terparts for CFDs [FGJK08], i.e., adding matching rules does not incur extra

complexity. (b) The data cleaning problem is NP-complete. Worse still, it is

approximation-hard, i.e., it is beyond reach in practice to find a polynomial-

Chapter 1. Introduction 10

time (PTIME) algorithm with a constant approximation ratio [WP05] unless

P = NP. (c) It is more challenging to decide whether a data cleaning process

terminates and whether it yields deterministic fixes: these problems are both

PSPACE-complete.

4. In light of the inherent complexity, we propose a three-phase solution consist-

ing of three algorithms. (a) One algorithm identifies deterministic fixes that are

accurate, based on confidence analysis and master data. (b) When confidence is

low or unavailable, we provide another algorithm to compute reliable fixes by

employing information entropy, inferring evidence from data itself to improve

accuracy. (c) To fix the remaining errors, we extend the heuristic based method

[CFG+07] to find a consistent repair of the dirty data. These methods are com-

plementary to each other, and can be used either alone or together.

5. We experimentally evaluate the quality and scalability of our data cleaning meth-

ods with both matching and repairing, using real-life datasets (DBLP and hospi-

tal data from US Dept. of Health & Human Services). We find that our methods

substantially outperform matching and repairing taken as separate processes in

the accuracy of fixes, up to 15% and 30%, respectively. Moreover, deterministic

fixes and reliable fixes are far more accurate than fixes generated by heuristic

methods. Despite the high complexity of the cleaning problem, we also find that

our algorithms scale reasonably well with the size of the data.

Inferring Data Currency and Consistency for Conflict Resolution. We study con-

flict resolution by inferring both data currency and data consistency (Chapter 5).

1. We propose a model for conflict resolution (Section 5.2). We specify data cur-

rency in terms of (a) partial currency orders denoting available (yet possibly in-

complete) temporal information on the data, and (b) simple currency constraints,

to express currency relationships derived from the semantics of the data. Data

consistency is specified in terms of constant CFDs [FGJK08] on the latest values

of the data. Given such a specification Se on a set E of tuples pertaining to the

same entity e, we aim to derive the true values of e from Se.

2. We introduce a framework for conflict resolution (Section 5.3). One may find

some true values of an entity from a specification of an entity, but not all. In light

of this, our framework automatically derives as many true values as possible

from a given specification Se of an entity e, identifies attributes for which the

true values of e are not derivable from Se, and interacts with users to solicit

Chapter 1. Introduction 11

additional input for those attributes, so that all the true values of all the attributes

of e can be derived from Se and users’ input.

3. We study problems fundamental to conflict resolution (Section 5.4). Given a

specification Se, we determine whether partial currency orders, currency con-

straints and CFDs in Se have conflicts among themselves? Whether some other

currency orders are implied by Se? Whether true values of an entity can be de-

rived from Se? If not, what additional minimum currency information has to be

provided so that the true values are derivable? We establish their complexity

bounds, ranging from NP-complete and coNP-complete to Σp
2-complete. These

results reveal the complexity inherent to conflict resolution.

4. We develop several practical algorithms (Section 5.5). We propose methods for

finding (a) whether a specification Se has conflicts, (b) what true values can be

derived from Se, and (c) a minimum set of attributes that require users’ input to

find their true values. All these problems are intractable; in particular, the last

problem is Σp
2-complete. Nevertheless, we provide efficient heuristic algorithms,

by integrating inferences of data consistency and currency into a single process.

5. We evaluate the accuracy and efficiency of our method using real-life and syn-

thetic data (Section 5.6). We find that unifying currency and consistency substan-

tially improves the accuracy of traditional methods, by 201% (F-measure), even

with only a small number of constraints. It is also more effective than taking

consistency and currency separately. Furthermore, our algorithms are efficient,

and scale well with the number of tuples pertaining to an entity and with the

number of constraints; for example, it takes an average of 7 seconds to resolve

conflicts in sets of 8k-10k tuples representing an entity, with 1983 constraints.

Determining the Relative Accuracy of Attributes. We make a first attempt to give a

formal treatment of relative accuracy, from theory to practice (Chapter 6).

1. We propose a model for determining relative accuracy (Section 6.2). We in-

troduce (a) accuracy rules (ARs) defined in terms of partial orders; and (b) a

chase-like procedure [AHV95] that, given a set Ie of tuples pertaining to the

same entity e, a set Σ of ARs on Ie and (partial) master data Im, infers relative

accuracy and a target tuple by applying the ARs.

2. We identify fundamental problems for relative accuracy (Section 6.3). Given

Ie, Σ and Im, these problems are to decide (a) whether the chase process on Ie

terminates by applying Σ and Im? (b) Whether do all the chase sequences lead

Chapter 1. Introduction 12

to a unique target tuple te for e from Ie, i.e., Church-Rosser [AHV95], no matter

in what orders the rules are applied? (c) If te is incomplete, i.e., some of its

attributes have the null value, can we make te complete while observing the ARs

in Σ? We show that the chase process always terminates, the Church-Rosser

property can be decided in O((|Ie|2 + |Im|)|Σ|) time, whereas the last problem is

NP-complete.

3. We present a framework for deducing target tuples (Section 6.4). Given Ie, Σ
and Im, the framework checks whether the chase on Ie with Σ and Im is Church-

Rosser. If so, it automatically deduces as many accurate attribute values for te
as possible. If te is incomplete, it computes top-k candidate targets based on a

preference model. The users may check the candidate tuples, revise te, Ie and Σ,

and invoke the process again until a satisfactory target tuple is found.

4. We provide effective algorithms underlying the framework (Sections 6.5 and

6.6). We give an algorithm for deciding whether the chase is Church-Rosser

given Ie, Σ and Im, and deducing accurate attributes for target tuples. We also

develop three algorithms for finding top-k candidate target tuples, with the early

termination property without inspecting all possible tuples. In particular, one

of the algorithms does not require ranked lists as input, and is instance optimal

w.r.t. the number of visits to the data [FLN03].

5. We experimentally verify the effectiveness and efficiency of our method, using

real-life and synthetic data (Section 6.7). We find that our approach is effec-

tive: for the real-life data, accurate values are automatically deduced for at least

73% of the attributes without user interaction, in 10 milliseconds (ms); more-

over, at most 3-4 rounds of user interaction are needed to find complete tar-

get tuples. Our algorithms scale well with the sizes of entity instances, master

data and ARs. We also evaluate our method for truth discovery, vs. prior ap-

proaches [DBES09b, FGTY13]. We show that our model can accommodate trust

in data sources [DBES09b] as well as data currency and consistency [FGTY13].

Even for truth discovery, our method performs as well as [DBES09b, FGTY13]

in their settings, or even better.

1.4 List of Publications

During the course of the PhD study, as a co-author, I have published the following

publications. And they contain the work reported in this thesis.

Chapter 1. Introduction 13

◦ [CFY13] Yang Cao, Wenfei Fan, and Wenyuan Yu

Determining the Relative Accuracy of Attributes ACM SIGMOD International

Conference on Management of Data, SIGMOD 2013 (Work for this paper is

reported in Chapter 6)

◦ [FGTY13] Wenfei Fan, Floris Geerts, Nan Tang, and Wenyuan Yu

Inferring Data Currency and Consistency for Conflict Resolution 29th IEEE In-

ternational Conference on Data Engineering (ICDE), 2013

◦ [FLTY14] Wenfei Fan, Jianzhong Li, Nan Tang, and Wenyuan Yu

Incremental Detection of Inconsistencies in Distributed Data IEEE Transaction

on Knowledge and Data Engineering (TKDE) (Special issue: Best Papers of

ICDE 2012, to appear)

◦ [FLM+12] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu

Towards certain fixes with editing rules and master data The VLDB Journal

21(2): 213-238, 2012

◦ [FLTY12] Wenfei Fan, Jianzhong Li, Nan Tang, and Wenyuan Yu

Incremental Detection of Inconsistencies in Distributed Data 28th IEEE Inter-

national Conference on Data Engineering (ICDE), 2012

◦ [FLM+11b] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu

CerFix: A System for Cleaning Data with Certain Fixes Demo, The 37th Inter-

national Conference on Very Large Data Bases (VLDB), 2011

(Work for this demo is reported in Section 3.6)

◦ [FLM+11a] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu

Interaction between Record Matching and Data Repairing ACM SIGMOD Con-

ference on Management of Data (SIGMOD), 2011

◦ [FLM+10] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu

Towards certain fixes with editing rules and master data The 36th International

Conference on Very Large Data Bases (VLDB), 2010

Remark. It is worth mentioning that the (partial) results of this thesis appear in the

above publications: (1) results in Chapter 2 appear in [FLTY14] and [FLTY12]; (2) re-

sults in Chapter 3 appear in [FLM+12]; (3) results in Chapter 4 appear in [FLM+11a];

(4) results in Chapter 5 appear in [FGTY13]; and (5) results in Chapter 6 appear in

[CFY13].

Chapter 2

Incremental Detection of

Inconsistencies in Distributed Data

2.1 Introduction

In this chapter, we investigate incremental detection of errors in distributed data. It is

related to the issue of data consistency.

As remarked earlier, detection of inconsistencies is one of the fundamental tasks of

data consistency. Detecting inconsistencies in a centralized database is often simple.

For example, two SQL queries suffice to detect inconsistencies of CFDs for central-

ized data [FGJK08]. However, data is increasingly common to be partitioned ver-

tically (e.g., [Sto05]) or horizontally (e.g., [Kal08]), and distributed across different

sites. This is highlighted by the recent interests in SaaS and Cloud computing, MapRe-

duce [DG04, NPM+10] and DBMS with columnar storage [Sto05]. In the distributed

settings, however, it is much harder to detect errors in the data than in the centralized

setting.

Example 2.1.1: Consider an employee relation D0 shown in Fig. 2.2, which consists

of tuples t1–t5 (ignore t6 for the moment), and is specified by the following schema:

EMP(id,name,sex,grade,street,city,zip,CC,AC,phn,salary,hd)

Each EMP tuple specifies the id, name, sex, salary grade level, address (street, city, zip

code), phone number (country code CC, area code AC, phone phn), salary and the date

hired (hd). Here the employee id is a key of EMP.

To detect errors, a set of CFDs is defined on the EMP relation, as shown in Fig. 2.1.

Here ϕ1 asserts that for employees in the UK (i.e., CC = 44), zip code uniquely deter-

14

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 15

mines street. CFD ϕ2 assures that for any UK employee, if the area code is 131 then

the city must be EDI.

Errors in D0 emerge as violations of the CFDs, i.e., those tuples in D0 that violate

at least one CFD in Σ0, as shown in Fig. 2.1. For instance, t1 and t5 violate ϕ1: they

represent UK employees with the same zip, but have different street’s. Moreover, t1
alone violates ϕ2: t1[CC] = 44 and t1[AC] = 131, but t1[city] = ‘NYC’ ̸= ‘EDI’. When

D0 is in a centralized database, the violations can be easily caught by using SQL-based

techniques [FGJK08].

Now consider distributed settings. As depicted in Fig. 2.2, D0 is partitioned either

(1) vertically into three fragments DV1 , DV2 (grey columns) and DV3 , all with attribute

id; or (2) horizontally into DH1 (t1–t2), DH2 (t3–t4) and DH3 (t5), for employees with

salary grade ‘A’ (junior level), ‘B’ and ‘C’ (senior), respectively. The fragments are

distributed over different sites.

To find violations in both settings, it is necessary to ship data from one site to

another. For instance, to find the violations of ϕ1 in the vertical partitions, one has

to send tuples with CC = 44 from the site of DV3 to the site of DV2 , or the other way

around to ship attributes (street,zip); similarly for the horizontal partitions. 2

CFDs Violations

ϕ1 : ([CC = 44, zip]→ [street]) t1, t3, t4, t5

ϕ2 : ([CC = 44, AC = 131] → [city = ‘EDI’]) t1

Figure 2.1: Example CFDs and their violations
Given a distributed database D, a set Σ of conditional functional dependencies

(CFDs), the set V of violations of the CFDs in D, and updates ∆D to D, it is to find,

with minimum data shipment, changes ∆V to V in response to ∆D. The need for the

study is evident since real-life data is often dirty, distributed and frequently updated. It

is often prohibitively expensive to recompute the entire violations when D is updated.

It is NP-complete to find violations of CFDs, with minimum data shipment, in a

distributed relation that is partitioned either horizontally or vertically [FGMM10]. A

heuristic algorithm was developed in [FGMM10] to compute the violations of CFDs in

horizontally partitioned data, which takes 80 seconds to find violations of one CFD in

8 fragments (i.e., 8 sites) of 1.6 million tuples ∗.

Distributed data is also often dynamic, i.e., frequently updated [OV99].
∗Tested on Linux PCs with 1.86GHz Intel Core 2 CPU and 2GB memory.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 16

It is often prohibitively expensive to recompute the entire violations in a distributed

database D when D is updated. This motivates us to study incremental detection of

errors. In a nutshell, let V denote the violations of a set Σ of CFDs in D, ∆D be updates

to D, and D⊕∆D denote the database updated by ∆D. In contrast to batch algorithms

that compute violations of Σ in D starting from scratch, incremental detection is to find

changes ∆V to V, which aims to minimize unnecessary recomputation. Indeed, when

∆D is small, ∆V is often small as well, though ∆V may include tuples from ∆D and D.

It is more efficient to compute ∆V than the entire violations of Σ in D⊕∆D.

Example 2.1.2: Consider ϕ1 of Fig. 2.1, relation D0 and its partitions given in Fig. 2.2,

and the updates below.

(1) Insertions. Assume that t6 is inserted into D0, as shown in Fig. 2.2. Then the new

violation ∆V is {t6}.

(a) Batch computation. In the vertical partitions, one needs to ship either tuples with

the same (zip,street) as t6 (in DV2) or 6 tuples with CC = 44 (DV3), as shown in Ex-

ample 2.1.1. In the horizontal partition, we have to compare all tuples with CC = 44,

which requires the shipment of 4 (partial) tuples.

(b) Incremental computation. Since t5 is already a violation of ϕ1 in V and (t5, t6)

together violate ϕ1, we can conclude that t6 is the only new violation of ϕ1, i.e., ∆V =

{t6} for ϕ1. Indeed, for any tuple t, if (t, t6) violate ϕ1, then either (t, t5) violate ϕ1 or

t[CC,zip,street] = t5[CC,zip,street]. In both cases, t is already in V (i.e., a violation).

Hence to find ∆V for ϕ1, one needs to ship a single tuple id in the vertical partition

(Section 2.4), and no data to be shipped in the horizontal case (Section 2.6).

(2) Deletions. Assume that t4 is deleted after the insertion of t6. One can verify that

only t4 has to be removed from the violations of ϕ1, i.e., ∆V = {t4} for ϕ1.

(a) Batch computation. To find violations of ϕ1 in D0 ⊕∆D, one has to ship the same

amount of data as in (1)(a).

(b) Incremental computation. In contrast, since t3, t4 are both in V and t3[street,zip]=

t4[street,zip], one can verify that only t4 should be removed from V. Indeed, for any t,

if (t, t4) violate ϕ1, so do (t, t3). Since t3 remains in V, so does t. Again, one needs to

ship a single tuple id in vertical partitions, and no data in the horizontal case. 2

It has been verified in a number of applications that incremental algorithms are

more efficient than their batch counterparts when updates are small [RR93]. This ex-

ample shows that this holds for distributed error detection.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 17

D
V 1

D
V 2

(w
ith

id
re

pl
ic

a)
D

V 3
(w

ith
id

re
pl

ic
a)

U
p
d
at
es

id
n
am

e
se
x

gr
ad
e

st
re
et

ci
ty

zi
p

C
C

A
C

p
h
n

sa
la
ry

h
d

D
H

1

t 1
:

1
M

ik
e

M
A

M
ay

fie
ld

N
Y

C
E

H
4

8L
E

44
13

1
86

93
78

4
65

k
01

/1
0/

20
05

t 2
:

2
Sa

m
M

A
Pr

es
to

n
E

D
I

E
H

2
4H

F
44

13
1

87
65

43
2

65
k

01
/0

5/
20

09

D
H

2

t 3
:

3
M

ol
in

a
F

B
M

ay
fie

ld
E

D
I

E
H

4
8L

E
44

13
1

34
56

78
9

80
k

01
/0

3/
20

10

t 4
:

4
Ph

ili
p

M
B

M
ay

fie
ld

E
D

I
E

H
4

8L
E

44
13

1
29

09
20

9
85

k
01

/0
5/

20
10

d
el
et
e

D
H

3
t 5

:
5

A
da

m
M

C
C

ri
ch

to
n

E
D

I
E

H
4

8L
E

44
13

1
74

78
62

6
12

0k
01

/0
5/

19
95

t 6
:

6
G

eo
rg

e
M

C
M

ay
fie

ld
E

D
I

E
H

4
8L

E
44

13
1

95
95

85
8

12
0k

01
/0

7/
19

93
in
se
rt

Fi
gu

re
2.

2:
A

n
E
M
P

re
la

tio
n

D
0

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 18

This work provides fundamental results and a practical solution for error detection

in distributed data. We focus on CFDs because they carry constant patterns and are

difficult to handle, and moreover, as shown in [FGJK08], they capture inconsistencies

that traditional dependencies fail to catch. The techniques developed here, nonetheless,

can be readily used to incrementally detect violations of other dependencies used in

data cleaning, such as functional dependencies and denial constraints. We discuss

related work below, and review error detection in distributed data in Section 2.2.

Related work. Methods for (incrementally) detecting CFD violations are studied

in [FGJK08] for centralized data, based on SQL techniques. There has been work on

constraint enforcement in distributed databases (e.g., [ADNR07, GW93, Huy97]). As

observed in [GW93, Huy97], constraint checking is hard in distributed settings, and

hence, certain conditions are imposed there so that their constraints can be checked

locally at individual site, without data shipment. As shown by the examples above,

however, to find CFD violations it is often necessary to ship data. Detecting con-

straint violations has been studied in [ADNR07] for monitoring distributed systems,

which differs substantially from this work in that their constraints are defined on sys-

tem states and cannot express CFDs. In contrast, CFDs are to detect errors in data,

which is typically much larger than system states. Closer to this work is [FGMM10],

which studies CFD violation detection in horizontal partitions, but considers neither

incremental detection nor algorithms for detecting errors in vertical partitions.

Incremental algorithms have proved useful in a variety of areas (see [RR93] for

a survey). In particular, incremental view maintenance has been extensively stud-

ied [GM99], notably for distributed data [BmLT86, GMS93, Rou91, BDMW98]. Var-

ious auxiliary structures have been proposed to reduce data shipment, e.g., coun-

ters [BmLT86, GMS93], pointer [Rou91] and tags in base relations [BDMW98]. While

these could be incorporated into our solution, they do not yield bounded/optimal in-

cremental detection algorithms.

There has also been a host of work on query processing [Kos00] and multi-query

optimization [KNCV08] for distributed data. The former typically aims to generate

distributed query plans, to reduce data shipment or response time (see [Kos00] for

a survey). Optimization strategies, e.g., semiJoins [BC81], bloomJoins [ML86], and

recently [LDK09, DT07, MN08, WBTD08], have proved useful in main-memory dis-

tributed databases (e.g., MonetDB [FGKT10] and H-Store [Kal08]), and in cloud com-

puting and MapReduce [DG04, NPM+10]. Our algorithms leverage the techniques

of [KNCV08] to reduce data shipment when validating multiple CFDs, in particular.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 19

2.2 Error Detection in Distributed Data

In this section we review CFDs [FGJK08], data fragmentation [OV99] and error detec-

tion in distributed data [FGMM10].

2.2.1 Conditional Functional Dependencies

A CFD ϕ on relation R is a pair (X → Y , tp), where (1) X → Y is a standard functional

dependency (FD) on R; and (2) tp is the pattern tuple of ϕ with attributes in X and Y ,

where for each attribute A in X ∪Y , tp[A] is either a constant in the domain dom(A) of

A, or an unnamed variable ‘ ’ that draws values from dom(A) [OV99].

Example 2.2.1: The CFDs in Fig. 2.1 can be expressed as:

ϕ1: ([CC, zip]→ [street], tp1 = (44, ,))

ϕ2: ([CC, AC]→ [city], tp2 = (44, 131, EDI))

Note that FDs are a special case of CFDs in which the pattern tuple consists of ‘ ’ only.

2

To give the semantics of CFDs, we use an operator ≍ defined on constants and ‘ ’:

v1 ≍ v2 if either v1 = v2, or one of v1,v2 is ‘ ’. The operator extends to tuples, e.g.,

(131, EDI) ≍ (, EDI) but (131, EDI) ̸≍ (, NYC).

An instance D of R satisfies a CFD ϕ, denoted by D |= ϕ, iff for all tuples t and t ′

in D, if t[X] = t ′[X]≍ tp[X], then t[Y] = t ′[Y]≍ tp[Y]. Intuitively, ϕ is defined on those

tuples t in D such that t[X] matches the pattern tp[X], and moreover, it enforces the

pattern tp[Y] on t[Y].

Example 2.2.2: Consider D0 in Fig. 2.2 and the CFDs in Fig. 2.1. Then D0 does not

satisfy ϕ1, since t1[CC,zip]=t5[CC,zip]≍ (44,) but t1[street] ̸= t5[street], violating ϕ1.

2

A set of CFDs of the form (X → Y, tpi) (i ∈ [1,n]) can be converted to an

equivalent form (X → Y,Tp), where Tp is a pattern tableau that contains n tuples

tp1, · · · , tpn [FGJK08]. This is what we used in our implementation.

We call (X → B, tp) a constant CFD if tp[B] is a constant, and a variable CFD if

tp[B] is ‘ ’. For instance, ϕ2 in Fig. 2.1 is a constant CFD, while ϕ1 is a variable CFD.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 20

2.2.2 Data Fragmentation

We consider relations D of schema R that are partitioned into fragments, either verti-

cally or horizontally.

Vertical partitions. In some applications (e.g., [Sto05]) one wants to partition D into

(D1, . . . ,Dn) [OV99] such that

Di = πXi(D), D = 1i∈[1,n] Di,

where Xi is a set of attributes of R on which D is projected, including a key attribute of

R. Relation D can be reconstructed by join operations on the key attribute.

Each vertical fragment Di has its own schema Ri with attributes Xi. The set of

attributes of R is
∪

i∈[1,n]Xi.

As shown in Fig. 2.2, D0 can be partitioned vertically into DV1 , DV2 and DV3 , where

the schema of DV1 is R1(id, name, sex and grade); similarly for DV2 and DV3 .

Horizontal partitions. Relation D may also be partitioned (fragmented) into (D1, . . .,

Dn) [OV99, Kal08] such that

Di = σFi(D), D =
∪

i∈[1,n]Di,

where Fi is a Boolean predicate and selection σFi(D) identifies fragment Di. These

fragments are disjoint, i.e., no tuple t appears in distinct fragments Di and D j (i ̸= j).

They have the same schema R. The original relation D can be reconstructed by the

union of these fragments.

For example, D0 is horizontally partitioned into DH1 , DH2 and DH3 in Fig. 2.2, with

the selection predicate as grade = ‘A’, grade = ‘B’ and grade = ‘C’, respectively.

2.2.3 Detecting CFD Violations in Distributed Data

When CFDs are used as data quality rules, errors in the data are captured as violations

of CFDs [FGJK08, FGMM10].

Violations. For a CFD ϕ=(X →Y, tp) and an instance D of R, we use V(ϕ,D) to denote

the set of all tuples in D that violate ϕ, called the violations of ϕ in D. Here a tuple

t ∈ V(ϕ,D) iff there exists t ′ ∈ D such that t[X] = t ′[X] ≍ tp[X] but either t[Y] ̸= t ′[Y]

or t[Y] = t ′[Y] ̸≍ tp[Y]. For a set Σ of CFDs, we define V(Σ,D) =
∪

ϕ∈ΣV(ϕ,D).

For instance, Fig. 2.1 lists violations of ϕ1 and ϕ2 in D0.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 21

When D is a centralized database, two SQL queries suffice to find V(Σ,D), no

matter how many CFDs are in Σ. The SQL queries can be automatically gener-

ated [FGJK08].

Error detection in distributed data. Now consider a relation D that is partitioned

into fragments (D1, . . . ,Dn), either vertically or horizontally. Assume w.l.o.g. that Di’s

are distributed across distinct sites, i.e., Di resides at site Si for i ∈ [1,n], and Si and S j

are distinct if i ̸= j.

It becomes nontrivial to find V(Σ,D) when D is fragmented and distributed. As

shown in Example 2.1.1, to detect the violations in distributed D0, it is necessary to ship

data from one site to another. Hence a natural question concerns how to find V(Σ,D)

with minimum amount of data shipment. That is, we want to reduce communication

cost and network traffic.

To characterize the communication cost, we use M(i, j) to denote the set of tuples

shipped from Si to S j, and M the total data shipment, i.e.,
∪

i, j∈[1,n],i ̸= j M(i, j).

For each j ∈ [1,n], we use D j(M) to denote fragment D j augmented by data shipped

in M, i.e., D j(M) includes data in D j and all the tuples in M that are shipped to site S j.

More specifically, for vertical partitions,

D j(M) = D j 1i∈[1,n]∧M(i, j)̸= /0 M(i, j);

while for horizontal partitions,

D j(M) = D j ∪
∪

i∈[1,n]∧M(i, j)̸= /0M(i, j).

We say that a CFD ϕ can be checked locally after data shipments M if V(ϕ,D)=∪
i∈[1,n]V(ϕ,Di(M)). As a special case, we say that ϕ can be checked locally if

V(ϕ,D)=
∪

i∈[1,n]V(ϕ,Di), i.e., all violations of ϕ in D can be found at individual site

without data shipment (i.e., M= /0).

A set Σ of CFDs can be checked locally after M if each ϕ in Σ can be checked

locally after M.

The distributed CFD detection problem with minimum communication cost is to de-

termine, given a positive number K, a set Σ of CFDs and a partitioned and distributed re-

lation D, whether there exists a set M of data shipments such that (1) Σ can be checked

locally after M, and (2) the size |M| of M is no larger than K, i.e., |M| ≤ K.

In contrast to the error detection problem in centralized data, it is beyond reach in

practice to find an efficient algorithm to detect errors in distributed data with minimum

network traffic [FGMM10].

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 22

Theorem 2.2.1:[FGMM10] The distributed CFD detection problem with minimum

communication cost is NP-complete, when data is either vertically or horizontally par-

titioned. 2

In light of the intractability, a heuristic algorithms was developed in [FGMM10] to

compute V(Σ,D) when D is horizontally partitioned. We are not aware of any algo-

rithm for detecting CFD violations for data that is vertically partitioned.

2.3 Incremental Detection: Complexity

We formulate the incremental detection problem and study its complexity. We start

with notations for updates.

Updates. We consider a batch update ∆D to a database D, which is a list of tuple

insertions and deletions. A modification is treated as an insertion after a deletion. We

use ∆D+ to denote the sub-list of all tuple insertions in ∆D, and ∆D− the sub-list of

deletions in ∆D. We use D⊕∆D to denote the updated database of D with ∆D.

In a vertical partition D = (D1, . . . ,Dn) (see Section 2.2), we write ∆Di = πXi(∆D)

for updates in ∆D to fragment Di. For a horizontal partition, we denote the updates to

Di as ∆Di = σFi(∆D); similarly for ∆D+
i and ∆D−

i .

Problem statement. Given D, ∆D and a set Σ of CFDs, we want to find V(Σ,D⊕∆D),

i.e., all violations of CFDs of Σ in the updated database D⊕∆D.

As remarked earlier, we want to minimize unnecessary recomputation by incremen-

tally computing V(Σ,D⊕∆D). More specifically, suppose that the old output V(Σ,D)

is also provided. Incremental detection is to find the changes ∆V to V(Σ,D) such that

V(Σ,D⊕∆D) = V(Σ,D)⊕∆V. We refer to this as the incremental detection problem.

In practice, when ∆D is small, ∆V is often small as well. Hence it is more efficient

to find ∆V rather than batch detection that recomputes V(Σ,D⊕ ∆D) starting from

scratch. That is, we maximally reuse the old output V(Σ,D) when computing the new

output V(Σ,D⊕∆D).

We use ∆V+ to denote V(Σ,D⊕∆D)\V(Σ,D), i.e., violations added, and ∆V− for

V(Σ,D) \V(Σ,D⊕∆D), i.e., violations removed. Then ∆V = ∆V+ ∪∆V−. Observe

that ∆D+ only incurs ∆V+, and ∆D− only leads to ∆V−.

When D is partitioned into (D1, . . . ,Dn) and distributed, we say that ∆V can be com-

puted locally after data shipments M of tuples from D⊕∆D if ∆V =
∪

i∈[1,n]∆Vi(M),

where ∆Vi(M) denotes the differences between V (Σ,Di(M)⊕∆Di) and V (Σ,Di) at site

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 23

Si.

The incremental distributed CFD detection problem with minimum communication

cost is to find, given D, Σ, ∆D,V(Σ,D) as input, ∆V with minimum data shipments M

such that ∆V is locally computable after M.

Its decision problem is to determine, given D, Σ, ∆D,V(Σ,D) and a positive number

K, whether there exists a set M of data shipments such that (1) ∆V can be computed

locally after M, and (2) |M| ≤ K. We refer to the problem as IMVD for vertically

partitioned data, and as IMHD for horizontally partitioned data.

In practice, the set Σ of CFDs is typically predefined and is rarely changed, although

D is frequently updated. Thus in the sequel we consider fixed Σ.

Intractability results. Unfortunately, incremental detection is no easier than its batch

counterpart (Theorem 2.2.1). Below we shall first study the case for vertical partitions,

then analyze its horizontal counterpart.

Theorem 2.3.1: The incremental distributed CFD detection problem with minimum

data shipment is NP-complete for vertical partitions (IMVD). It remains NP-hard for

fixed CFDs when (a) update consists of insertions only, for a fixed database with fixed

partitions, or (b) update consists of deletions only. 2

Proof. ∗ Upper bound. To show that IMVD is in NP, we provide an NP algorithm

for incremental detection of violations in vertical partitions. It works as follows: first

guess a set M of data shipments such that |M| ≤ K, and then inspect whether ∆V =∪
i∈[1,n]∆Vi(M). The checking can be done in PTIME.

Lower bound. We show that IMVD is NP-hard even when (1) ∆D consists of insertions

only, or (2) ∆D consists of deletions only. We use fixed CFDs in both cases.

(1) When ∆D consists of insertions only. We verify the NP-hardness of IMVD by re-

duction from the minimum vertical detection problem (MVD). Given a set Σ of CFDs,

a vertically partitioned database D and a positive number K, MVD is to decide whether

there exists a set M of data shipments such that Σ can be checked locally after M, and

|M| ≤ K. It is known that MVD is NP-complete for a fixed set Σ defined on a fixed

schema [FGMM10].

Given an instance (Σ,D,K) of MVD, we construct an instance

(Σ,D′,V(Σ,D),∆D+,K) of IMVD by letting D′ = /0, ∆D+ = D′ and V(Σ,D) = /0. One

can verify that there is M such that |M| ≤ K and Σ can be checked locally after M iff

∗This proof is a joint work with Wenfei Fan.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 24

there exists a set M′ of data shipments such that |M′| ≤ K and ∆V can be computed

locally after M′. Note that D′ = /0 is independent of input (Σ,D,K). In other words,

IMVD is NP-hard when the CFDs, the database and its partition are all fixed.

(2) When ∆D consists of deletions only. We show the NP-hardness of IMVD also by

reduction from MVD. Given an instance (Σ,D,K) of MVD, we define an IMVD instance

as follows. Assume that Σ is defined on schema R.

(a) We define a new schema R′ = R∪{B1,B2}, where B1 and B2 are distinct attributes

not appearing in R.

(b) We define the set of Σ′ = Σ∪{φ}, where φ is an FD B1 → B2. Assume w.l.o.g. that

there exist two distinct values v1 and v2 in the domains of B1 and B2.

(c) We define D′ such that for each ti ∈ D, D′ includes two tuples tai and tbi, where

tai[R] = tbi[R] = t[R], tai[B1B2] = (v1,v1), and tbi[B1B2] = (v1,v2). That is, if D consists

of n tuples. D′ consists of 2∗n tuples. The relations D and D′ have the same partitions

for all the attributes in R. In addition, a new fragment of D′ is added, consisting of new

attributes B1, B2 and the key attribute key of D. Obviously, V(Σ,D′) = D′, since every

tuple of D′ violates φ with another tuple in D′.

(d) We define the set ∆D− of deletions to be {tbi | i ∈ [1,n]}, i.e., it is to remove all

tuples tbi.

To see that these make a reduction, observe the following. Before D is updated

by ∆D−, V(Σ,D′) = D′. After D is updated, V(Σ,D′⊕∆D−) = V(Σ,D). From this

it follows that a solution (a set of data shipments) to (Σ,D,K) iff it is a solution to

(Σ,D′,V(Σ,D),∆D−,K). Moreover, since MVD is NP-complete when Σ and fragmen-

tation are fixed, so is IMVD when ∆D consists of deletions only, since the newly added

φ and the refined fragmentation are also independent of the input. 2

We next analyze the case for horizontal partitions.

Theorem 2.3.2: The incremental distributed CFD detection problem with minimum

data shipment is NP-complete for horizontally partitioned data (IMHD). It remains

NP-hard for fixed CFDs and for (a) insertions only, with a fixed database with fixed

partitions, or (b) for deletions only. 2

Proof. † Upper bound. We show that IMHD is in NP by providing an NP algorithm for

IMHD. It works as follows: first guess a set M of data shipments such that |M| ≤ K,

†This proof is a joint work with Wenfei Fan.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 25

and then inspect whether ∆V =
∪

i∈[1,n]∆Vi(M). The latter can be done in PTIME.

Lower bound. We show that IMHD is NP-hard for fixed CFDs even when (1) ∆D con-

sists of insertions only with a fixed D, or (2) ∆D consists of deletions only.

(1) When ∆D consists of insertions only. We show that IMHD is NP-hard by reduction

from the minimum set cover problem (MSC). Given a finite set X of elements, a collec-

tion C of subsets of X and a positive number K, MSC is to decide whether there exists a

cover for X of size K or less, i.e., a subset C′ ⊆ C such that |C′| ≤ K and every element

of X belongs to at least one member of C′. It is known that MSC is NP-complete even

when each subset in C has three elements (cf. [GJ79]).

Given an instance (X ,C ,K) of MSC, we construct an instance (Σ, D, V(Σ,D), ∆D+,

K′) of IMHD such that the IMHD problem has a solution iff the MSC problem has a

solution. Assume w.l.o.g. that X = {x j | j ∈ [1,m]}, C = {Ci | i ∈ [1,n]}, each Ci

consists of three elements of X , and that X =
∪

i∈[1,n]Ci (i.e., there exists a cover).

(a) We define schema R = (A1,A2,A3,B,N,L). Intuitively, A1,A2,A3 are to encode the

three elements in a subset Ci of C , B for type (i.e., a subset or an element), N is a

partition key, and L is a tuple id within the fragment.

(b) The set Σ consists of three fixed FDs: Ai→B, i∈ [1,3].

(c) We construct an instance D of R that is horizontally partitioned into 2 fragments

Du and Dv, residing at sites Su and Sv, respectively. Assume an arbitrary topological

order ≺ on the elements of X , and four fixed distinct values b1,b2,u and v. Tuples

in D are partitioned into Du and Dv with the selection predicate as N = u and N = v,

respectively. Initially, D is empty, and hence, both Du and Dv are empty. Thus so are

V(Σ,Du) and V(Σ,Dv).

(d) We define insertions ∆D+ as follows.

◦ ∆D+
u consists of (n+m) tuples. For each i ∈ [1,n], there exists a tuple tci in ∆D+

u

such that tci = (a1, a2,a3,b1,u, i), where a1,a2,a3 are the elements in Ci∈C , such

sorted that a1≺a2≺a3. For each i in [1,m], there exists a tuple txi in ∆D+
u , such

that txi = (xi,xi,xi,b2,u, i+n). Intuitively, each tci encodes a subset Ci, and each

txi encodes an element of X .

◦ ∆D+
v consists of m∗ (n+1) tuples. For each i∈ [1,m], there exist (n+1) tuples

txi1, txi2 . . . , txi(n+1) in ∆D+
v , such that txi j =(xi,xi,xi,b2,v,(i− 1) ∗ (n+ 1)+ j),

for j ∈ [1,n+ 1]. Intuitively, for each i∈ [1,m], there exist (n+ 1) tuples that

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 26

encode xi.

Assume w.l.o.g. that tuples in ∆D+ have the same size l.

(e) We define K′ to be K ∗ l.

Observe that schema R, database D and CFDs Σ are all fixed, i.e., they are independent

of the MSC instance.

Intuitively, for all tuples t ∈ ∆D+, if t[B] = b1, then t encodes a subset Ci ∈ C ; and

if t[B] = b2, then t encodes an element xi in X . In addition, t1 and t2 in ∆D+ violate a

CFD of Σ if one of them is a tuple encoding a subset Ci, the other encodes an element

xi, and xi ∈ Ci. All the tuples in ∆D+
u and ∆D+

v violate some CFDs of Σ. Note that

only violations incurred by tuples txi and tc j in ∆D+
u can be detected locally, without

requiring data shipment. Tuples in ∆D+
v do not cause local violations; but for each

tuple txi j there exists a tuple tck in ∆D+
u such that txi j and tck violate a CFD, where xi is

an element of Ck, i ∈ [1,m], j ∈ [1,n+1], and k ∈ [1,n]. Intuitively, to detect violations

in ∆D+
v locally, a “cover” C′ ⊆ C of X must be shipped from site Su to Sv.

We now show that (Σ,D,V(Σ,D),∆D+,K′) is indeed a reduction from MSC to

IMHD. First, assume that the MSC instance has a cover C′ of size no larger than

K. We define a set M of tuple shipments M = {tci | Ci ∈ C′}. We ship M from

site Su to Sv. Note that the size of M is no larger than K′. Since C′ is a cover,

at site Sv, all tuples t ∈ Dv(M)⊕∆D+
v can be detected as violations locally. Hence,

∆Vu(M)∪∆Vv(M) = ∆Vu ∪∆Vv(M) = ∆D+
u ∪∆D+

v ∪M = ∆D+
u ∪∆D+

v = ∆V.

Conversely, assume that there exists a set M of tuple shipments such that |M| ≤
K′ = K ∗ l, and after M, ∆V can be computed locally. (a) If K′ = n ∗ l, then the

set C consisting of all subsets is a cover and |C | ≤ n ≤ K. (b) When K′ < n ∗ l, let

M = Mu→v ∪Mv→u, where Mu→v (resp. Mv→u) denotes the part of M shipped from Su

(resp. Sv) to Sv (resp. Su). Since |Mv→u| ≤ |M| ≤ K′, there are no more than n tuples in

Mv→u. Thus for any element xi ∈ X , there exists at least one tuple txi j ∈ ∆D+
v \Mv→u.

Since each txi j is detected as a local violation, each xi has to be covered by tuple tck in

Mu→v, which encodes a subset Ck. Let C′ = {Ck | tck ∈ Mu→v}. Then C′ is indeed a

cover of X , and |C′| ≤ K.

(2) When ∆D consists of deletions only. We show that IMHD is NP-hard also by reduc-

tion from MSC.

Given an instance (X ,C,K) of MSC, we construct an instance

(Σ,D′,V(Σ,D′),∆D−,K′) such that the IMHD problem has a solution iff MSC

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 27

has a solution.

We use the same R, Σ and K′ as defined in (1) above. An instance D′ is also

partitioned into D′
u and D′

v with the same predicates given in (1). More specifically,

◦ D′
u=∆D+

u , consisting of (n+m) tuples given in (1);

◦ D′
v consists of (m∗ (n+1)+n) tuples, in which m∗ (n+1) tuples are from ∆D+

v

given in (1). The other n tuples are given as follows. For each i ∈ [1,n], D′
v

includes a tuple t ′ci
= (a1,a2,a3,b1,v,m ∗ (n+ 1) + i), where a1,a2,a3 are the

elements in Ci ∈ C , such sorted that a1 ≺ a2 ≺ a3 for some order ≺.

We define deletions ∆D− to be {t ′ci
| i ∈ [1,n]}, i.e., it is to remove all those tuples t ′ci

from D′
v. Here V(Σ,D′) = D′, i.e., every tuple in D′ is a violation of some CFD in Σ.

Note that schema R and CFDs Σ are both fixed, i.e., they are independent of the

MSC instance.

Observe that before D′ is updated by ∆D−, all the violations can be detected locally

in D′
u and D′

v. After D′ is updated, D′⊕∆D− became the relation D given in (1) above,

and V(Σ,D′⊕∆D−) = V(Σ,D). Hence along the same lines as the proof for (1), one

can verify that (Σ,D′,V(Σ,D′),∆D−,K′) is a reduction from MSC. 2

From the proofs of Theorem 2.3.1 and 2.3.2, it follows:

Corollary 2.3.3: The incremental distributed CFD detection problems IMVD and IMHD

with minimum data shipment remains NP-complete even for fixed FDs only. 2

The boundedness result. Not all is lost. As observed in [RR96], the cost of an

incremental algorithm should be analyzed in terms of the size of the changes in both

input and output, denoted as |∆C|, rather than the size of the entire input. Indeed, |∆C|
characterizes the updating costs inherent to the incremental problem itself.

An incremental problem is said to be bounded if its cost can be expressed as a

function of |∆C|. An incremental algorithm is optimal if its cost is in O(|∆C|); i.e., it

only does the amount of work that is necessary to be performed by any incremental

algorithm for the problem. In other words, it is the best one can hope for.

For incremental violation detection, |∆C| = |∆D|+ |∆V|. It is bounded if its com-

munication and computational costs are both functions of |∆C|, independent of |D|.
Although the distributed incremental detection problem is NP-complete w.r.t. min-

imum data shipment (Theorems 2.3.1 and 2.3.2), the good news is that it is bounded

w.r.t. the changes in both input and output.

Theorem 2.3.4: The incremental distributed CFD detection problem is bounded for

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 28

data partitioned vertically or horizontally. There are optimal incremental detection

algorithms with communication and computational costs in O(|∆C|). 2

In the rest of the chapter, we prove Theorem 2.3.4 by providing optimal algorithms

for data that is partitioned vertically (Section 2.4) or horizontally (Sections 2.6).

2.4 Algorithms for Vertical Partitions

We start with an optimal incremental detection algorithm for vertical partitions D =

(D1, . . . ,Dn). Here for i ∈ [1,n], Di resides at site Si and Di = πXi(D) (see Section 2.2).

The main result of this section is as follows.

Proposition 2.4.1: There is an algorithm that incrementally detects CFD violations in

vertical partitions with communication and computational costs in O(|∆D|+ |∆V|). 2

It is nontrivial to develop an incremental detection algorithm bounded by O(|∆D|+
|∆V|). To find ∆V, not only tuples in ∆D but also data in D may be needed and hence

shipped. Indeed, as in Example 2.1.2, to validate ϕ1 after t6 is inserted into D0 of

Fig. 2.1, t5[street,city] in DV2 and t5[CC] in DV3 are necessarily involved.

Below we shall first identify when the data in D is not needed in incremental detec-

tion. For the cases when the involvement of D is inevitable, we propose index struc-

tures to avoid shipping data in D. Based on the auxiliary structures, we then develop

an optimal algorithm for vertically partitioned databases.

Cases independent of D. To validate a CFD ϕ = (X → B, tp) in response to the inser-

tion or deletion of a tuple t, data in D is not needed in the following two cases.

(1) When ϕ is a constant CFD. Indeed, ϕ can be violated by a single tuple t alone.

Hence to find ∆V incurred by t, there is no need to consult other tuples in D.

(2) When ϕ is a variable CFD with X ∪{B} ⊆ Xi. In this case, ϕ can be locally checked

at site Si in which Di = πXi(D) resides. There is no need to ship data.

Index structures. Below we focus on validation of variable CFD ϕ = (X → B, tp), i.e.,

tp[B] = ‘ ’.

Observe that for a tuple t to make a violation of a CFD ϕ, there must exist some

tuple t ′ such that t[X] = t ′[X], and moreover, either (a) t[B] = t ′[B] and t is already a

violation of the CFD ϕ, or (b) t[B] ̸= t ′[B], i.e., (t, t ′) ̸|= ϕ. To capture this, we define an

equivalence relation w.r.t. a set Y of attributes.

Equivalence classes. We say that tuples t and t ′ are equivalent w.r.t. Y if t[Y] = t ′[Y].

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 29

We denote by [t]Y the equivalence class of t, i.e., [t]Y = {t ′ ∈ D | t ′[Y] = t[Y]}. We

associate a unique identifier (eqid) id[tY] with [t]Y .

We define a function eq() that takes as input the eqid’s of equivalence

classes [t]Yi (i ∈ [1,m]), and returns the eqid of [t]Y , where Y =
∪

i∈[1,m]Ym, i.e.,

eq(id[tY1], · · · , id[tYm]) = id[tY]. As will be seen shortly, we send id[tY] rather than data

in [t]Yi to reduce the amount of data shipped.

Upon [t]Y ’s, we define the following index structures.

HEV-index. For each variable CFD ϕ = (X → B, tp), each sites Si maintains a set of

Hash-based Equivalence class and Value indices (HEV’s), denoted by HEV
ϕ
i . Each

non-base HEV is a key/value store that given a tuple t and a set of eqid’s id[tY j] (j ∈
[1,m]) as the key, returns id[tY1∪···∪Ym] as the value. Base HEV’s are also maintained to

map distinct attribute values to their eqid’s. These are special HEV’s that take single

attribute values as the key, and are shared by all CFDs. We write HEVi for HEVϕ
i when

ϕ is clear from the context.

Intuitively, HEV’s help us identify id[tX] and id[tB], since all tuples that violate ϕ
with t must be in [t]X , and on attribute B, they have different values from t[B].

The HEV’s for CFD ϕ are organized as follows. We build HEVX and HEVB

for attributes X and B, respectively. More specifically, we sort attributes of X into

(x1, . . . ,xm), and for each i ∈ [1,m], we build an HEV for the subset {x j | j ∈ [1, i]}. As

will be seen in Example 2.4.1, to identify id[tX], we use the HEV’s for {x1}, {x1,x2},

. . ., {x1, . . . ,xm} one by one in this order. We shall present the details of the strategy

for building HEV’s in Section 2.5, which aims to reduce eqid shipment when multiple

CFDs are taken together.

IDX. We group tuples that violate ϕ with t into [t ′]X∪{B} for each t ′ in [t]X . The tuples

are indexed by IDX, another hash index that is only stored at the site where id[tX] is

maintained. Given a tuple t, it returns a set(t[X]) of distinct eqid’s of [t ′]X∪{B}, where

t[X] = t ′[X], and each eqid in turn identifies the set of all tuple ids in the equivalence

class [t ′]X∪{B}. Intuitively, for each [t]X , an IDX stores distinct values of B attribute and

their associated tuple ids.

Example 2.4.1: Figure 2.3 depicts HEV’s for ϕ1 of Fig. 2.1 and relation D0 of Fig. 2.2.

HEV2 and HEV3 are the indices on sites S2 and S3, respectively, and the IDX is stored

at S2.

To compute id[t5{CC,zip}], we first find id[t5{CC}] = 1 from a base hash table of

HEV3, since t5[CC] = 44, at site S3. The eqid 1 (i.e., id[t5{CC}]) is then sent to S2. Using

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 30

t53 eq(c)

1

CC

44Preston

street eq(s)

3

Mayfield

Crichton

1
2

EH2 4HF

eq(z)
1
2

zip
EH4 8LE
EH2 4HF

eqidattribute eqideqid’s tidseq(s)
IDX

S2 S3

2 t2

1 t1,t3,t4 attribute eqid

HEVs on Site S2
HEV on Site S3

2

eq(z)eq(c)

11
2

1
1

eq(z,c)

Figure 2.3: Example HEV-indices and an IDX for ϕ1

the base hash table at site S2, we get id[t5{zip}] = 1 from t5[zip] = EH4 8LE. Taking

these together as the input for HEV2, we get eq(1,1) = 1, which is for id[t5{CC,zip}].

Moreover, as shown in Fig. 2.3, id[t5{CC,zip}] links to two entries in IDX, where 1

represents Mayfield with an equivalence class {t1, t3, t4}, and 3 indicates Crichton with

an equivalence class {t5}.

Observe that during the detection, we use HEV’s for eqid’s of any tuple in this order:

{CC} and {CC,zip}. 2

Example 2.4.1 tells us that to identify id[tX], one only needs to ship at most |X |−1

eqid’s, to make the input for HEVX , i.e., the index of X .

Algorithms. Leveraging the index structures, we develop an incremental algorithm

to detect violations in vertical partitions. To simplify the discussion, we first consider

a single update for a single CFD. We then extend the algorithm to multiple CFDs and

batch updates.

Single update for one CFD. Given a CFD ϕ, a vertically partitioned database D, viola-

tions V(ϕ,D) of Σ in D, and a tuple t inserted into (resp. deleted from) D, the algorithm

identifies changes ∆V+(ϕ,D) (resp. ∆V−(ϕ,D)) to V(ϕ,D). It first uses HEV to find the

equivalence classes [t]X and its associate sets in IDX. It then computes ∆V.

Insertions. The algorithm for single-tuple insertion is shown in Fig. 2.4, referred to as

incVIns. It first identifies set(t[X]) by capitalizing on HEV-indices as discussed above

(line 1). This requires to ship at most X eqid’s, including the eqid of t[B]. When

|set(t[X])| > 1, all tuples t ′ such that (t ′, t) violate ϕ must have been found. Hence t

is the only new violation (line 2; see Example 2.1.2). When |set(t[X])| = 1, there are

two cases: (1) if set(t[X]) contains the entry for tuple t ′, where (t, t ′) violate ϕ, then t

and all tuples in [t ′]X∪{B} are new violations (line 4); and (2) if set(t[X]) only contains

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 31

Algorithm incVIns

Input: ∆D+={t}, a vertically partitioned D, a variable CFD ϕ
and the old violations V(ϕ,D).

Output: ∆V+.

/* ϕ = (X → B, tp) */

1. identify set(t[X]) using HEV’s and IDX’s;

2. if |set(t[X])|> 1 then ∆V+ := {t};

3. elseif |set(t[X])|= 1 (i.e., set(t[X]) = {t ′}) then
4. if (t, t ′) ̸|= ϕ then ∆V+ := {t} ∪ [t ′]X∪{B};

5. else ∆V+ := /0;

6. else ∆V+ := /0;

7. augment IDX by adding t; HEV-indices are also maintained;

8. return ∆V+;

Algorithm incVDel

Input: ∆D−={t}, a vertical partition D, a variable CFD ϕ and V(ϕ,D).

Output: ∆V−.

/* ϕ = (X → B, tp) */

1. identify set(t[X]) and [t]X∪{B} using HEV’s and IDX’s;

2. if |[t ′]X∪{B}|> 1

3. if |set(t[X])|> 1 then ∆V− := {t};

4. else ∆V− := /0;

5. else /* |[t ′]X∪{B}|= 1 */

6. if |set(t[X])|> 2 then ∆V− := {t};

7. elseif |set(t[X])|=2 (i.e., {t, t ′}) then ∆V−:={t}∪ [t ′]X∪{B};

8. else ∆V− := /0;

9. maintain IDX by deleting t; HEV-indices are also maintained;

10. return ∆V−;

Figure 2.4: Single Insertion/Deletion for Vertical Partitions

the entry for t, then no violation arises (line 5). Otherwise, no tuple agrees with t on

X attributes, and there is no violation (line 6). The new violations in ∆V+ are then

returned (line 8).

The index IDX is maintained in the same process, by inserting a tuple t into the set

[t]X∪{B}, or adding an new entry to set(t[X]) and its associated set [t]X∪{B} = {t}. In

either case, it takes constant time. The HEV-indices are updated together with id[tX]. If

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 32

such an eqid does not exist, a new entry is generated and added to the corresponding

HEV-indices (line 7).

Deletions. The algorithm for single-tuple deletions, denoted as incVDel, is also shown

in Fig. 2.4. It first finds both [t]X∪{B} and set(t[X]) using HEV (line 1). If no tuples are

in [t]X∪{B} after t is deleted (line 2), t is the only violation removed (line 3); otherwise

there is no change to V (ϕ,D) (line 4). If t is the only tuple in [t]X∪{B} (line 5), i.e.,

the entry of t in set(t[X]) will be removed, there are three cases to consider: (1) all

violations w.r.t. t remain, and only t is removed (line 6); (2) all violations w.r.t. t are

removed together with t when t is deleted (line 7); or (3) t does not violate ϕ (line 8).

HEV and IDX indices are maintained similar to the case for insertions (line 9). Finally,

∆V− is returned (line 10).

Example 2.4.2: Consider D0 (without t6) of Fig. 2.2, ϕ1 of Fig. 2.1, and its indices

given in Fig. 2.3. When t6 is inserted, at site S3, it identifies eq(id[t6{CC}]) = 1 (t6[CC] =

44) from HEV3 and ships this eqid (i.e., 1) to S2. At S2, it identifies eq(id[t6{zip}]) = 1

(t6[CC] = EH8 4LE) and eq(1,1) = 1. This links to two entries in IDX as shown in

Fig. 2.3, indicating that t6 is the only new violation, i.e., ∆V+={t6} (line 2). Indeed,

{t5, t6}̸|=ϕ1 and t5 is a known violation. Only a single eqid (i.e., 1) is shipped from site

S3 to site S2.

Now suppose that tuple t4 is deleted. Algorithm incVDel will find the eqid of

[t4]{CC,zip} to be 1, which links to two entries, following the same process as above. Af-

ter t4 is deleted, [t4]{CC,zip} is not empty, i.e., [t4]{CC,zip} = {t1, t3}. Hence ∆V− = {t4}
(line 3). Again only a single eqid (i.e., 1) is shipped. 2

Batch updates and multiple CFDs. We now present an algorithm, denoted as incVer in

Fig. 2.5, that takes batch updates ∆D, a vertically partitioned D, a set Σ of CFDs, and

violations V(Σ,D) of Σ in D as input. It finds and returns the changes ∆V of violations

to V(Σ,D).

The algorithm works as follows. It first removes the updates in ∆D that cancel each

other (line 1), and initializes the changes (line 2). It then detects the changes of viola-

tions for multiple CFDs in parallel (lines 3-16). It deals with three cases. (1) Constant

CFDs (lines 4-10). It first identifies at each site Si the tuple ids that can possibly match

the pattern tuple tp (line 5). These identified (partial) tuples are shipped to a desig-

nated coordinator site, together with corresponding B values (line 6). These tuple ids

are naturally sorted in ascending order (by indices). A sort merge of them is thus con-

ducted in linear time, and it generates a set T of tuples in which each tuple matches the

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 33

Algorithm incVer

Input: ∆D, D in n vertical partitions, a set Σ of CFDs and V(Σ,D).

Output: ∆V.

1. remove updates in ∆D with the same tuple id and canceling each other;

2. ∆V− := /0; ∆V+ := /0;

3. for each ϕ ∈ Σ do
4. if ϕ is a constant CFD then /* ϕ = (X → B, tp) */

5. Ti := {t | t ∈ ∆D and t[Xi ∩X]≍ tp[Xi ∩X]} for i ∈ [1,n];

6. ship all Ti with their values on B attribute to one site;

7. merge Ti for i ∈ [1,n] based on the same tuple id, get T ;

8. for each t ∈ T do
9. if t[B] = tp[B] and t ∈ ∆D− then ∆V− := ∆V−∪{t};

10. elseif t[B] ̸= tp[B] and t∈∆D+ then ∆V+:=∆V+∪{t};

11. elseif ϕ can be locally checked at Si then
12. derive ∆V+

i and ∆V−
i at Si use HEVi and IDX (Section 2.4);

13. ∆V− := ∆V−∪∆V−
i ; ∆V+ := ∆V+∪∆V+

i

14. else /* a variable CFD that cannot be locally checked */

15. derive ∆V+
i and ∆V−

i (i ∈ [1,n]) (see Fig. 2.4);

16. ∆V− :=∆V−∪∆V−
i and ∆V+ :=∆V+∪∆V+

i (i ∈ [1,n]);

17. return ∆V = ∆V−∪∆V+;

Figure 2.5: Batch Updates for Vertical Partitions
pattern tuple tp on X attributes (line 7). It then examines these tuples’ B attributes, to

decide whether they are violations to be removed (line 9), or violations newly incurred

(line 10). (2) Locally checked variable CFDs (lines 11-13). The changes of violations

can be detected using the same indices as for a single CFD given above (lines 12-13).

(3) General variable CFDs (lines 14-16). The method used is exactly what we have

seen for a single CFD. The changes to violations are then returned (line 17).

Violations are marked with those CFDs that they violate when combining ∆V’s for

multiple CFDs (see Fig. 2.1).

Complexity. For the communication cost, note that only eqid’s are sent: for each tuple

t ∈ ∆D and each CFD ϕ ∈ Σ, its eqid’s are sent at most |X | times. As remarked earlier,

the set Σ of CFDs and the fragmentation are fixed as commonly found in incremental

integrity checking. Hence the messages sent are bounded by O(|∆D|). The compu-

tational cost is in O(|∆D|+ |∆V|), since checking both hash-based HEV and IDX take

constant time, as well as their maintenance for each update.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 34

(a
)

N
o

re
pl

ic
at

io
n

(b
)

W
ith

re
pl

ic
at

io
n

(c
)

M
in

im
um

eq
id

sh
ip

m
en

t

Fi
gu

re
2.

6:
E

xa
m

pl
e

of
m

in
im

iz
in

g
eq
id

sh
ip

m
en

t(
ba

se
ha

sh
ta

bl
es

us
ed

on
ly

lo
ca

lly
ar

e
om

itt
ed

)

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 35

2.5 Optimization for Vertical Partitions

We have seen that by leveraging HEV’s and IDX’s, for vertical partition an incremental

detection algorithm can be developed that is bounded in the changes in the input and

output (i.e., ∆D and ∆V). We next study how to build HEV’s such that eqid shipment is

minimized.

Recall that HEV’s and IDX’s are used together to identify the equivalent classes of

the input update (line 1 of both algorithms incVIns and incVDel in Fig. 2.4), whilst

for each variable CFD (X → B, tp[X]), two IDX’s must be built with the key eqidX and

eqidX∪{B} respectively for each input tuple , and HEV’s are built to efficiently compute

these keys for IDX’s. As remarked earlier, how these HEV’s are built decides how eqid’s

are shipped for generating the keys of IDX’s. For multiple CFDs that may have common

attributes, different orders on grouping attributes of HEV’s may affect the number of

eqid’s shipped for an single update, as shown below.

Example 2.5.1: Consider a relation Re with 11 attributes A,B, · · · ,K that is verti-

cally partitioned and distributed over 8 sites: S1(A), S2(B), S3(C), S4(D), S5(E,F),

S6(G,H), S7(I), S8(J,K). Here S1(A) denotes that attribute A is at site S1 (besides a

key); similarly for the other attributes. A set Σe of CFDs is imposed on Re, including

φ1 : (ABC → E), φ2 : (ACD→F), φ3 : (AG→H), and φ4 : (AIJ→K).

Consider different HEV’s for the CFDs in Fig. 2.6, in which a rectangle indicates

a site, a circle an attribute, a triangle an HEV, an ellipse an IDX index, and a directed

edge indicates an eqid shipment from one site to another. Note that one IDX is needed

for each CFD. We omit those base HEV’s that only used locally to simplify the figure.

(1) No sharing between the HEV’s of different CFDs. Figure 2.6(a) depicts a case when

HEV’s are independently built for the CFDs. These HEV’s determine how eqid’s are

shipped when validating the CFDs. For example, when a tuple t is inserted into (or

deleted from) Re, to detect the violations of φ1 : (ABC → E), we need to (a) identify

the eqid of t[A] from HA at site S1, which is shipped to S2; (b) determine the eqid of

t[AB] from HAB upon receiving the eqid of t[A], which is in turn shipped to S3; (c)

detect the new violations (resp. removed violations) for inserting (resp. deleting) t by

examining HABC and the IDX index w.r.t. φ1 at site S3. Two eqid’s need to be shipped

for φ1. The process for the other CFDs is similar. In total, 9 eqid’s (i.e., the number of

directed edges in Fig. 2.6(a)) need to be shipped to detect all violations of the CFDs in

Σe. Note that when the eqid of t[A] is shipped from S1 to S3, it is used by both HAC (for

φ2) and HABC (for φ1) at site S3; hence this eqid is shipped only once.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 36

(2) In the presence of replication. Replication is common in distributed data manage-

ment, to improve reliability and accessibility. Suppose that attribute I is replicated at

site S6 besides residing at S7, as shown in Fig. 2.6(b). This allows us to choose either

site S6 or site S7 where we build index HAI , as opposed to Fig. 2.6(a) in which HAI has

to be built at S7. Note that to detect the violations of φ3 : (AG → H), the eqid for t[A]

needs to be shipped from S1 to S6 in both Fig. 2.6(a) and Fig. 2.6(b). If we build HAI

at S6, we may send the eqid of t[AI] from S6 to S8 (Fig. 2.6(b)), instead of from S7 to

S8 (Fig. 2.6(a)) to validate φ4 = (AIJ→K). This saves us one eqid shipment for t[A]

from S1 to S7 (Fig. 2.6(a)). In total, 8 eqid’s need to be shipped in this case, instead of

9 in Fig. 2.6(a).

(3) Sharing HEV’s among CFDs. When I is replicated at site S6, we can do better

than Fig. 2.6(b), as depicted in Fig. 2.6(c). The key observation is that attributes AC

are shared by CFDs φ1 and φ2. Hence, when a tuple t is inserted or deleted, we can

compute the eqid of t[AC] by shipping the eqid of t[A] from S1 to S3. This allows us

to compute the eqid’s of t[ABC] (with the eqid of t[B] from S2 to S3) and t[ACD] (with

the eqid of t[D] from S4 to S3) both at S3 (Fig. 2.6(c)). In contrast, in the setting of

Fig. 2.6(b) we have to compute eqid’s by following the order of t[A]⇒ t[AB]⇒ t[ABC]

for φ1 and t[A] ⇒ t[AC] ⇒ t[ACD] for φ2. In Fig. 2.6(c), only 7 eqid’s need to be

shipped as opposed to 8 eqid’s in Fig. 2.6(b). 2

Example 2.5.1 motivates us to find an optimal strategy for building HEV’s, such

that the keys of IDX’s could be computed with minimum number of eqid shipments. It

also suggests that we reduce eqid shipment by sharing HEV’s among multiple CFDs as

much as possible (e.g., HAC at S3 for φ1 and φ2 in the case (3) above).

Below we first formalize this as an optimization problem, and show that it is NP-

complete. We then provide an effective heuristic algorithm for building HEV’s.

Optimization. A close look at the use of HEV in the detection algorithms and their

complexity analysis (Section 2.4) reveals the following. To handle a unit update (in-

sertion or deletion of a tuple t), the number of eqid’s shipped is independent of (a)

the values in database D and (b) the value of t. Indeed, eqid is shipped only when a

non-base HEV needs eqid’s generated from HEV’s at other sites, and hence, is decided

by the dependencies between HEV’s. Thus we can talk about eqid shipments for a unit

update regardless of the values of D and t.

We show that the problem of building HEV’s is already challenging for unit updates.

Consider a schema R, a vertical partition scheme that partitions an instance D of R into

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 37

(D1, . . . ,Dn) such that Di resides at site Si, and attributes of R may be replicated, i.e.,

(D1, . . . ,Dn) may not be disjoint. Given a schema R, the partition and replication

scheme for R, a set Σ of CFDs, and a positive number K, the minimum eqid shipment

problem is to decide whether there exists a set H of HEV’s such that for any instance D

of R and any single update with tuple t, it needs no more than K eqid’s shipped to find

changes to V(Σ,D). Here for each φ = (X → B, tp[X]) ∈ Σ, H has to identify the keys

eqidX and eqidX∪{B} of two IDX’s for φ, and it needs no more than K eqid shipments to

find all such keys of IDX’s for all CFDs in Σ.

Theorem 2.5.1: The problem for minimum eqid shipment is NP-complete. 2

Proof. ‡ Upper bound. We show that the problem is in NP by giving an NP algorithm.

It first guesses a set H of at most Σ1≤i≤n|Ri|+ n ∗m hash tables with their locations,

where |Ri| is the number of attributes in partition Di. Indeed, for each attribute in each

Di, one base hash table needs to be built (hence Σ1≤i≤n|Ri|), and for each partition Di

and each CFD φ in Σ, we need at most 1 non-base hash table that contains all attributes

of φ in Di (hence (m ∗ n) non-base hash tables). After H is in place, we check (a)

whether for any CFD (X → B, tp[X]) ∈ Σ, H can identify eqidX and eqidX∪{B}; and

(b) whether we need no more than K eqid’s shipped when validating all CFDs in Σ
for a single update with tuple t. As remarked above, step (b) is independent of D and

t. Steps (a) and (b) can be done by leveraging the dependencies between HEV’s, in

PTIME when the HEV’s and their locations are given. If the number of eqid shipments

is no more than K via H , then H provides the indices we need. Otherwise we guess

another H and repeat the process. This algorithm is in NP, and hence so is the problem.

Lower bound. We next show that problem is NP-hard by reduction from the minimum

set cover problem (MSC; see the proof of Theorem 2.3.2 for the statement of MSC).

Given an instance (X ,C ,K) of MSC, we construct (R,Σ,K) such that the minimum

eqid shipment problem for (R,Σ,K) has a solution iff the MSC problem has a solution.

Assume w.l.o.g. that X = {x j | j ∈ [1,m]}, C = {Ci | i ∈ [1,n]}, each Ci has three

elements of X , and that X=
∪

i∈[1,n]Ci (i.e., there exists a cover for X).

(a) We define a schema R = (id,Y,Z,X1,X2, . . .Xm), a partition and replication scheme

that vertically partition any instance D of R into n+ 1 fragments U,D1,D2, . . . ,Dn,

with schemas RU = (id,Y) for U and Ri = (id,Z,Xa1,Xa2,Xa3) for Di. Here xa1 , xa2 and

xa3 are elements in Ci ∈ C . Intuitively, each Di encodes a set Ci. and attributes may be

‡This proof is a joint work with Wenfei Fan.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 38

duplicated in different sites.

(b) The set Σ consists of m FDs: X1Y → Z, X2Y → Z, . . . , and XmY → Z. Intuitively,

each XiY → Z encodes the element xi in X . Thus the set Σ encodes the set X .

We show that (R,Σ,K) is a reduction from MSC. First, assume that the MSC instance

has a cover C′ of size no larger than K. We define a set H as follows.

(a) On each site Si, where Ci = {xa1,xa2 ,xa3} ∈ C′, H has the following HEV’s: (i)

(hi0 : Z → eqidZ); (ii) (hi1 : Xa1 → eqidXa1
), (hi2 : Xa2 → eqidXa2

), and (hi3 : Xa1 →
eqidXa3

); (iii) (h′i1 : eqidXa1
, eqidY → eqidXa1Y), (h′i2 : eqidXa2

, eqidY → eqidXa2Y), and

(h′i3 : eqidXa3
,eqidY → eqidXa3Y); (iv) (h′′i1 : eqidXa1

,eqidY ,eqidZ → eqidXa1Y Z), (h′′i2 :

eqidXa2
,eqidY ,eqidZ → eqidXa2Y Z), and (h′′i3 : eqidXa3

,eqidY ,eqidZ → eqidXa3Y Z).

(b) On the site SU , H includes (hU : Y → eqidY).

Intuitively, to check a unit update t posed on any instance D of R, it suffices to ship

the eqidY for t generated by (b) from SU to Si for each Ci ∈C′. In total |C′| eqid’s are

shipped (see the algorithms in Section 2.4). Indeed, since C′ is a cover for X and Σ
encodes X , one can verify the following: HEV’s in (a)(iii) (resp. (a)(iv)) generate all

eqidXiY (resp. eqidXiY Z) for each FD (XiY → Z) ∈ Σ, and all eqid’s required for (a)(iii)

and (a)(iv) are provided by eqid shipments of (c) for tuple t. Hence H suffices to

generate all the eqid’s needed by Σ. Since |C′| ≤ K, the number of eqid shipments via

H is at most K.

Conversely, assume that there exists a set H of hash tables such that for any FD

(XiY → Z) ∈ Σ, H can find eqidX and eqidX∪{B}, and moreover, for any D and unit

update with a tuple t, the number of eqid’s shipped for computing eqid’s of all CFDs

in Σ is at most K. Consider the following cases. (a) If K ≥ n, the set C is a cover

and |C |= n ≤ K. (b) If K < n, let C′ consist of those Ci’s such that eqid’s are shipped

between U and Di (i ∈ [1,n]) of H when handling the update. One can verify that

|C′| ≤K and C′ is a cover for X , since otherwise, there must exist an uncovered element

x j in X such that eqidX jY for t could not be generated and checked. 2

Due to the intractability, any efficient algorithm to find an optimal plan to build

HEV’s is necessarily heuristic.

A heuristic algorithm. We next provide an efficient heuristic algorithm for building

HEV’s. The idea behind the algorithm is to start with HEV’s with the keys for IDX’s.

That is, for a CFD φ = (Xφ →Yφ, tpφ), we first build an HEV for Xφ, which is necessary

for detecting violations of φ. We then build HEV’s for certain subsets of Xφ, by select-

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 39

ing those subsets that contain as many attributes shared by multiple CFDs as possible.

We also include base HEV’s that contain attributes that only reside at one site, e.g., HA

at site S1 in Fig. 2.6(a), since HAB at S2 requires HA at S1 and local attribute B at S2 as

input, while HAB at site S2 in Fig. 2.6(a)) is not. Finally, we remove redundant HEV’s

while ensuring that all violations can still be detected. It follows a greedy approach

that determines the key (set of eqid’s) of each HEV and retains the HEV’s with the min-

imum eqid shipment among the solutions explored. It terminates when no more HEV

can be removed.

The algorithm, referred to as optVer, is shown in Fig. 2.7. It takes as input a

database D that is vertically partitioned into Di (for i ∈ [1,n]) and allows a predefined

replication scheme, a set Σ of CFDs, and a parameter k for balancing the effectiveness

and efficiency. It builds a set H of HEV’s for Σ. The algorithm works as follows.

(1) [Initialization.] It builds a set H of HEV’s such that for each φ ∈ Σ, there is an HEV

with key Xφ (lines 1-4).

(2) [Expansion.] It then expands H . For each CFD φ, we add up to |Σ|+ |Xφ| HEV’s,

by including the HEV’s whose keys contain as many attributes shared by multiple CFDs

as possible (lines 5-6). For each attribute of each CFD in Σ, we also build a base HEV

(line 7), such that all existing HEV’s can take their outputs and compute eqid’s.

(3) [Location.] We assign a site to each HEV h in H (line 8). The site is determined

by findLoc, such that (a) the local attributes at the site cover as many attributes of h

as possible, and (b) as many other HEV’s reside at the site as possible. This takes into

account of the replication.

(4) [Finalization.] We follow a greedy approach to searching an optimal solution by

removing HEV’s from H (lines 9-18). After steps (2)–(4), some tables in H may be

redundant, i.e., unnecessary for computing those tables needed by IDX’s (HIDX). We

iteratively remove HEV’s from H until removing any more table will make some HEV

in HIDX no longer computable (lines 10-18). In the process we record the best solution

so far in minH (line 13). More specifically, we conduct search in the BFS fashion: each

state is a set of HEV’s, Q keeps all open states, and the algorithm only includes the top

k solutions (measured by the number of eqid shipped) in Q in each iteration (line 17),

where k is a user defined threshold to balance the effectiveness and efficiency.

The function H .Neqid() computes the number of eqid shipments for a given set H

of HEV’s. It also determines the order and structure of each HEV h as follows: at each

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 40

Algorithm optVer

Input: D in n vertical partitions, a set Σ of CFDs, a parameter k

Output: a set minH of HEV’s.

1. H := /0;

2. for each φ ∈ Σ do /∗ φ : (Xφ → Yφ, tpφ) ∗/
3. H := H ∪{an HEV for Xφ};

4. HIDX := H ; /∗ HEV’s that are necessary for IDX’s ∗/
5. for each φ∈Σ and ϕ∈Σ\{φ} do H := H ∪{an HEV for Xφ∩Xϕ};

6. for each φ ∈ Σ do add up to |Xφ| HEV’s having shared attributes;

7. Expand H with necessary base HEV’s;

8. for each h ∈ H do h.location := findLoc(h);

/∗ min and minH keep the best solution so far; H .Neqid()

returns #-eqid shipments for H ; Q is the queue for BFS ∗/
9. min := H .Neqid(); minH := H ; Q := {H };

10. while (Q ̸= /0) do
11. Q′ := /0;

12. while (H = Q.pop()) do
13. if min > H .Neqid() then min := H .Neqid(); minH := H ;

14. for each h ∈ H do
15. if all HEV’s in HIDX are computable by (H \{h}) then
16. Q′.push(H \{h});

17. Keep up to k distinct H ′s with smallest H ′.Neqid() in Q′;

18. Q := Q′;

19. return minH ;

Figure 2.7: Heuristic algorithm for minimizing eqid shipment

stage, it selects an HEV h′ from H whose key attributes contain the largest number of

uncovered attributes in h. The eqid computed from h′ is to be shipped to h.

Example 2.5.2: Consider the data partition of Fig. 2.6(c) described in Example 2.5.1,

where I is replicated at S6. Taking these as input, optVer builds HEV’s as follows.

(1) [Initialization.] It first builds 4 HEV’s HABC, HACD, HAG and HAIJ , for CFDs φ1, φ2,

φ3, and φ4, respectively.

(2) [Expansion.] It adds the following tables:

(a) HA, since A is shared by all CFDs, and HAC, as attributes AC are shared by φ1

and φ2;

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 41

(b) HAI and HAJ , in which keys are subsets of Xφ4 , and both contain attribute A; and

(c) base HEV for the CFDs in Σe: HB, . . . , HJ , HK .

(3) [Location.] It assigns a site for each HEV to reside at: HABC, HACD at S3, HAG at S6,

and HAIJ at S8; each base HEV is located at the site where its attribute is located (e.g.,

HA at S1 and HB at S2).

(4) [Finalization.] Assume that k = 5, it removes redundant HAJ . The solution of

Fig. 2.6(c) is then found, with 7 eqid’s shipped in total. 2

Complexity. The algorithm is in O(k|Σ|4 +n|Σ|) time. Indeed, it takes O(k|Σ|4) time

for the iterations (lines 9–18) and O(n|Σ|) time for site assignments (line 8). More

specifically, the outer while iteration is bounded by the number of HEV’s in H (i.e.,

O(|Σ|2)), the inner while iterates at most k times for each outer while iteration, the

inner for loop runs at most |Σ|2 times, and Neqid() inside the for loop could be computed

in O(1) time using proper dynamic programming techniques. For other steps, it is in

O(|Σ|) time for lines 1-4, O(|Σ|2) time for line 5, and in O(|Σ|2) time for lines 6-7.

Note that the number of rules |Σ| is usually small in practice, and the algorithm only

needs to be run once for given database D, replication scheme, and CFDs Σ instead of

each time calling optVer at each update.

2.6 Algorithms for Horizontal Partitions

When it comes to horizontal partitions, there also exist incremental detection algo-

rithms that are optimal.

Proposition 2.6.1: There exists an algorithm that incrementally detects CFD vi-

olations in horizontal partitions with communication and computational costs in

O(|∆D|+ |∆V|). 2

Taken together, Propositions 2.4.1 and 2.6.1 verify Theorem 2.3.4.

Along the same lines as its vertical counterpart, we first identify when data ship-

ment can be avoided. We then give an optimal algorithm for horizontal partitions.

Consider a database D = (D1, . . . ,Dn) that is horizontally partitioned, where Di

resides at site Si for i ∈ [1,n].

Local checking. For horizontal partitions, CFDs that can be validated locally include

the following.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 42

(1) Constant CFDs. Such a CFD can be violated by a single tuple, and does not incur

global violations. Hence no data shipment is needed for validating constant CFDs.

(2) Variable CFDs. Notably, a horizontal fragment Di is defined as σFi(D) (Section 2.2).

We use XFi to denote all attributes in Fi. To validate a variable CFD ϕ = (X → B, tp),

one does not have to ship data to or from Si when

(a) XFi ⊆ X ; indeed, for any tuple t ∈ Di and t ′ ̸∈ Di, (t, t ′) do not violate ϕ since

t[XFi] ̸= t ′[XFi]; or

(b) Fi∧Fϕ evaluates to false [FGMM10], where Fϕ is a conjunction of atoms A = ‘a’

imposed by tp, for A ∈ X . Indeed, no tuples in Di could possibly match tp[X].

Algorithms. We first consider a single CFD and a single update. We then extend

the algorithm to multiple CFDs and batch updates. At each site, we also maintain

the indices (only for local tuples) for equivalence classes and set() similar to the ones

introduced in Section 2.4.

Single update for one CFD. Given a CFD ϕ = (X → B, tp) and a tuple t to be inserted

into (resp. deleted from) Di, the algorithm is to identify the changes ∆V+(ϕ,D) (resp.

∆V−(ϕ,D)) to V(φ,D), outlined below.

Insertions. The algorithm handles insertions as follows.

(1) Site Si checks local violations. It deals with two cases:

(a) There exist no local violations, i.e., there is no t ′ ∈ Di such that (t, t ′) ̸|= ϕ. Then

there are again two cases:

(i) when [t]X∪{B} ̸= /0: ∆V+
i ={t} if |set(t[X])|>1, and ∆V+

i = /0 otherwise; indeed, if

t ′∈[t]X∪{B} is a known violation, so is t; or neither is a violation; and

(ii) when [t]X∪{B}= /0: we need to send t to other sites to check global violations,

i.e., to find out whether there exists a tuple t ′ ̸∈Di such that (t, t ′) ̸|= ϕ. We set

∆V+
i ={t} if such t ′ exists, and ∆V+

i = /0 otherwise.

(b) Local violations exist, i.e., there exists t ′ ∈ Di such that (t, t ′) ̸|= ϕ. We consider the

following two cases:

(i) when [t]X∪{B} ̸= /0: then ∆V+
i = {t}, since any tuple that violates ϕ with t is a

known violation; and

(ii) when [t]X∪{B} = /0: then there must exist a tuple t ′ ∈ Di such that (t, t ′) ̸|= ϕ. If

t ′ ∈ Vi, we have ∆V+
i = {t}; otherwise ∆V+

i = {t}∪ [t ′]X∪{B} since each tuple

in [t ′]X∪{B} violates ϕ with t. In both cases, we need to check global violations

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 43

by sending t to all the other sites, which check violations incurred by inserting

tuple t.

(2) Upon receiving t from Si, each site S j (j ̸= i) checks its local violations in parallel,

as described in step 1(a).

The global changes ∆V+ is the union of changed violations from all the sites, i.e.,

∆V+ =
∪

k∈[1,n]∆V+
k .

Deletions. When a tuple t is deleted from Di at Site Si, the algorithm does the following

at Si and other sites.

(1) At site Si. It first identifies [t]X∪{B} and set(t[X]) at Si for CFD φ. If t does not violate

ϕ, then t is simply deleted from Di, since deletions do not introduce new violations.

When t violates ϕ, there are two cases to consider.

(a) If after t is deleted, tuples that agree with t on both X and B remain, then all

violations except t remain.

(b) Otherwise, the entire entry for t will be removed. There are again two cases to

consider:

(i) There are two items in set(t[X]), t and t ′. It broadcasts t ′ to the sites that have

violations with t or t ′. We record the sites that still have violations. It removes

all violations w.r.t. t and t ′ if no sites have tuples that violate t ′, and otherwise

only t is removed from violations.

(ii) Tuple t is the only entry at site Si. It removes t as a violation, and broadcasts t to

the other sites that previously have violations with t.

The local index is maintained and ∆V−
i is then returned.

(2) At site S j. Upon receiving t from Si, each site S j (j ̸= i) checks whether previous

violations maintained at S j could be removed. Note that S j will send two different

messages: either (a) t ′ from Si ((1)(b)(i) above): this means that t ′ remains at Si; or (b)

t from Si ((1)(b)(ii) above): this means that t is removed from Si.

The global changes ∆V− is the union of ∆V−
k (k = [1,n]), from all individual sites.

Example 2.6.1: Consider D0 (without t6) given in Fig. 2.2 and ϕ1 of Fig. 2.1. When

tuple t6 is inserted, the algorithm finds that (t6, t5) ̸|= ϕ1 at site S3 (step (1)(a)), i.e.,

no local violations. However, since t5 is a known violation (Fig. 2.1), so is t6 (step

(1)(a)(i)). Hence, ∆V+ = {t6}. 2

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 44

Algorithm incHor

Input: ∆D, D in n horizontal partitions, Σ, and V(Σ,D).

Output: ∆V.

1. merge local updates in ∆Di having the same tuple ids;

2. ∆V− := /0; ∆V+ := /0;

3. for each ϕ ∈ Σ do
4. if ϕ is a constant CFD then /* ϕ = (X → B, tp) */

5. for each t ∈ ∆Di (i ∈ [1,n]) and t violates ϕ do
6. if t ∈ ∆D−

i then ∆V− := ∆V−∪{t};

7. elseif t ∈ ∆D+
i then ∆V+ := ∆V+∪{t};

8. elseif ϕ can be locally checked at Si then
9. derive ∆V+

i and ∆V−
i at Si with indices (Section 2.6);

10. ∆V− := ∆V−∪∆V−
i ; ∆V+ := ∆V+∪∆V+

i

11. else /* a variable CFD that cannot be locally checked */

12. derive ∆V+
i and ∆V−

i (i ∈ [1,n]);

13. ∆V− :=∆V−∪∆V−
i and ∆V+ :=∆V+∪∆V+

i (i ∈ [1,n]);

14. return ∆V = ∆V−∪∆V+;

Figure 2.8: Batch updates for horizontal partitions

Batch updates and multiple CFDs. We now present an algorithm for batch updates

and multiple CFDs on horizontal partitions, denoted as incHor and shown in Fig. 2.8.

Given batch updates ∆D, a horizontal partition (D1, · · · ,Dn) of a database D, a set Σ
of CFDs, and (old) violations V(Σ,D) of Σ in D, the algorithm finds and outputs the

changes ∆V to violations V(Σ,D).

The algorithm first removes the local updates that cancel each other (line 1), and

initializes the changes (line 2). It then detects the changes to violations for multiple

CFDs in parallel (lines 3-13). It deals with three cases as follows. (1) Constant CFDs

(lines 4-7). It checks at each site that whether a deletion removes a violation (line 6) or

an insertion adds a violation (line 7). (2) Locally checked variable CFDs (lines 8-10).

The changes to violations can be detected using the same indices as used in Section 2.4,

in constant time (lines 9-10). (3) General variable CFDs (lines 11-13). The changes to

violations are identified (lines 12-13), and then returned (line 14).

Complexity. For communication cost, one can see that each tuple in ∆D is sent to

other sites at most once. Hence at most O(|∆D| n) messages are sent, where n is the

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 45

number of fragments and is fixed, as remarked earlier. Thus the cost is in O(|∆D|). The

computation cost is in O(|Σ|(|∆D|+ |∆V|)) time, where |Σ| is a fixed parameter. That

is, it is in O(|∆D|+ |∆V|). Indeed, by leveraging hash tables, the process at each site

takes constant time, and the hash tables can be maintained incrementally in the same

process, also in constant time.

Optimization using MD5. A tuple may be large. To reduce its shipping cost, a natural

idea is to encode the whole tuple, and then send the coding of the tuple instead of the

tuple. MD5 (Message-Digest algorithm 5 [Wik12]) is a widely used cryptographic

hash function with a 128-bit hash value. We use MD5 in our implementation to further

reduce the communication cost, by sending a 128-bit MD5 code instead of an entire

tuple.

2.7 Experimental Study

We present an experimental study of our incremental algorithms for vertical and hori-

zontal partitions, evaluating elapsed time and data shipment. We focus on their scala-

bility by varying four parameters: (1) |D|: the size of the base relation; (2) |∆D|: the

size of updates; (3) |Σ|: the number of CFDs; and (4) n: the number of partitions. We

also evaluated the effectiveness of our optimization techniques for building indices in

vertical partitions.

Experimental setting. We used the following datasets.

(1) Datasets. (a) TPCH: we joined all tables to build one table. The data ranges from

2 million tuples (i.e., 2M) to 10 million tuples (i.e., 10M). Notably, the size of 10M

tuples is 10GB. (b) DBLP: we extracted a 320MB relation from its XML data. It scales

from 100K to 500K tuples.

(2) CFDs were designed manually. We first designed functional dependencies (FDs),

and then produced CFDs by adding patterns (i.e., conditions) to the FDs. For TPCH: the

number |Σ| of CFDs ranges from 25 to 125, with increment of 25 by default. For DBLP:

|Σ| scales from 8 to 40, with increment of 8 by default.

(3) Updates. Batch updates contain 80% insertions and 20% deletions, since insertions

happen more often than deletions in practice. The size of updates is up to 10M tuples

(about 10GB) for TPCH and up to 320MB for DBLP.

(4) Partitions. Its fragment number is 10 by default.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 46

 0

 200

 400

 600

 800

 1000

2 4 6 8 10

E
la

ps
ed

 ti
m

e
(s

ec
)

* 1M tuples

incVer
batVer

(a) TPCH, vertical, |D|

 0
 200
 400
 600
 800

 1000
 1200

2 4 6 8 10

E
la

ps
ed

 ti
m

e
(s

ec
)

updates: * 1M tuples

incVer
batVer

(b) TPCH, vertical, |∆D|

 0

 5

 10

 15

 20

2 4 6 8 10

D
at

a
sh

ip
m

en
t (

G
B

)

updates: * 1M tuples

incVer
batVer

(c) TPCH, vertical, |∆D|

 0

 200

 400

 600

 800

 1000

 1200

25 50 75 100 125

E
la

ps
ed

 ti
m

e
(s

ec
)

#-CFDs

incVer
batVer

(d) TPCH, vertical, |Σ|

0
0.2
0.4
0.6
0.8

1

2 4 6 8 10
sc

al
eu

p
#-partitions

incVer
batVer
linear

(e) TPCH, vertical, n

 0

 200

 400

 600

 800

 1000

2 4 6 8 10

E
la

ps
ed

 ti
m

e
(s

ec
)

* 1M tuples

incHor
batHor

(f) TPCH, horizontal, |D|

 0
 200
 400
 600
 800

 1000
 1200

2 4 6 8 10

E
la

ps
ed

 ti
m

e
(s

ec
)

updates: * 1M tuples

incHor
batHor

(g) TPCH, horizontal, |∆D|

 0

 5

 10

 15

 20

2 4 6 8 10

D
at

a
sh

ip
m

en
t (

G
B

)

updates: * 1M tuples

incHor
batHor

(h) TPCH, horizontal, |∆D|

 0

 200

 400

 600

 800

 1000

 1200

25 50 75 100 125
E

la
ps

ed
 ti

m
e

(s
ec

)
#-CFDs

incHor
batHor

(i) TPCH, horizontal, |Σ|

0
0.2
0.4
0.6
0.8

1

2 4 6 8 10

sc
al

eu
p

#-partitions

incHor
batHor

linear

(j) TPCH, horizontal, n

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1 2 3 4 5

E
la

ps
ed

 ti
m

e
(s

ec
)

updates: *100K tuples

incVer
batVer

(k) DBLP, vertical, |∆D|

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

8 16 24 32 40

E
la

ps
ed

 ti
m

e
(s

ec
)

#-CFDs

incVer
batVer

(l) DBLP, vertical, |Σ|

Figure 2.9: Experimental results for TPCH and DBLP data

Implementation. We denote by incVer (resp. incHor) our incremental algorithms for

batch updates and multiple CFDs in vertical (resp. horizontal) partitions. We also de-

signed batch algorithms for detecting errors in vertical (resp. horizontal) partitions,

denoted by batVer (resp. batHor), following [FGMM10]. The batch algorithms work

in three steps: (1) for each CFD it copies to a coordinator site a small number of rele-

vant attributes (resp. tuples) for vertical (resp. horizontal) partitions; (2) the violations

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 47

of each CFD ϕ are checked locally at the coordinator site for ϕ; and (3) the violations

of all CFDs are checked in parallel. All algorithms were written in Python. We ran our

experiments on Amazon EC2 High-Memory Extra Large instances (zone: us-east-1c).

In the following, we shall pay more attention to TPCH, more interesting for its

larger size than DBLP.

Experimental results for vertical partitions. We first present our experimental re-

sults of detecting violations in data that is vertically partitioned and distributed.

Exp-1: Impact of |D|. Fixing |∆D|= 6M, |Σ|= 50 and n = 10, we varied the size of

D (i.e., |D|) from 2M to 10M tuples (10GB) for TPCH. Figure 2.9(a) shows the elapsed

time in seconds when varying |D|. The result tells us that incVer outperforms batVer by

two orders of magnitude. It also shows that the elapsed time of incVer is insensitive to

|D|. In contrast, the elapsed time of batVer increases much faster when |D| is increased.

This result further verifies Proposition 2.4.1: the incremental algorithm is bounded by

the size of the changes in the input and output, and it is independent of D.

Exp-2: Impact of |∆D|. Fixing |Σ|= 50, n = 10 and |D| = 10M, we varied the size of

∆D from 2M to 10M tuples for TPCH. We also varied |∆D| from 100K to 500K tuples

for DBLP while fixing |D|= 500K, |Σ|= 16 and n = 10.

Figure 2.9(b) (resp. Figure 2.9(k)) shows the elapsed time in seconds when vary-

ing |∆D| for TPCH (resp. DBLP). Both figures show that the elapsed time of incVer

increases almost linearly with |∆D|, e.g., 11 seconds when |∆D|= 2M and 79 seconds

when |∆D| = 10M as shown in Fig. 2.9(b). In addition, batVer is slower than incVer

by two orders of magnitude, consistent with Fig. 2.9(a).

In addition, Figure 2.9(c) shows the size of data shipped (in GB) when varying

|∆D| for TPCH. Note that incVer only sends 320MB when |∆D|= 2M (i.e., 2GB) and

1.6GB when |∆D|= 10M (i.e., 10GB). This is because with HEVs, we only ship eqid’s

instead of the entire tuples. In contrast, the size of data shipped for batVer is up to

17.6GB when |∆D| = 10M. This further verifies our observation from Figure 2.9(b).

These experimental results tell us that our incremental methods are bounded by

|∆D|+ |∆V|, independent of the size of D, in contrast to batch algorithms that detect

violations starting from scratch, which depends on |D|.

Exp-3: Impact of |Σ|. Fixing n=10, |D|=10M and |∆D|=6M for TPCH, we varied |Σ|
from 25 to 125. Fixing n=10, |D|=500K and |∆D|=300K for DBLP, we varied |Σ| from

8 to 40. Figure 2.9(d) (resp. Figure 2.9(l)) shows the elapsed time when varying |Σ|
from 25 to 125 for TPCH (resp. from 8 to 40 for DBLP). Both figures show that incVer

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 48

Dataset without optimization with optimization
#-eqid shipments #-eqid shipments

TPCH 122 55

DBLP 61 17

Figure 2.10: Number of eqid’s shipped for vertical partitions

achieves almost linear scalability when varying |Σ|, e.g., 35 seconds when |Σ|=25 and

72 seconds when |Σ|=125 in Fig. 2.9(d). When multiple CFDs are detected, multiple

sites work in parallel to improve the efficiency. Moreover, batVer runs far slower than

incVer, as expected.

The results demonstrate that incVer scale well with |Σ|, and it can handle a large

number of CFDs. We remark that in practice, Σ is typically predefined and fixed.

Exp-4: Impact of n. In this set of experiments, we varied the number of partitions

from 2 to 10, and varied |D| and |∆D| in the same scale correspondingly. That is, we

varied both |D| and |∆D| from 2M to 10M for TPCH. We study the scaleup performance

defined as follows:

scaleup = small system elapsed time on small problem
large system elapsed time on large problem

Scaleup is said to be linear if it is 1, the ideal case.

Figure 2.9(e) shows the scaleup performance when varying n, |D| and |∆D| at the

same time, where x-axis represents n and y-axis the scaleup value. The line for linear

is the ideal case. For example, we computed the scaleup when n = 4 as follows: using

the elapsed time when n = 2 and |D| = |∆D| = 2M to divide the elapsed time when

n = 4 and |D| = |∆D| = 4M tuples (i.e., 4GB in size), which is 0.96; similarly for all

the other points. This figure shows that incVer achieves nearly linear scaleup, which

clearly outperforms batVer that shows bad scaleup performance.

These results indicate that incVer scales well with partitions, when base data and

updates are large.

Optimization for vertical partitions. We next evaluate the effectiveness of our opti-

mization strategy (Section 2.5).

Exp-5. Figure 2.10 shows the number of eqid’s shipped for vertically partitioned TPCH

(D = 10M, |Σ|= 50, and n = 10) and DBLP (D = 500K, |Σ|= 16, and n = 10), with or

without using the optimization methods presented in Section 2.5. As remarked earlier,

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 49

for each tuple insertion or deletion, the amount of eqid’s shipped is independent of

|D|. The table tells us that for both datasets, the optimization technique significantly

reduces the number of eqid’s to be shipped: it saves 67 eqid’s (55.5%) for TPCH and

44 eqid’s (72.1%) for DBLP per update.

Experimental results for horizontal partitions for TPCH. We next present results on

horizontally partitioned data.

Exp-6: Impact of |D|. We adopted the same setting as Exp-1. Figure 2.9(f) shows

the elapsed time when varying |D|. Besides telling us that incHor outperforms batHor,

the results also show that incHor is independent of D: when varying |D| from 2M to

10M tuples, the time only changes slightly. This verifies Proposition 2.6.1: incremen-

tal violation detection in horizontal partitions depends only on |∆D| and |∆V|, and is

independent of D.

Exp-7: Impact of |∆D|. We used the same setting as Exp-2. Figure 2.9(g) shows

the elapsed time when varying |∆D| for TPCH. The results show that incHor increases

almost linearly with the size of ∆D, e.g., 19 seconds when |∆D|= 2M and 93 seconds

when |∆D| = 10M. Figure 2.9(h) shows the size of data shipment for both methods.

The results verify that our incremental detection algorithm for horizontal partitions is

bounded by |∆D|, similar to its vertical counterpart (see Exp-2).

Exp-8: Impact of |Σ|. We adopted the same setting as Exp-3. Figure 2.9(i) shows the

elapsed time when varying |Σ| from 25 to 125. It tells us that incHor is almost linear in

|Σ|, e.g., 43 seconds when |Σ|= 25 and 61 seconds when |Σ|= 125. The results verify

that incHor scales well with |Σ|, as its vertical counterpart (see Exp-3).

Exp-9: Impact of n. Figure 2.9(j) shows the scaleup performance of incHor when

varying n, |D| and |∆D| in the same scale, where x-axis represents the number n of

fragments and y-axis the scaleup values. From the results we can see that incHor has

nearly ideal scaleup, as its vertical counterpart. This verifies that our algorithms can

work well on massive data, updates, and partitions.

Exp-10. Algorithms incVer and incHor substantially outperform existing batch algo-

rithms. To favor the batch approach, we improved the batch algorithms, denoted by

ibatVer and ibatHor for vertical and horizontal partitions, respectively, by using our

incremental insertion algorithms and indices. We evaluated the performance of incVer

and incHor vs. ibatVer and ibatHor starting with /0, and inserting and deleting tuples

until it reaches D.

Chapter 2. Incremental Detection of Inconsistencies in Distributed Data 50

Figure 2.11(a) (resp. Figure 2.11(b)) shows the result for vertical (resp. horizontal)

partition when |D| = 6M, |Σ| = 50 and n = 10, while varying |∆D| from 2M to 10M

with 40% deletions and 60% insertions. The performance of batVer and batHor is

not shown, since they are two orders of magnitude slower. The results tell us that in

both vertical and horizontal partitions, the incremental algorithms do better than the

revised batch algorithms until updates ∆D get rather large, e.g., |∆D| = 8M for vertical

partitions and 7.6M for horizontal partitions.

 0
 10
 20
 30
 40
 50
 60
 70
 80

2 4 6 8 10

E
la

ps
ed

 ti
m

e
(s

ec
)

incVer
ibatVer

(a) Ver, |∆D|: ∗1M tuples

 0

 20

 40

 60

 80

 100

2 4 6 8 10

E
la

ps
ed

 ti
m

e
(s

ec
)

incHor
ibatHor

(b) Hor, |∆D|: ∗1M tuples

Figure 2.11: Experimental results for refined batch algorithms

Summary. From the experimental results we find the following. (1) Our incremen-

tal algorithms scale well with |D|, |∆D| and |Σ| for both vertical partitions (Exp-1 to

Exp-4) and horizontal partitions (Exp-6 to Exp-9). (2) The incremental algorithms

outperform their batch counterparts by two orders of magnitude, for reasonably large

updates. But when updates are very large, batch algorithms do better, as expected

(Exp-10). (3) The optimization techniques of Section 2.5 substantially reduce data

shipment for vertical partitions (Exp-5). We contend that these incremental meth-

ods are promising in detecting inconsistencies in large-scale distributed data, for both

vertically and horizontally partitioned data.

Chapter 3

Towards Certain Fixes with Editing

Rules and Master Data

3.1 Introduction

In this chapter, we study the problem of finding certain fixes by data monitoring which

is related the other task of data consistency: data repairing.

Data monitoring is to find errors in t and correct the errors, when a tuple t is com-

mitted to a database (either manually generated by users or automatically by programs.

That is, we want to make sure that t is cleaned before it is committed to the database,

to prevent errors introduced by adding t. As noted by [SMO07], it is far less costly to

correct t at the point of data entry than fixing it afterward.

Integrity constraints have been studied for decades. Many are used for data clean-

ing, from traditional constraints (e.g., functional and inclusion dependencies [BFFR05,

CM05, Wij05]) to their extensions (e.g., conditional functional and inclusion depen-

dencies [FGJK08, BFM07, GKK+08]). With the help of these constraints, we can

determine whether data is dirty or not, i.e., whether errors are present in the data. How-

ever, integrity constraints fall short of identifying which attributes of t are erroneous

and moreover, how to correct the errors.

Example 3.1.1: Consider an input tuple t1 given in Fig. 3.1(a). It specifies a supplier

in the UK in terms of name (FN, LN), phone number (area code AC and phone phn) and

type, address (street str, city, zip code) and items supplied. Here phn is either home

phone or mobile phone, indicated by type (1 or 2, respectively).

It is known that in the UK, if AC is 020, city should be Ldn, and when AC is 131,

51

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 52

FN LN AC phn type str city zip item

t1 : Bob Brady 020 079172485 2 501 Elm St. Edi EH7 4AH CD

t2 : Robert Brady 131 6884563 1 null Ldn null CD

t3 : Robert Brady 020 6884563 1 null null EH7 4AH DVD

t4 : Mary Burn 029 9978543 1 null Cad null BOOK

(a) Example input tuples t1, t2, t3 and t4
FN LN AC Hphn Mphn str city zip DOB gender

s1 : Robert Brady 131 6884563 079172485 51 Elm Row Edi EH7 4AH 11/11/55 M

s2 : Mark Smith 020 6884563 075568485 20 Baker St. Ldn NW1 6XE 25/12/67 M

(b) Example master relation Dm

Figure 3.1: Example input tuples and master relation

city must be Edi. These can be expressed as CFDs [FGJK08]. The CFDs find that tuple

t1 is inconsistent: t1[AC] = 020 but t1[city] = Edi. In other words, either t1[AC] or t1[city]

is incorrect, or both. However, they do not tell us which of the two attributes is wrong

and to what value it should be changed. 2

Many methods have been studied for repairing data based on constraints [ABC03,

BFFR05, CFG+07, FH76, KL09, HSW09b]. Most are heuristics. For the reasons

mentioned above, however, these methods can not guarantee to generate correct fixes;

worse still, they may introduce new errors when trying to repair the data. For instance,

the tuple s1 of Fig. 3.1(b) indicates corrections to t1. Nevertheless, the prior methods

may opt to change t1[city] to Ldn; this does not fix the erroneous t1[AC] and worse,

messes up the correct attribute t1[city].

This highlights the quest for effective methods to find certain fixes that are guar-

anteed correct [Gil88, HSW09b]. The need for this is especially evident when it

comes to critical data, in which a seemingly minor error may have disastrous con-

sequences [HSW09b]. To this end, we propose editing rules that tell us how to fix

errors, i.e., which attributes are wrong and what values they should take. In contrast,

constraints only detect the presence of errors.

This is possible given the recent development of master data management

(MDM [RW08]). An enterprise nowadays typically maintains master data (a.k.a. ref-

erence data), a single repository of high-quality data that provides various applications

with a synchronized, consistent view of its core business entities. MDM systems are

being developed by IBM, SAP, Microsoft and Oracle. In particular, master data has

been explored to provide a data entry solution in the Service Oriented Architecture

(SOA) at IBM [SMO07], for data monitoring.

Example 3.1.2: A master relation Dm is shown in Fig. 3.1(b). Each tuple in Dm

specifies a person in the UK in terms of the name (FN, LN), home phone (Hphn), mobile

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 53

phone (Mphn), address, date of birth (DOB) and gender. An example editing rule eR1

is:

◦ for an input tuple t, if there exists a master tuple s in Dm with s[zip] = t[zip],

then t should be updated by t[AC,str,city] := s[AC,str,city], provided that t[zip]

is certain, i.e., it is assured correct by the users.

This rule makes corrections to attributes t[AC], t[str] and t[city], by taking values from

the master tuple s1.

Another editing rule eR2 is:

◦ if t[type] = 2 (indicating mobile phone) and if there is a master tuple s with

s[Mphn] = t[phn], then t[FN, LN] := s[FN,LN], as long as t[phn, type] is certain.

This standardizes t1[FN] by changing Bob to Robert.

As another example, consider tuple t2 in Fig. 3.1(a), in which t2[str,zip] are missing,

and t2[AC] and t2[city] are inconsistent. Consider an editing rule eR3:

◦ if t[type] = 1 (indicating home phone) and if there exists a master tuple s in Dm

such that s[AC,phn] = t[AC,Hphn], then t[str,city,zip] := s[str,city,zip], provided

that t[type,AC,phn] is certain.

This helps us fix t2[city] and enrich t2[str,zip] by taking the corresponding values from

the master tuple s1. 2

Related work. The work of this chapter was originally published in [FLM+12]. This

chapter contains part of the content also included in [Ma11], including examples, no-

tions etc. for keeping the integrity and completeness of this chapter. This work ex-

tends [FLM+10] by including (1) a comprehensive analysis of the fundamental prob-

lems in connection with certain fixes (Section 3.4); (2) an interactive framework and

algorithm for finding certain fixes (Section 3.5), and (3) its experimental study (Sec-

tion 3.7). Neither (2) nor (3) was studied in [FLM+10]. All the proofs and some of the

results of (1) were not presented in [FLM+10]. Due to the space constraint we opt to

cover these new results by leaving out the deduction algorithms for certain regions and

their experimental study of [FLM+10].

A variety of constraints have been studied for data cleaning, such as FDs [Wij05],

FDs and inclusion dependencies (INDs) [BFFR05], CFDs [CFG+07, FGJK08],

conditional inclusion dependencies (CINDs) [BFM07], matching dependencies

(MDs) [FGJ+11], and extensions of CFDs and CINDs [BFGM08, CFM09] (see

e.g., [Fan08] for a survey). (a) These constraints help us determine whether data is

dirty or not, but they do not tell us which attributes are erroneous or how to fix the

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 54

errors, as illustrated earlier. (b) The static analyses of those constraints have been

focusing on the satisfiability and implication problems [FGJK08, BFM07, FGJ+11,

BFGM08, CFM09], along the same lines as traditional FDs and INDs [AHV95]. Edit-

ing rules differ from those constraints in the following: (a) they are defined in terms of

updates, and (b) their reasoning is relative to master data and is based on its dynamic

semantics, a departure from our familiar terrain of dependency analysis. The rules aim

to fix errors, rather than to detect the presence of errors only.

Editing rules are also quite different from edits studied for census data repair-

ing [FH76, Gil88, HSW09b]. Edits (a) are conditions defined on single records of

a single relation, and (b) are not capable of locating and fixing errors.

Closer to editing rules are MDs [FGJ+11]. In contrast to editing rules, (a) MDs are

for record matching (see e.g., [EIV07] for a survey), not for data repairing. (b) They

only specify what attributes should be identified, but do not tell us how to update them.

(c) MDs neither carry data patterns, nor consider master data; and hence, their analysis

is far less challenging. Indeed, the static analyses are in PTIME for MDs [FGJ+11],

but in contrast, the analyses are intractable for editing rules.

There has also been work on rules for active databases (see [WC96] for a survey).

Those rules are far more general than editing rules, specifying events, conditions and

actions. Indeed, even the termination problem for those rules is undecidable, as op-

posed to the coNP upper bounds for editing rules. Results on those rules do not carry

over to editing rules.

Prior work on constraint-based data cleaning has mostly focused on two topics

introduced in [ABC03]: repairing is to find another consistent database that mini-

mally differs from the original database [ABC03, BFFR05, RH01, CM05, BFM07,

FGJK08, FH76, Gil88, HSW09b, KL09, YEN+11, CCC+10]; and consistent query

answering is to find an answer to a given query in every possible repair of the origi-

nal database (e.g., [ABC03, Wij05]). Although the need for finding certain fixes has

long been recognized [Gil88, HSW09b], prior methods do not guarantee that fixes are

correct, i.e., new errors may be introduced while fixing existing ones in the repairing

process. Moreover, master data is not considered in those methods. We shall evaluate

the effectiveness of our approach compared with the repairing algorithm of [CFG+07]

(Section 3.7).

This work studies data monitoring, which is advocated in [CGGM03, FPS+10,

SMO07, CCC+10], as opposed to prior data repairing methods [ABC03, BFFR05,

CM05, BFM07, FGJK08, FH76, Gil88, HSW09b, KL09, Wij05] that aim to generate

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 55

another database as a candidate repair of the original data. As noted by [SMO07], it is

far less costly to correct t at the point of entry than fixing it afterward. A method for

matching input tuples with master data was presented in [CGGM03], without repairing

the tuples.

Another line of work on data cleaning has focused on record matching [FH76,

FGJ+11, BGMM+09, GDSZ10], to identify records that refer to the same real-world

object (see [EIV07] for a survey). This work involves record matching between input

tuples and master tuples. There has also been a host of work on more general data

cleaning and ETL tools (see [BS06] for a survey), which are essentially orthogonal, but

complementary, to data repairing and this work.

There have also been efforts to interleave merging and matching opera-

tions [NBBW06, FLM+11a, BGMM+09, GDSZ10]: [GDSZ10] clusters data rather

than repair data, and [BGMM+09, GDSZ10] only merge/fuse tuples when matches

are found. Those merge operations are far more restrictive than value modifications

considered in this work and data repairing. While [FLM+11a] conducts both repairing

and matching using CFDs and MDs, these operations cannot assure the correctness of

the repaired data. Indeed, the prior work neither guarantees certain fixes, nor considers

master data.

Our data monitoring framework leverages user feedback, similar to [RH01,

YEN+11, CCC+10]. Potter’s Wheel [RH01] supports interactive data transformations,

based on iterative user feedback on example data. USHER [CCC+10] cleans data by

asking users online about erroneous values, identified by a probabilistic method. GDR

[YEN+11] develops a CFD-based repairing approach by soliciting user feedback on

the updates that are likely to improve data quality. Our approach asks users to assure

the correctness of a small number of attributes for an input tuple, to find a certain

fix. While all these methods interact with users, they differ from each other in what

feedback is requested and how the feedback is used.

Editing rules can be extracted from business rules. They can also be automati-

cally discovered from sample data along the same lines as mining constraints for data

cleaning, e.g., [CM08, GKK+08] for CFDs and [SC09] for MDs.

Related work. The work of this chapter was originally published in [FLM+12]. This

chapter contains part of the content also included in [Ma11], including examples, no-

tions etc. for keeping the integrity and completeness of this chapter. This work ex-

tends [FLM+10] by including (1) a comprehensive analysis of the fundamental prob-

lems in connection with certain fixes (Section 3.4); (2) an interactive framework and

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 56

algorithm for finding certain fixes (Section 3.5), and (3) its experimental study (Sec-

tion 3.7). Neither (2) nor (3) was studied in [FLM+10]. All the proofs and some of the

results of (1) were not presented in [FLM+10]. Due to the space constraint we opt to

cover these new results by leaving out the deduction algorithms for certain regions and

their experimental study of [FLM+10].

Organization. Section 3.2 defines editing rules. Section 3.3 presents certain fixes.

Section 3.4 studies fundamental problems in connection with certain fixes. An inter-

active framework for data monitoring is introduced in Section 3.5. The experimental

study is presented in Section 3.7.

3.2 Editing Rules

We study editing rules for data monitoring. Given a master relation Dm and an input

tuple t, we want to fix errors in t using editing rules and data values in Dm.

We specify input tuples t with a relation schema R, and use A ∈ R to denote that

A is an attribute of R. The master relation Dm is an instance of a relation schema

Rm, often distinct from R. As remarked earlier, Dm can be assumed consistent and

complete [RW08].

Editing rules. An editing rule [FLM+12] (eR) φ defined on (R,Rm) is a pair

((X ,Xm)→ (B,Bm), tp[Xp]), where

◦ X and Xm are two lists of distinct attributes in schemas R and Rm, respectively,

with the same length, i.e., |X | = |Xm|;
◦ B is an attribute such that B ∈ R\X , and attribute Bm ∈ Rm; and

◦ tp is a pattern tuple over a set of distinct attributes Xp in R such that for each

A ∈ Xp, tp[A] is one of , a or ā. Here a is a constant drawn from the domain of

A, and is an unnamed variable.

Intuitively, a and ā specify Boolean conditions x = a and x ̸= a for a value x, respec-

tively, and is a wildcard that imposes no conditions. More specifically, we say that

a tuple t of R matches pattern tuple tp, denoted by t[Xp] ≈ tp[Xp], if for each attribute

A ∈ Xp, (1) t[A] = a if tp[A] is a, (2) t[A] ̸= a if tp[A] is ā, and (3) t[A] is any value from

the domain of A if tp[A] is .

Example 3.2.1: Consider the supplier schema R and master relation schema Rm shown

in Fig. 3.1(b). The rules eR1, eR2 and eR3 described in Example 3.1.2 can be expressed

as the following editing rules φ1– φ4 defined on (R,Rm).

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 57

φ1: ((zip,zip) → (B1,B1), tp1 = ());

φ2: ((phn,Mphn) → (B2,B2), tp2[type] = (2));

φ3: (([AC,phn], [AC,Hphn]) → (B3,B3), tp3[type,AC]

= (1, 0800));

φ4: ((AC,AC) → (city,city), tp4[AC] = (0800)).

Here eR1 is expressed as three editing rules of the form φ1, for B1 ranging over

{AC, str,city}. In φ1, both X and Xm consist of zip, and B and Bm are B1. Its pat-

tern tuple tp1 poses no constraints. Similarly, eR2 is expressed as two editing rules

of the form φ2, in which B2 is either FN or LN. The pattern tuple tp2[type] = (2), re-

quiring that phn is mobile phone. The rule eR3 is written as φ3 for B3 ranging over

{str,city,zip}, where tp3[type,AC] requires that type = 1 (home phone) yet AC ̸= 0800

(toll free, non-geographic). The eR φ4 states that for a tuple t, if t[AC] ̸= 0800 and

t[AC] is correct, we can update t[city] using the master data. 2 2

Semantics. We next introduce the semantics of editing rules [FLM+12].

We say that an eR φ and a master tuple tm ∈ Dm apply to an R tuple t, which results

in a tuple t ′, denoted by t →(φ,tm) t ′, if (1) t[Xp]≈ tp[Xp], (2) t[X]= tm[Xm], and (3) t ′ is

obtained by the update t[B] := tm[Bm]. We shall simply say that (φ, tm) apply to t.

That is, if t matches tp and if t[X] agrees with tm[Xm], then we assign tm[Bm] to

t[B]. Intuitively, if t[X ,Xp] is assured correct (referred to as validated), we can safely

enrich t[B] with master data tm[Bm] as long as (1) t[X] and tm[Xm] are identified, and (2)

t[Xp] matches the pattern in φ. This yields a new tuple t ′ such that t ′[B] = tm[Bm] and

t ′[R\{B}] = t[R\{B}].
We write t →(φ,tm) t if φ and tm do not apply to t, i.e., t is unchanged by φ if either

t[Xp] ̸≈ tp[Xp] or t[X] ̸= tm[Xm].

Example 3.2.2: As shown in Example 3.1.2, we can correct t1 by applying the eR φ1

and master tuple s1 to t1. As a result, t1[AC,str] is changed from (020, 501 Elm St.) to

(131, 51 Elm Row). Furthermore, we can standardize t1[FN] by applying φ2 and s1 to

t1, such that t1[FN] is changed from Bob to Robert.

The eR φ3 and master tuple s1 can be applied to t2, to correct t2[city] and enrich

t2[str,zip]. 2 2

Notations. Following [FLM+12], we use the following notations.

(1) Given an eR φ = ((X ,Xm)→ (B,Bm), tp[Xp]), we denote (a) LHS(φ) =X , RHS(φ) =
B; (b) LHSm(φ) = Xm, RHSm(φ) = Bm; and (c) LHSp(φ) = Xp.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 58

(2) Given a set Σ of eRs, we denote ∪φ∈ΣLHS(φ) by LHS(Σ); similarly for RHS(Σ),
LHSm(Σ) and RHSm(Σ). Here abusing the notions for sets, we use X ∪Y , X ∩Y and

X \Y to denote the union, intersection and difference of two lists X and Y of attributes,

respectively.

(3) An eR φ = ((X ,Xm) → (B,Bm), tp[Xp]) is said to be in the normal form if tp[Xp]

does not contain wildcard . Every eR φ can be normalized to an eR φ′ by removing all

such attributes A from tp[Xp] that tp[A] = . From the semantics of eRs one can readily

verify that φ and φ′ are equivalent: for any input tuple t, master tuple tm, and tuple t ′,

t→(φ,tm) t ′ iff t→(φ′,tm) t ′.

Remarks. (1) As remarked earlier, editing rules are quite different from

CFDs [FGJK08]. A CFD ψ = (X → Y, tp) is defined on a single relation R, where

X → Y is a standard FD and tp is a pattern tuple on X and Y . It requires that for any

tuples t1, t2 of R, if t1 and t2 match tp, then X → Y is enforced on t1 and t2. When

tp[Y] consists of constants only, it is referred to as a constant CFD. It has a static se-

mantics: t1 and t2 either satisfy or violate ψ, but they are not updated. As shown in

Example 3.1.1, when t1 and t2 violate φ, one cannot tell which of t1[X], t1[Y] or t2[Y] is

erroneous, and hence, cannot simply apply φ to find a certain fix. The problem remains

even when φ is a constant CFDs, which can be violated by a single tuple. In contrast,

an eR φ specifies an action: applying φ and a master tuple tm to t yields an updated t ′.

It is defined in terms of master data. As will be seen shortly, this yields a certain fix

when φ and tm are applied to a region that is validated.

(2) MDs of [FGJ+11] also have a dynamic semantics. An MD ϕ is of the form

((X ,X ′),(Y,Y ′),OP), where X ,Y and X ′,Y ′ are lists of attributes in schemas R,R′,

respectively, and OP is a list of similarity operators. For an R1 tuple t1 and an R2 tuple

t2, ϕ states that if t1[X] and t2[X ′] match w.r.t. the operators in OP, then t1[Y] and t2[Y ′]

are identified as the same object. As remarked in Section 3.1, eRs differ from MDs in

several aspects.

Neither CFDs nor MDs are expressible as eRs, and vice versa, because of their

different semantics.

(3) To simplify the discussion we consider a single master relation Dm. Nonetheless

the results of this work readily carry over to multiple master relations. Indeed, given

master schemas Rm1, . . . ,Rmk , there exists a single master schema Rm such that each

instance Dm of Rm characterizes an instance of (Dm1, . . . ,Dmk) of those schemas. Here

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 59

R Input relation schema

Rm Master relation schema

Σ A set of eRs on (R,Rm)

Dm Master data on Rm

ā Boolean condition x ̸= a for a value x

An input tuple t matches a pattern tuple tc
t ≈ tc

Applying eR φ and a master tuple tm to an
t →(φ,tm) t ′

input tuple t, yielding t ′

Table 3.1: Summary of notations of Section 3.2

Rm has a special attribute id such that σid=i(Rm) yields Dmi for i ∈ [1,k].

We summarize notations of this section in Table 3.1.

3.3 Certain Fixes and Certain Regions

Consider a master relation Dm of schema Rm, and a set Σ of editing rules defined on

(R,Rm). Given a tuple t of R, we want to find a “certain fix” t ′ of t by using Σ and

Dm. That is, (1) no matter how eRs of Σ and master tuples in Dm are applied, Σ and

Dm yield a unique t ′ by updating t; and (2) all the attributes of t ′ are ensured correct

(validated).

To formalize the notion of certain fixes, we first introduce a notion of regions.

When applying an eR φ and a master tuple tm to t, we update t with values in tm.

To ensure that the changes make sense, some attributes of t have to be validated. In

addition, we are not able to update t if either it does not match the pattern tuple of φ or

it cannot find a master tuple tm in Dm that carries the information needed for correcting

t.

Example 3.3.1: Consider the master data Dm of Fig. 3.1(b) and a set Σ0 consisting

of φ1,φ2,φ3 and φ4 of Example 3.2.1. Both (φ1,s1) and (φ3,s2) apply to tuple t3 of

Fig. 3.1(a). However, they suggest to update t3[city] with distinct values Edi and Lnd.

The conflict arises because t3[AC] and t3[zip] are inconsistent. Hence to fix t3, we need

to assure that one of t3[AC] and t3[zip] is correct.

Now consider tuple t4 of Fig. 3.1(a). Since no eRs in Σ0 and master tuples in Dm

can be applied to t4, we cannot tell whether t4 is correct. This is because Σ0 and Dm do

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 60

not cover all the cases of input tuples. 2 2

This motivates us to introduce the following notion.

Regions. A region is a pair (Z,Tc), where Z is a list of distinct attributes in R, Tc is

a pattern tableau consisting of a set of pattern tuples with attributes in Z, and each

pattern tuple is defined as its counterparts in eRs.

We say that a tuple t is marked by (Z,Tc) if there exists tc ∈ Tc such that t ⇌ tc.

Intuitively, a region (Z,Tc) species what input tuples can be corrected with certain

fixes by a set Σ of eRs and master data. As will be seen shortly, (1) it tells us that to

correctly fix errors in a tuple t, t[Z] should be assured correct, and moreover, t is marked

such that there exist an eR and a master tuple that can be applied to t. (2) There exist

no two eRs in Σ such that both of them can be applied to t, but they lead to inconsistent

updates. In other words, Tc imposes constraints stronger than those specified by pattern

tuples in eRs, to prevent the abnormal cases illustrated in Example 3.3.1.

Consider an eR φ = ((X ,Xm) → (B,Bm), tp[Xp]), a master tuple tm and a region

(Z,Tc). When we apply φ and tm to a tuple t marked by (Z,Tc), we require that X ⊆ Z,

Xp ⊆ Z, B ̸∈ Z. That is, it is justified to apply φ and tm to t for those t marked by (Z,Tc)

if t[X ,Xp] is correct. As t[Z] is validated, we make t[B] “protected”, i.e., unchanged,

by enforcing B ̸∈ Z. We denote this as t →((Z,Tc),φ,tm) t ′, where t →(φ,tm) t ′.

Example 3.3.2: Referring to Example 3.3.1, a region defined on R is (ZAH,TAH)

= ((AC,phn, type),{(0800, ,1)}). Note that tuple t3 of Fig. 3.1(a) is marked by

(ZAH,TAH). Hence, if t3[AC,phn, type] is validated, then (φ3,s2) can be applied to

t3, yielding t3 →((ZAH,TAH),φ3,s2) t ′3, where t ′3[str,city,zip] := s2[str,city,zip], and t ′3 and

t3 agree on all the other attributes of R. 2 2

Note that if t →((Z,Tc),φ,tm) t ′, then t ′[B] is validated as a logical consequence of the

application of φ and tm, since t[Z] is validated. That is, t ′[B] is assured correct when

applying rules to t ′ in the process for fixing t (see below). Hence we can extend (Z,Tc)

by including B in Z and by expanding each tc in Tc such that tc[B] = . We denote the

extended region as ext(Z,Tc,φ).

Example 3.3.3: Consider the region (ZAH,TAH) in Example 3.3.2. Then

ext(ZAH,TAH,φ3) is (Z′,T ′), where Z′ consists of attributes AC,phn, type, str, city and

zip, and T ′ has a single pattern tuple t ′c = (0800, ,1, , ,). 2 2

Fixes. We say that a tuple t ′ is a fix of t by (Σ, Dm) w.r.t. (Z,Tc), denoted by

t →∗
((Z,Tc),Σ,Dm)

t ′, if there exists a finite sequence t0 = t, t1, . . ., tk = t ′ of tuples of

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 61

R such that for each i ∈ [1,k], there exist φi ∈ Σ and tmi ∈ Dm such that

(1) ti−1 →((Zi−1,Ti−1),φi,tmi)
ti, where (Z0,T0) = (Z, Tc) and (Zi, Ti) =

ext(Zi−1,Ti−1,φi); and

(2) for all φ ∈ Σ and tm ∈ Dm, t ′ →((Zk,Tk),φ,tm) t ′.

These conditions ensure that (1) each step of the process is justified; and (2) t ′ is a

fixpoint and cannot be further updated. Note that ti−1 →((Zi−1,Ti−1),φi,tmi)
ti assures that

ti[Z] = t0[Z] = t[Z], i.e., t[Z] is assumed correct and hence, remains unchanged in the

process.

Unique fixes. We say that an R tuple t has a unique fix by (Σ,Dm) w.r.t. (Z,Tc) if there

exists a unique t ′ such that t →∗
((Z,Tc),Σ,Dm)

t ′. When there exists a unique fix t ′ of t

with a finite sequence t0 = t, t1, . . ., tk = t ′ of tuples of R, we refer to Zk as the set of

attributes of t covered by (Z,Tc,Σ,Dm).

Certain fixes. We say that an R tuple t has a certain fix by (Σ,Dm) w.r.t. (Z,Tc) if (1)

t has a unique fix and (2) the set of attributes covered by (Z,Tc,Σ,Dm) includes all the

attributes in R.

A notion of deterministic fixes was addressed in [Gil88, HSW09b]. It refers to

unique fixes, i.e., (1) above, without requiring (2). Further, it is not defined relative to

(Z,Tc).

Intuitively, a unique fix t ′ becomes a certain fix when the set of attributes covered

by (Z,Tc,Σ,Dm) includes all the attributes in R. We can find a certain fix for a tuple t

of R marked by a region (Z,Tc) if (a) t[Z] is assured correct, (b) there is a unique fix t ′;

and (c) all the remaining values of t ′[R\Z] are correctly fixed.

Example 3.3.4: By the set Σ0 of eRs of Example 3.3.1 and the master data Dm of

Fig. 3.1(b), tuple t3 of Fig. 3.1(a) has a unique fix w.r.t. (ZAH,TAH), namely, t ′3 given

in Example 3.3.2. However, as observed in Example 3.3.1, if we extend the region

by adding zip, denoted by (ZAHZ,TAH), then t3 no longer has a unique fix by (Σ0,Dm)

w.r.t. (ZAHZ,TAH).

As another example, consider a region (Zzm,Tzm), where Zzm = (zip,phn, type),

and Tzm has a single tuple (, ,2). As shown in Example 3.2.2, tuple t1 of Fig. 3.1(a)

has a unique fix by Σ0 and Dm w.r.t. (Zzm,Tzm), by correctly applying (φ1,s1) and

(φ2,s2). It is not a certain fix, since the set of attributes covered by (Zzm,Tzm,Σ0,Dm)

does not include item. Indeed, the master data Dm of Fig. 3.1(b) has no information

about item, and hence, does not help here. To find a certain fix, one has to extend Zzm

by adding item. In other words, its correctness has to be assured by the users. 2 2

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 62

A region with a list Z of distinct
(Z,Tc) attributes and a pattern tableau Tc

Applying eR φ and master tuple tm to
t →((Z,Tc),φ,tm) t ′

input tuple t w.r.t. (Z,Tc), yielding t ′

Tuple t ′ is a fix of input tuple t by
t →∗

((Z,Tc),Σ,Dm)
t ′

(Σ, Dm) w.r.t. (Z,Tc)

All those attributes in t ′ that are
attributes covered

validated by t →∗
((Z,Tc),Σ,Dm)

t ′

Table 3.2: Summary of notations of Section 3.3

Certain regions. We next introduce the last notion of this section. We say that a region

(Z,Tc) is a certain region for (Σ,Dm) if for all tuples t of R that are marked by (Z,Tc),

t has a certain fix by (Σ,Dm) w.r.t. (Z,Tc).

We are naturally interested in certain regions since they warrant absolute correc-

tions, which are assured either by the users (the attributes Z) or by master data (the

remaining attributes R\Z).

Example 3.3.5: As shown in Example 3.3.4, (Zzm,Tzm) is not a certain region. One

can verify that a certain region for (Σ0,Dm) is (Zzmi,Tzmi), where Zzmi extends Zzm

by including item, and Tzmi consists of patterns of the form (z, p,2,) for z, p ranging

over s[zip,Mphn] for all master tuples s in Dm. For those tuples marked by the region,

certain fixes are warranted.

Another certain region for (Σ0,Dm) is (ZL,TL), where ZL =

(FN,LN,AC,phn, type, item), TL consists of pattern tuples of the form (f , l,a,h,1,),

and (f , l,a,h) is s[FN,LN,AC,Hphn] for all s ∈ Dm. 2 2

We summarize notations in Table 3.2.

3.4 Static Analyses of Fundamental Problems

Given a set Σ of eRs and a master relation Dm, we want to make sure that they can

correctly fix all errors in those input tuples marked by a region (Z,Tc). This motivates

us to study fundamental problems associated with certain fixes by (Σ, Dm) and (Z,Tc),

and establish their complexity and approximation bounds.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 63

3.4.1 Reasoning about Editing Rules

We start with the problems for reasoning about editing rules when regions are provided.

Given (Σ, Dm) and a region (Z,Tc), we want to know (a) whether (Σ, Dm) and (Z,Tc)

have any conflicts when put together (referred to as the consistency problem), and (b)

whether (Z,Tc) makes a certain region for (Σ, Dm) (known as the coverage problem).

We show that these problems are intractable, but identify PTIME special cases.

The consistency problem. We say that (Σ,Dm) is consistent relative to (Z,Tc) if for

each input R tuple t marked by (Z,Tc), t has a unique fix by (Σ,Dm) w.r.t. (Z,Tc).

Intuitively, this says that Σ and Dm do not have conflicts w.r.t. (Z,Tc), as illustrated

below.

Example 3.4.1: There exist (Σ,Dm) and (Z,Tc) that are inconsistent. Indeed, (Σ0,Dm)

described in Example 3.3.1 is not consistent relative to region (ZAHZ,TAHZ) of Ex-

ample 3.3.4, since eRs in Σ0 suggest distinct values to update t3[city] for tuple t3 of

Fig. 3.1(a), i.e., conflicts arise, as shown in Example 3.3.1. Hence t3 does not have a

unique fix by (Σ0,Dm) w.r.t. (ZAHZ,TAHZ). 2 2

The consistency problem for editing rules is to determine, given any (Z,Tc) and

(Σ,Dm), whether (Σ,Dm) is consistent relative to (Z,Tc).

The problem is obviously important, but is nontrivial. It is known that for con-

straints defined with pattern tuples, the presence of attributes with a finite domain

makes their static analysis hard [BFM07, FGJK08]. For instance, when it comes to the

problem for deciding whether a set of CFDs can be satisfied by a nonempty database,

the problem is NP-complete if attributes in the CFDs may have a finite domain, but it be-

comes tractable when all the attributes in the CFDs have an infinite domain [FGJK08].

In contrast, below we show that the consistency problem for editing rules is intractable

even when all the attributes involved have an infinite domain.

Theorem 3.4.1:[FLM+12] The consistency problem for editing rules is coNP-

complete, even when data and master relations have infinite-domain attributes only.

2

Theorem 3.4.1 tells us that the consistency analysis of eRs is more intricate than

its CFD counterpart, which is in PTIME when all attributes involved have an infinite

domain. It is also much harder than MDs, since any set of MDs is consistent [FGJ+11].

Nevertheless, it is still decidable, as opposed to the undecidability for reasoning about

rules for active databases [WC96].

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 64

The coverage problem. The coverage problem is to decide, given any (Z, Tc) and

(Σ,Dm), whether (Z,Tc) is a certain region for (Σ, Dm). That is, whether (Σ,Dm) is

able to fix errors in all the attributes of input tuples that are marked by (Z,Tc).

The coverage problem is, however, also intractable.

Theorem 3.4.2:[FLM+12] The coverage problem is coNP-complete, even for input

tuples and master relations that have infinite-domain attributes only. 2

Remark. Like the consistency and the coverage problems we have seen earlier, for all

the problems to be studied in the rest of the section, their complexity remains the same

in the presence of finite-domain attributes and in their absence. Hence in the sequel,

we shall simply refer to their complexity bounds without remarking the absence of

finite-domain attributes.

Special cases. To better understand these problems, we further investigate the follow-

ing five special cases.

(1) Fixed Σ. In this setting, the set Σ of eRs is fixed. Indeed, editing rules are often

predefined in practice.

(2) Fixed Dm. In this case the master data Dm is fixed. In real-life master data is

changed less frequently than (input) data relations.

(3) Positive Tc. This case assumes no pattern tuples in Tc contain ā, i.e., in the absence

of negations.

(4) Concrete Tc. This case requires that no pattern tuples in Tc contain wildcard ‘ ’ or

ā, i.e., they contain a’s only. Note that a concrete Tc must be a positive Tc.

(5) Direct fixes. We consider in this setting that (a) for all eRs φ = ((X ,Xm) →
(B,Bm), tp[Xp]) in Σ, Xp ⊆ X , i.e., the pattern attributes Xp are also required to find

a match in Dm, and (b) each step of a fixing process employs (Z,Tc) without extending

(Z,Tc), i.e., ti−1 →((Z,Tc),φi,tmi)
ti.

Among these, cases (1) and (2) assume that Σ and Dm are fixed, respectively; (3)

and (4) restrict the form of patterns in Tc; and case (5) restricts the form of eRs and

adopts a simpler semantics for fixing input tuples.

One might think that fixed master data or positive patterns would simplify the anal-

ysis of eRs. Unfortunately, these do not help, due to the corollary follows.

Corollary 3.4.3:[FLM+12] The consistency problem and the coverage problem re-

main coNP-complete even for (1) fixed master data Dm and (2) a positive tableau Tc.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 65

2

In contrast, special cases (1) and (4) indeed make our lives easier, as verified below.

Theorem 3.4.4:[FLM+12] The consistency problem and the coverage problem are in

PTIME for either (1) a fixed set Σ of eRs or (2) a concrete pattern tableau Tc. 2

Furthermore, special case (5) identified above also simplifies the consistency and

coverage analyses.

Theorem 3.4.5:[FLM+12] The consistency problem and the coverage problem are in

PTIME when direct fixes are considered. 2

3.4.2 The Complexity of Computing Certain Regions

We next study three fundamental problems in connection with computing certain re-

gions, when regions are either partially given or not given at all.

To derive a certain region (Z,Tc) from (Σ,Dm), one wants to know whether a given

list Z of attributes could make a certain region by finding a nonempty Tc.

The Z-validating problem is to decide, given (Σ, Dm) and a list Z of distinct at-

tributes, whether there exists a non-empty pattern tableau Tc such that (Z,Tc) is a cer-

tain region for (Σ,Dm).

Another question is to determine, if Z can make a certain region by finding a

nonempty Tc, how large Tc is. Let (Z,Tc) be a certain region for (Σ, Dm). For any

pattern tuple tc ∈ Tc, we require the following:

(1) tc[A] = for all attributes A not appearing in Σ;

(2) tc[A] is replaced with v (resp. v̄) if tc[A] = c (resp. c̄) and c is a constant not appearing

in Σ or Dm. Here v is a variable denoting any constant not in Σ or Dm.

Note that these requirements do not lose generality. It is easy to verify for any

certain region (Z,Tc), we can find an equivalent one (with no more pattern tuples)

satisfying the two conditions. Moreover, these allow us to deal with only a finite

number of pattern tuples, and to focus on the essential properties of the problems.

The Z-counting problem is to count, given (Σ, Dm) and a list Z of distinct attributes,

the number of distinct pattern tuples that can be found from (Σ,Dm) to build a tableau

Tc such that (Z,Tc) is a certain region.

Both problems are beyond reach in practice, as shown below. In particular, the

Z-counting problem is as hard as finding the number of truth assignments that satisfy

a given 3SAT instance [Pap94].

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 66

Theorem 3.4.6:[FLM+12] The Z-validating problem is NP-complete. 2

In particular, in contrast to Theorem 3.4.5, the Z-validating problem remains in-

tractable even when direct fixes are considered.

Corollary 3.4.7:[FLM+12] The Z-validating problem remains NP-complete even

when we consider (1) fixed master data Dm, (2) a positive pattern tableau Tc, (3) a

concrete pattern tableau Tc, or (4) direct fixes. 2

However, when fixing Σ, the Z-validating problem becomes much simpler, as

shown below.

Proposition 3.4.8:[FLM+12] The Z-validating problem is in PTIME given a fixed set

Σ of eRs. 2

We next investigate the Z-counting problem.

Theorem 3.4.9:[FLM+12] The Z-counting problem is #P-complete. 2

From Theorems 3.4.6, 3.4.9 and Corollary 3.4.7 it follows:

Corollary 3.4.10:[FLM+12] The Z-counting problem remains #P-complete even when

we consider (1) fixed master data Dm, (2) a positive pattern tableau Tc, (3) a concrete

pattern tableau Tc, or (4) direct fixes. 2

When only a fixed set Σ of eRs is considered, the Z-counting problem becomes

easier. This is consistent with Proposition 3.4.8.

Proposition 3.4.11:[FLM+12] The Z-counting problem is in PTIME given a fixed set

Σ of eRs. 2

Certain regions with minimum Z. One would naturally want a certain region (Z,Tc)

with a “small” Z, such that the users only need to assure the correctness of a small

number of attributes in input tuples.

The Z-minimum problem is to decide, given (Σ,Dm) and a positive integer K,

whether there exists a list Z of distinct attributes such that (a) |Z| ≤ K and (b) there

exists a non-empty pattern tableau Tc such that (Z,Tc) is a certain region for (Σ,Dm).

This problem is also intractable, as shown below.

Theorem 3.4.12:[FLM+12] The Z-minimum problem is NP-complete. 2

The next corollary follows.

Corollary 3.4.13:[FLM+12] The Z-minimum problem remains NP-complete even

when we consider (1) fixed master data Dm, (2) a positive pattern tableau Tc, or (3) a

concrete pattern tableau Tc. 2

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 67

When direct fixes are considered, the Z-minimum problem remains intractable, as

opposed to Theorem 3.4.5.

Theorem 3.4.14:[FLM+12] The Z-minimum problem remains NP-complete even when

direct fixes are considered. 2

The problem is in NP by Theorem 3.4.12.

Having seen Propositions 3.4.8 and 3.4.11, it is not surprising to find that the Z-

minimum problem becomes tractable for a fixed set Σ of eRs, as shown below.

Proposition 3.4.15:[FLM+12] The Z-minimum problem is in PTIME given a fixed set

Σ of eRs. 2

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 68

G
en

er
al

se
tt

in
g/

In
fin

ite
-d

om
ai

n
at

tr
ib

ut
es

on
ly

Pr
ob

le
m

s
G

en
er

al
Fi

xe
d

Σ
Fi

xe
d

D
m

Po
si

tiv
e

T c
C

on
cr

et
e

T c
D

ir
ec

tF
ix

es

co
N

P-
co

m
pl

et
e

P
T

IM
E

co
N

P-
co

m
pl

et
e

co
N

P-
co

m
pl

et
e

P
T

IM
E

P
T

IM
E

C
on

si
st

en
cy

(T
he

or
em

3.
4.

1)
(T

he
or

em
3.

4.
4)

(C
or

ol
la

ry
3.

4.
3)

(C
or

ol
la

ry
3.

4.
3)

(T
he

or
em

3.
4.

4)
(T

he
or

em
3.

4.
5)

co
N

P-
co

m
pl

et
e

P
T

IM
E

co
N

P-
co

m
pl

et
e

co
N

P-
co

m
pl

et
e

P
T

IM
E

P
T

IM
E

C
ov

er
ag

e
(T

he
or

em
3.

4.
2)

(T
he

or
em

3.
4.

4)
(C

or
ol

la
ry

3.
4.

3)
(C

or
ol

la
ry

3.
4.

3)
(T

he
or

em
3.

4.
4)

(T
he

or
em

3.
4.

5)

N
P-

co
m

pl
et

e
P

T
IM

E
N

P-
co

m
pl

et
e

N
P-

co
m

pl
et

e
N

P-
co

m
pl

et
e

N
P-

co
m

pl
et

e
Z

-v
al

id
at

in
g

(T
he

or
em

3.
4.

6)
(P

ro
po

si
tio

n
3.

4.
8)

(C
or

ol
la

ry
3.

4.
7)

(C
or

ol
la

ry
3.

4.
7)

(C
or

ol
la

ry
3.

4.
7)

(C
or

ol
la

ry
3.

4.
7)

#P
-c

om
pl

et
e

P
T

IM
E

#P
-c

om
pl

et
e

#P
-c

om
pl

et
e

#P
-c

om
pl

et
e

#P
-c

om
pl

et
e

Z
-c

ou
nt

in
g

(T
he

or
em

3.
4.

9)
(P

ro
po

si
tio

n
3.

4.
11

)
(C

or
ol

la
ry

3.
4.

10
)

(C
or

ol
la

ry
3.

4.
10

)
(C

or
ol

la
ry

3.
4.

10
)

(C
or

ol
la

ry
3.

4.
10

)

N
P-

co
m

pl
et

e
P

T
IM

E
N

P-
co

m
pl

et
e

N
P-

co
m

pl
et

e
N

P-
co

m
pl

et
e

N
P-

co
m

pl
et

e

(T
he

or
em

3.
4.

12
)

(P
ro

po
si

tio
n

3.
4.

15
)

(C
or

ol
la

ry
3.

4.
13

)
(C

or
ol

la
ry

3.
4.

13
)

(C
or

ol
la

ry
3.

4.
13

)
(T

he
or

em
3.

4.
14

)
Z

-m
in

im
um

no
n-

ap
pr

ox
∗

P
T

IM
E

no
n-

ap
pr

ox
no

n-
ap

pr
ox

no
n-

ap
pr

ox
no

n-
ap

pr
ox

(T
he

or
em

3.
4.

17
)

(P
ro

po
si

tio
n

3.
4.

15
)

(C
or

ol
la

ry
3.

4.
18

)
(C

or
ol

la
ry

3.
4.

18
)

(C
or

ol
la

ry
3.

4.
18

)
(T

he
or

em
3.

4.
19

)

no
n-

ap
pr

ox
:c

an
no

tb
e

ap
pr

ox
im

at
ed

w
ith

in
cl

og
n

in
P

T
IM

E
fo

ra
co

ns
ta

nt
c,

un
le

ss
P

=
N

P

Ta
bl

e
3.

3:
S

um
m

ar
y

of
co

m
pl

ex
ity

re
su

lts

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 69

Approximation hardness. Worse still, there exist no approximate algorithms for the

(optimization version) Z-minimum problem with a reasonable bound. To show the

approximation bound, we adopt L-reductions [Pap94].

Let Π1 and Π2 be two minimization problems. An L-reduction from Π1 to Π2 is

a quadruple (f , g, α, β), where f and g are two PTIME computable functions, and α
and β are two constants, such that

◦ for any instance I1 of Π1, I2 = f (I1) is an instance of Π2 such that opt
2
(I2) ≤

α ·opt1(I1), where opt1 (resp. opt2) is the objective of an optimal solution to I1

(resp. I2), and

◦ for any solution s2 to I2, s1 = g(s2) is a solution to I1 such that obj1(s1) ≤ β ·
obj2(s2), where obj1() (resp. obj2()) is a function measuring the objective of a

solution to I1 (resp. I2).

We say an algorithm A for a minimization problem has performance guarantee ε
(ε ≥ 1) if for any instance I, obj(A(I))≤ ε ·opt(I).

L-reductions retain approximation bounds [Pap94].

Proposition 3.4.16:[FLM+12] If (f ,g,α,β) is an L-reduction from problems Π1 to

Π2, and there is a PTIME algorithm for Π2 with performance guarantee ε, then there

is a PTIME algorithm for Π1 with performance guarantee αβε [Pap94]. 2

Leveraging Proposition 3.4.16, we next show the approximation-hardness of the

Z-minimum problem.

Theorem 3.4.17:[FLM+12] Unless NP = P , the Z-minimum problem cannot be ap-

proximated within a factor of c logn in PTIME for a constant c. 2

From Theorem 3.4.17 and Corollary 3.4.13, the result below immediately follows.

Corollary 3.4.18:[FLM+12] Unless NP = P , the Z-minimum problem cannot be ap-

proximated within a factor of c logn in PTIME for a constant c even when we consider

(1) a fixed master relation Dm, (2) a positive pattern tableau Tc, or (3) a concrete pat-

tern tableau Tc. 2

Direct fixes do not make our lives easier when approximation is concerned either,

similar to Theorem 3.4.14.

Theorem 3.4.19:[FLM+12] Unless NP = P , the Z-minimum problem cannot be ap-

proximated within a factor of c logn in PTIME for a constant c for direct fixes. 2

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 70

Theorems 3.4.17, 3.4.19 and Corollary 3.4.18 tell us that to find certain regions, it is

necessary to develop heuristic algorithms. Such algorithms are provided in [FLM+10].

Summary. The complexity results are summarized in Table 3.3. Observe the follow-

ing.

(1) The complexity bounds of all these problems remain unchanged in the presence

of finite-domain attributes and in the absence of such attributes, as opposed to the

analyses of CFDs [FGJK08], CINDs [BFM07] and MDs [FGJ+11].

(2) For a fixed set Σ of eRs, all the problems become PTIME computable, i.e., fixed

eRs simplify the analyses.

(3) For fixed master data Dm or a positive tableau Tc, all the problems remain in-

tractable. That is, these special cases do not make our lives easier.

(4) When we consider direct fixes or a concrete tableau Tc, the consistency problem and

the coverage problem become tractable, while the other problems remain intractable.

That is, these special cases simplify the analyses, but only to an extent. Due to the space

constraint, we encourage the interested reader to consult [FLM+10] for algorithms and

experimental results based on direct fixes, which illustrate the practical impact of direct

fixes.

3.5 An Interactive Framework for Certain Fixes

We next present a framework to find certain fixes for tuples at the point of data entry,

by making use of editing rules and master data, and by interacting with users.

As depicted in Fig. 3.2, the framework is provided with a master relation Dm of

schema Rm and a set Σ of eRs defined on (R,Rm). It takes a tuple t of schema R as

input, and warrants to find a certain fix for t.

The algorithm underlying the framework, referred to as CertainFix, is shown in

Fig. 3.3. The algorithm interacts with users and finds a certain fix for t as follows.

(1) Initialization (lines 1-2). It first picks a precomputed certain region (Z,Tc), and

recommends Z as the first suggestion to the users (line 1). For an input tuple t, if t[Z] is

assured correct and if t[Z] matches a pattern tuple in Tc, then a certain fix can be found

for t. It also uses a set Z′ to keep track of the attributes of t that are already fixed, which

is initially empty (line 2).

As shown by Theorems 3.4.12 and 3.4.17, it is intractable and approximation-hard

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 71

t[S] is correct

Return t

Generate new suggestionsRules
Editing

Master
Data

A tuple t

A certain
region

No

Yes

YesZ’ = R ?

sug

No

Fix t and extend Z’

A suggestion to the users

t[Z’,S] has a unique fix?
Z

Figure 3.2: Framework overview

to find a certain region with a minimum set Z of attributes. Nevertheless, an efficient

heuristic algorithm is provided by [FLM+10], which is able to derive a set of certain

regions from Σ and Dm based on a quality metric. Algorithm CertainFix picks the

precomputed region (Z,Tc) with the highest quality. The region is computed once and

is repeatedly used as long as Σ and Dm are unchanged.

(2) Generating correct fixes (lines 3-7). In each round of interaction with users, a set

sug of attributes is recommended to the users as a suggestion (line 4), initially Z. The

users get back with a set S of attributes that are asserted correct (line 5), where S may

not necessarily be the same as sug. The algorithm validates t[S] by checking whether

t[Z′∪S] leads to a unique fix, i.e., whether t[S] is indeed correct. If t[S] is invalid, the

users are requested to revise the set S of attributes assured correct (line 6). If t[Z′∪S]

yields a unique fix, procedure TransFix is invoked to find the fix, which extends Z′ by

including the newly corrected attributes (line 7). it finds the unique fix by invoking a

procedure TransFix.

(3) Generating new suggestions (lines 8-9). If at this point, Z′ covers all the attributes

of R, the entire tuple t is validated and the fixed t is returned (lines 8, 10). Otherwise

it computes a new suggestion from Σ and Dm via procedure Suggest (line 9), which is

recommended to the users in the next round of interaction.

This process proceeds until a certain fix is found for t. All the attributes of t are

corrected or validated, by using the users’ input, the eRs and the master data.

The framework aims to guarantee the following. (a) The correctness. Each correct-

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 72

Input: A tuple t, a certain region (Z,Tc),

a set Σ of eRs, and a master relation Dm.

Output: A fixed tuple t.

1. sug := Z; /* Z is the initial suggestion */

2. Z′ := /0; flag := true;

3. while flag do

4. recommend sug to the users;

5. input S, where t[S] is assured correct and S∩Z′ = /0;

6. if t[Z′∪S] does not yield a unique fix then

request new input from the users (back to line 4);

7. (t,Z′) := TransFix (t, Z′∪S,Dm, G);

8. if Z′ = R then flag := false;

9. sug:= Suggest (t, Z′, Σ, Dm);

10. return t.

Figure 3.3: Algorithm CertainFix

ing step is justified by using the eRs and the master data. (b) Minimizing user efforts.

It requires the users to validate a minimal number of attributes, while automatically

deducing other attributes that are entailed correct. (c) Minimal delays. It improves the

response time by reducing the latency for generating new suggestions at each interac-

tive step.

Note that the users are not necessarily domain experts, as long as they can assure

the correctness of certain attributes of input tuples that are required to match eRs and

master tuples. In practice, different people may be responsible for entering and inter-

preting different attributes. Hence distinct attributes are often inspected and validated

by different people.

In the rest of the section we present the details of the procedures and optimization

techniques employed by CertainFix. Note that it is in PTIME to check whether t[Z′∪S]

leads to a unique fix. Therefore, below we focus on TransFix and Suggest.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 73

ϕ1

ϕ3

ϕ2 ϕ5

ϕ4ϕ6

ϕ7

ϕ8 ϕ9

Figure 3.4: An example dependency graph

3.5.1 TransFix: Generating Correct Fixes

We first present procedure TransFix. It takes as input a tuple t, a master relation Dm, a

set Σ of eRs, a set Z′ of attributes such that t[Z′] has been validated. It finds a unique

fix for t and extends Z′ by including those newly validated attributes. While not all of

the attributes of t may be validated, the procedure ensures that the attributes updated

are correct.

Procedure TransFix represents Σ as a dependency graph G, which tells us the order

of applying eRs.

Dependency graph. The dependency graph G of a set Σ of eRs is a directed graph

(V,E). Each node v ∈ V denotes an eR φv = ((Xv,Xmv) → (Bv,Bmv), tpv[Xpv]). There

exists an edge (u,v) ∈ E from node u to v if Bu ∩ (Xv ∪Xpv) ̸= /0. Intuitively, (u,v)

indicates that whether φv can be applied to t depends on the outcome of applying φu

to t. Hence φu is applied before φv.

The dependency graph of Σ remains unchanged as long as Σ is not changed. Hence

it is computed once, and is used to repair all input tuples until Σ is updated.

Example 3.5.1: The set Σ0 of eRs given in Example 3.2.1 consists of 9 eRs, fully

expressed as follows:

φ1: ((zip,zip) → (AC,AC), tp1 = ());

φ2: ((zip,zip) → (str,str), tp2 = ());

φ3: ((zip,zip) → (city,city), tp3 = ());

φ4: ((phn,Mphn) → (FN,FN), tp4[type] = (2));

φ5: ((phn,Mphn) → (LN,LN), tp5[type] = (2));

φ6: (([AC,phn], [AC,Hphn])→(str,str), tp6[type,AC]=(1,0800));

φ7: (([AC,phn], [AC,Hphn])→(city,city), tp7[type,AC]=(1,0800));

φ8: (([AC,phn], [AC,Hphn])→(zip,zip), tp8[type,AC]=(1,0800));

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 74

φ9: ((AC,AC) → (city,city), tp9[AC] = (0800)).

The dependency graph of Σ0 is depicted in Fig. 3.4. Note that, for instance, there

is an edge from φ1 to φ6 since the RHS of φ1 (i.e., {AC}) is the subset of LHS of φ6

(i.e., {AC, phn}); similarly for the other edges. 2 2

Procedure. Procedure TransFix is given in Fig. 3.5. It validates attributes of t as

follows. It first marks all the nodes in the dependency graph as unusable (line 1). It

then collects those nodes (eRs) whose LHS and pattern attributes are validated, puts

them in a set vset (line 2), and marks them as usable (line 3). Intuitively, for the eR φv

represented by a usable v, the attributes in t[Xv ∪Xpv] have already been validated, and

hence, φv can be possibly applied to t. The procedure uses another set uset to maintain

those eRs that are not yet usable but may become usable later on (line 4).

The procedure iteratively makes use of eRs in vset to fix attributes of t, and up-

grades eRs from uset to vset (lines 5-15). In each iteration, a node v is randomly

picked and removed from vset (line 6). If a master tuple tm can be found such that

(tm, φv) applies to t, and moreover, if for the RHS attribute Bv of φv, t[Bv] is not yet

validated (line 7), then t[Bv] is fixed using φv and tm, and Bv is included in Z′ (line 8).

The procedure then inspects each edge (v,u) emanating from v, to examine whether

φu becomes usable (lines 9-15). If u is in the candidate set uset, and moreover, if

RHS(φu) and RHSp(φu) are included in the extended Z′ (line 10), then u is added to

vset, removed from uset (line 11), and is marked usable (line 12). Otherwise, if u is

in neither vset nor uset (line 13), node u is added to vset if Xu ∪Xpu is a singleton

set containing Bv (line 14), or to uset if Xu ∪Xpu contains other attributes besides Bv

(line 15). Finally, the tuple t is returned along with the extended Z′ (line 16).

Example 3.5.2: Consider tuple t1 and the master data Dm of Fig. 3.1, and the set Σ0

of eRs given in Example 3.5.1. Assume that Z consists of zip only. Given Dm, Z and

the dependency graph G of Fig, 3.4, we show how procedure TransFix fixes attributes

of t1. As indicated in the table below, in iteration 0, uset is empty, while φ1 is in vset

since its X ∪Xp ⊆ Z′; similarly for φ2 and φ3.

iteration Z′ vset uset

0 zip φ1, φ2, φ3 /0

1 zip,AC φ2, φ3, φ9 φ6, φ7, φ8

2 zip,AC,str φ3, φ9 φ6, φ7, φ8

3 zip,AC,str,city φ9 φ6, φ7, φ8

4 zip,AC,str,city /0 φ6, φ7, φ8

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 75

Input: A tuple t, a set Z′ of attributes, a master relation Dm,

and a dependency graph G(V,E).

Output: A (partially) fixed tuple t and validated attributes Z′.

/* node u: φu = ((Xu,Xmu)→ (Bu,Bmu), tpu [Xpu]) */;

1. mark u.usable := false for each u ∈V ;

2. vset := { u | u ∈V and (Xu ∪Xpu)⊆ Z′ };

3. mark u.usable := true for each u ∈ vset;

4. uset := { u | u ∈V and (Xu ∪Xpu) ̸⊆ Z′

and (Xu ∪Xpu)∩Z′ ̸= /0 };

5. while vset ̸= /0 do

6. v := an eR picked from vset; vset := vset\{v};

7. if ∃tm ∈ Dm, (tm,φv) applies to t and Bv ̸∈ Z′ then

8. t[Bv] := tm[Bmv]; Z′ := Z′∪{Bv};

9. for each edge (v,u) ∈ E do

10. if u ∈ uset and (Xu ∪Xpu)⊆ Z′ then

11. vset := vset∪{u}; uset := uset\{u};

12. u.usable := true;

13. else if u ̸∈ uset and u.usable = false then

14. if {Bv}= (Xu ∪Xpu) then vset := vset∪{u};

15. else if Bv ∈ (Xu ∪Xpu) then uset := uset∪{u};

16. return (t,Z′);

Figure 3.5: Procedure TransFix

In iteration 1, TransFix picks and removes φ1 from vset. It finds that φ1 and master

tuple s1 (in Fig. 3.1) can be applied to t1. Hence it normalizes t1[AC] := s1[AC] = 131,

and expands Z′ by including AC. It adds φ9 to vset since X ∪Xp of φ9, i.e., {AC}, is

validated. Moreover, φ6–φ8 are added to uset, since while AC is validated, attributes

phn and type are not yet.

In iteration 2 (resp. 3), φ2 (resp. φ3) is selected from vset, and str (resp. city) is

fixed by matching s1. Here t1 is updated by t1[str] := s1[str] = 51 Elm Row.

In iteration 4, φ9 is selected and removed from vset. No change is incurred to t

since city is already validated. TransFix terminates since vset is now empty. 2 2

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 76

Correctness. Observe the following. (1) Each eR is used at most once. When a node is

removed from vset, it will not be put back. Since the size of vset is at most the number

card(Σ) of eRs in Σ, the while loop (lines 5-15) iterates at most card(Σ) times. (2)

When applying (tm,φ) to t, t[X ∪Xp] have already been validated; thus t[B] is ensured

correct. (3) All the eRs that are possibly usable are examined. Hence, when TransFix

terminates, no more attributes of t could be fixed given Z.

Complexity. Let G(V,E) be the dependency graph of Σ. Note that |V |= card(Σ). The

initialization of TransFix runs in O(|Σ|) time (lines 1-4), by employing a hash table. As

argued above, at most |V | iterations of the outer loop (lines 6-15) are executed, since

each iteration consumes at least one eR in Σ. The inner loop (lines 10-15) is run at most

|V | times for each outer iteration (i.e., checking all eRs in Σ). In addition, observe the

following: (a) checking containment and intersection of two attribute sets (Xu ∪Xpu)

and Z′ is in O(|Xu ∪Xpu|) time if we use a hash table; and (b) it takes constant time to

check whether there exists a master tuple that is applicable to t with an eR, by using a

hash table that stores tm[Xm] as a key for tm ∈ Dm. Putting these together, each outer

iteration is in O(|Σ|) time, and hence, TransFix is in O(|V ||Σ|) time, which is at most

O(|Σ|2). In practice, |Σ| is typically small.

3.5.2 Suggest: Generating New Suggestions

To present procedure Suggest, we first define suggestions and state the problem of

finding suggestions.

Suggestions. Consider a tuple t, where t[Z] has been validated. A suggestion for t

w.r.t. t[Z] is a set S of attributes such that there exists a certain region (Z ∪ S,{tc}),
where tc is a pattern and t[Z] satisfies tc[Z].

That is, if the users additionally assert that t[S] is correct and t[Z∪S] matches some

certain region, then a certain fix is warranted for t.

Example 3.5.3: Recall from Example 3.5.2 that t1[Z] is fixed by using Σ0 and Dm,

where Z = {zip,AC,str,city}. Let S = {phn, type, item}. One can verify that S is a

suggestion for t1 w.r.t. t1[Z]. Indeed, (Z ∪ S, {tc}) is a certain region for (Σ0,Dm),

where tc = (EH7 4AH,131,51 Elm Row,Edi︸ ︷︷ ︸
Z

,079172485,2,︸ ︷︷ ︸
S

). 2 2

The users would naturally want a suggestion as “small” as possible, so that they

need to make minimal efforts to ensure some attributes of t to be correct. This moti-

vates us to study the following problem.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 77

The S-minimum problem is to decide, given (Σ,Dm), a set t[Z] of attributes that

has been validated, and a positive integer K, whether there exists a non-empty set S of

attributes such that (a) Z ∩S = /0, (b) |S| ≤ K and (c) S is a suggestion for t w.r.t. t[Z].

Observe that the Z-minimum problem (Section 3.4) is a special case of the S-

minimum problem when no attribute is fixed initially (i.e., Z = /0). From this and

Theorems 3.4.12 and 3.4.17 it follows that the S-minimum problem is NP-complete

and approximation-hard.

These complexity bounds suggest that we develop heuristic algorithms to com-

pute suggestions, along the same lines as computing certain regions, as discussed in

[FLM+10]. When computing Z-minimum certain regions, all eRs need to be consid-

ered [FLM+10]. When it comes to suggestions, in contrast, attributes t[Z] are already

validated, which can be used to reduce the search space of eRs by refining some eRs

and leaving the others out.

To do this we use the following notations. For an eR φ = ((X ,Xm) →
(B,Bm), tp[Xp]) and a list Xi of attributes in X , we use λφ(Xi) to denote the correspond-

ing attributes in Xm. For instance, when (Xi,Xmi) = (ABC,AmBmCm), λφ(AC) = AmCm.

We also write φ+ = ((X ,Xm)→ (B,Bm), t+p [X
+
p]), where Xp ⊆ X+

p , i.e., φ+ differs from

φ only in the pattern.

Consider a set Σ of eRs, a master relation Dm, an input tuple t, and attributes Z

such that t[Z] is fixed using TransFix. For an eR φ in Σ, (1) if there exists no tuple

tm ∈ Dm such that (φ, tm) applies to t, then φ cannot be used to fix t; otherwise, (2) we

may extend the pattern of φ and refine its values with t[Z], which yields φ+. Hence we

introduce the following notion.

The set of applicable rules for t[Z] w.r.t. Σ, denoted as Σt[Z], consists of eRs φ+

defined as follows. For each φ in Σ, φ+ is derived from φ if (a) B ̸∈ Z; (b) tp[Xp ∩Z]≈
t[Xp∩Z]; and (c) there exists a master tuple tm ∈Dm, where tm[λφ(Xp∩X)]≈ tp[Xp∩X]

and tm[λφ(X ∩Z)] = t[X ∩Z]. Here in φ+, (i) X+
p = Xp∪ (X ∩Z) and (ii) t+p [X

+
p ∩Z] =

t[X+
p ∩Z].

Intuitively, φ+ can be derived from φ if φ does not change the validated attributes

(i.e., (a) above), matches them (i.e., (b)), and moreover, if there exists some master

tuple that can be applied to t with φ (i.e., (c)). The refined rule φ+ extends the pattern

attributes of φ with Z (i.e., (i) above), and enriches its pattern values using the specific

values of t[Z] (i.e., (ii)).

Example 3.5.4: For t1[zip,AC,str,city] validated in Example 3.5.2, applicable rules in

Σt1[zip,AC,str,city] include:

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 78

φ4: ((phn,Mphn) → (FN,FN), tp4[type] = (2));

φ5: ((phn,Mphn) → (LN,LN), tp5[type] = (2));

φ+
6 : (([AC,phn], [AC,Hphn]) → (str,str), tp6[type,AC]=(1,131));

φ+
7 : (([AC,phn], [AC,Hphn])→(city,city), tp7[type,AC]=(1,131));

φ+
8 : (([AC,phn], [AC,Hphn]) → (zip,zip), tp8[type,AC]=(1,131));

Here φ4 and φ5 are taken from Σ0, while φ+
6 is derived from φ6 by refining tp6[AC]

(from 0800 to 131), when t1[AC] is known to be 131; similarly for φ+
7 and φ+

8 . 2 2

We show below that it suffices to consider Σt[Z].

Proposition 3.5.1: When t[Z] is assured correct, S is a suggestion for t iff there exists

a pattern tuple tc such that (Z ∪S,{tc}) is a certain region for (Σt[Z],Dm). 2

Proof. Assume that there exists tc such that (Z ∪ S,{tc}) is a certain region for

(Σt[Z],Dm). We show that S is a suggestion by constructing a pattern tuple t ′c such

that (Z ∪ S,{t ′c}) is a certain region for (Σ,Dm). Consider t ′c, where t ′c[Z] = t[Z] and

t ′c[S] = tc[S]. One can easily verify the following. (1) (Z ∪ S,{t ′c}) is a certain region

for (Σt[Z],Dm); (2) the set of attributes covered by (Z∪S,{t ′c},Σ,Dm) is the same as the

set covered by (Z∪S,{t ′c},Σt[Z],Dm); and (3) (Σt[Z],Dm) is consistent w.r.t. (Z∪S,{t ′c})
iff (Σ,Dm) is consistent w.r.t. (Z ∪ S,{t ′c}). From these it follows that (Z ∪ S,{t ′c}) is

also a certain region for (Σ,Dm).

Conversely, assume that S is a suggestion. Then there exists a certain region (Z ∪
S,{tc}) for (Σ,Dm). We define a pattern tuple t ′c, where t ′c[Z] = t[Z] and t ′c[S] = tc[S].

One can show that (Z ∪ S,{t ′c}) is a certain region for (Σt[Z],Dm). Indeed, this can be

verified along the same lines as the argument given above. 2

Procedure Suggest. Leveraging Proposition 3.5.1, we outline procedure Suggest in

Fig. 3.6. It takes Σ,Dm,Z and t as input, and finds a suggestion as follows. It first

derives applicable rules Σt[Z] from Σ and t[Z] (line 1). It then computes a certain region

for (Σt[Z],Dm) (line 2), by employing the algorithm provided in [FLM+10]. Finally, it

constructs and returns a new suggestion (line 3).

Correctness and Complexity. The correctness of Suggest follows from the defini-

tion of suggestions and Proposition 3.5.1. For its complexity, observe the following.

(1) The set Σt[Z] can be derived from Σ and t[Z] in O(|Σ|+ |t|) time, by employing

the indices developed for Procedure TransFix. Indeed, the conditions for applicable

rules can be checked in constant time. (2) The algorithm of [FLM+10] computes a

certain region in O(|Σt[Z]|2|Dm|log(|Dm|)) time, where |Σt[Z]| ≤ |Σ|. Hence Suggest is

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 79

Input: Tuple t, attributes Z, eRs Σ, and master data Dm.

Output: A set sug of attributes as suggestion.

1. derive Σt[Z] using t, Z and Σ;

2. compute a certain region (Z′,Tc) using Σt[Z] and Dm;

3. return sug := Z′ \Z;

Figure 3.6: Procedure Suggest

start

call Suggest()

start

start

Is S4 a suggestion?

(a) Initial State

(true, suggest Z)

(true, suggest S1) (false, NA)

(false, NA)

Is S1 a suggestion?

Is S2 a suggestion?

(true, suggest Z)

call Suggest()

(true, suggest S2) Is S3 a suggestion?

(false, NA)

(false, NA)

call Suggest()

(true, suggest Z)

(true, suggest S1)

(true, suggest S2)

Is S1 a suggestion?

Is S2 a suggestion?

Is S5 a suggestion?

(true, suggest S3)(false, NA)

(b) After a tuple t1 is fixed (c) After several tuples are fixed

Figure 3.7: A sample BDD

in O(|Σ|2|Dm|log(|Dm|)) time.

Optimization. It is quite costly to compute a certain region in each round of user

interactions. This motivates us to develop an optimization strategy, which aims to

minimize unnecessary recomputation by reusing certain regions computed earlier. In

a nutshell, when processing a stream of input tuples of schema R, we maintain certain

regions generated for them. When a new input tuple t arrives, we check whether some

region computed previously remains a certain region for fixing t. If so, we simply

reuse the region, without computing a new one starting from scratch. We compute new

suggestions only when necessary. As will be verified by our experimental study, this

reduces the cost significantly, since it is far less costly to check whether a region is

certain than computing new certain regions [FLM+10].

We maintain previously computed certain regions by using a binary decision dia-

gram (BDD) [Knu09]. A BDD is a directed acyclic graph Gb = (Vb,Eb). Each node u

in Vb represents either a condition or a call for Suggest, and it has at most two outgo-

ing edges. The root of Gb is denoted as start. Each edge (u,v) is labeled with a pair

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 80

(bval,act), where bval is either Boolean value true or false; and act is an action, which

provides a suggestion if bval is true, and generates new suggestions otherwise.

Example 3.5.5: Consider the evolution of a BDD depicted in Fig. 3.7. When no tuples

have been processed, the BDD is shown in Fig. 3.7(a). Here the set Z of attributes taken

from the precomputed certain region is treated as the first suggestion, as described in

procedure TransFix. For the first input tuple t1, if t1[Z] does not match any certain

region, a new suggestion needs to be computed; hence the call for procedure Suggest.

Assume that t1 is fixed with two suggestions S1 and S2. Then BDD is expanded, as

shown in Fig. 3.7(b). Consider a newly arrived tuple t2. If t2[Z] does not satisfy any

certain region, TransFix expands the set Z′ of validated attributes. We check whether

S1 is a suggestion w.r.t. t2[Z′]. If so, the true branch is followed and S1 is recommended

to the users; otherwise Suggest is invoked to generate a new suggestion. Similarly, S2

is checked. If t2 still cannot be fixed with S2, Suggest is invoked for both the true and

the false branches to produce a new suggestion. The new suggestion is added to the

BDD.

After more tuples are fixed, the BDD may evolve to Fig. 3.7(c), which collects

those certain regions generated when processing these tuples. As shown above, these

regions are reused when processing new tuples. 2 2

Capitalizing on BDD, we present an optimized Suggest, denoted as Suggest+,

which is outlined in Fig.3.8. It takes t,Z,Σ,Dm, a BDD Gb and a node u on Gb as

input, and finds a suggestion as follows.

Suggest+ traverses Gb top-down starting from its root, i.e., the input u is initialized

at start node. At each round of interaction, a node u of Gb is visited, at which it checks

whether a precomputed suggestion associated with u remains a suggestion for t. If not,

it checks other previously computed regions via a false branch (lines 1-2). Otherwise,

it recommends the same suggestion to the users, and moves to the child of u via a true

branch (lines 3-4). In the next round of interaction, if needed, checking resumes at

node u. Suggest is invoked to compute new suggestions when no known regions can

be reused, and Gb is also maintained (line 5). Finally, a suggestion is returned (line 6).

It implements a strategy to decide what suggestions are maintained by a BDD

(line 5), to strike a balance between checking a set of suggestions and recomputing

a certain region. It also compresses BDD to reduce the space cost. We omit the details

for space limit.

We revise CertainFix by using Suggest+ instead of Suggest, and refer to it as

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 81

Input: Tuple t, attributes Z, eRs Σ, master data Dm,

a BDD Gb(Vb,Eb), and a node u in Vb.

Output: A set sug of attributes as suggestion.

1. while u is not a suggestion and u has a false branch do

2. u := v where the edge (u,v) is a false branch;

3. if u is a suggestion then

4. get sug from u; u := v where (u,v) is a true branch;

5. else sug := Suggest(t,Z,Σ,Dm); maintain Gb with sug;

6. return sug;

Figure 3.8: Procedure Suggest+

CertainFix+.

3.6 CerFix: A System for Cleaning Data with Certain

Fixes

Following [FLM+10], we develop CERFIX, a data cleaning system that finds certain

fixes for input tuples at the point of data entry. It differs from other systems that

also ask for user feedback (e.g., [CCC+10]) in what feedback is requested and how the

feedback is used. Below we first present CERFIX, and then outline what functionalities

we shall demonstrate.

3.6.1 The CERFIX System

The architecture of CERFIX is depicted in Fig. 3.9. CERFIX maintains a collection of

master data (master data manager) and a set of editing rules (rule engine). With respect

to the master data and editing rules, it computes a set of certain regions (region finder).

It inspects and repairs input tuples via a data monitor, which interacts with the users

to find certain fixes for input tuples. It also provides a Web interface (data explorer)

and a data auditing module for users to manage editing rules and trace changes to data,

respectively.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 82

Master Data Manager

Dm

Rule Engine

Editing Rules

Data Auditing

Data Monitor

Region Finder
Certain regions

interact

Data cleaning module

Web interface

Data module

New suggestion

Data repairing

Data Explorer

tupletuple t

Figure 3.9: The CERFIX Architecture.

Below we briefly present the key components of CERFIX. We refer the interested

readers to [FLM+10] for details about editing rules, certain regions and their compu-

tation.

Rule engine. It maintains a set of editing rules (eRs) that specify (a) whether an input

tuple t can match a master tuple s via a pattern tuple, and (b) which attribute values

of t can be changed and what correct values they should take from the master data.

The engine also implements static analysis techniques developed in [FLM+10]. In

particular, it supports the following. (1) It checks the consistency of editing rules,

i.e., whether the given rules are dirty themselves. Moreover, (2) provided that some

attributes of a tuple are correct, it automatically derives what other attributes can be

validated (assured correct) by using editing rules and master data.

Editing rules can be either explicitly specified by the users, or derived from in-

tegrity constraints, e.g., CFDs and matching dependencies [FJLM09] for which dis-

covery algorithms are already in place. CERFIX currently only supports manual spec-

ification of editing rules via the Web interface.

Master data manager. It maintains master data, which is assumed consistent and

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 83

accurate [RW08].

Region finder. A region is a pair (Z,Tc), where Z is a list of attributes of an input tuple

and Tc is a pattern tableau consisting of a set of pattern tuples with attributes in Z. A

region (Z,Tc) is a certain region w.r.t. a set of editing rules and master data if for any

input tuple t, as long as t[Z] is correct and t[Z] matches a pattern in Tc, the editing rules

warrant to find a certain fix for t. Based on the algorithms in [FLM+10], top-k certain

regions are pre-computed that are ranked ascendingly by the number of attributes, and

are recommended to users as (initial) suggestions.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 84

Figure 3.10: Management of editing rules.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 85

(a
)

Pr
ov

id
in

g
su

gg
es

tio
ns

(b
)

Fi
xi

ng
da

ta
(c

)
A

ch
ie

vi
ng

ce
rt

ai
n

fix
es

Fi
gu

re
3.

11
:

D
at

a
m

on
ito

r.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 86

Data monitor. This is the most important module of CERFIX. It interacts with the

users and finds certain fixes for input tuples, as follows. (1) Initial suggestions. It

recommends the set of certain regions computed by region finder to the users as sug-

gestions. For each input tuple t, if the users ensure that t[Z] is correct and matches a

pattern in Tc for any region (Z,Tc) in the set, then a certain repair for t is warranted. (2)

Data repairing. For an input tuple t, the users may respond with a set t[S] of attributes

that is correct, where S may not be any of the certain regions. Data monitor iteratively

employs editing rules and master data to fix as many attributes in t as possible, and

expands the correct attribute set S by including those attributes that are validated via

the inference system of the rule engine. (3) New suggestion. If not all attributes of t

have been validated, data monitor computes a new suggestion, i.e., a minimal number

of attributes, which are recommended to the users. If the users ensure the correctness

of these attributes in t, data monitor will find a certain fix for t. The process of steps

(2) and (3) repeats until a certain fix of t is reached.

CERFIX ensures that each fix is correct with editing rules and master data. It

also minimizes users’ effort by identifying a minimal number of attributes for users to

validate.

Data auditing. This module keeps track of changes to each tuple, incurred either by

the users or automatically by data monitor with editing rules and master data. Statistics

about the changes can be retrieved upon users’ requests.

3.6.2 How the CERFIX works

We next describe various aspects of CERFIX in more detail. More specifically, we

show the following: (1) how users manage editing rules with the aid of the Web in-

terface (data explorer in Fig. 3.9); (2) how CERFIX interacts with the users for data

monitoring, to detect and fix errors in input tuples at the point of their entry; and (3)

how data auditing works, to keep track of which attributes are fixed and where the cor-

rect values come from, and provide statistics about the percentage of data that is fixed

by user efforts or by CERFIX.

Initialization. The users are required to configure an instance, which consists of two

parts: (a) a data connection with JDBC url, username, password and the corresponding

JDBC driver provided by users; and (b) specifying the schema of input (dirty) tuples

and that of the master data.

We illustrate these with the master data and the input data shown in Fig. 3.10. Note

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 87

that they have different schemas.

Master data. Each tuple in the master data specifies a person in the UK in terms of the

name (FN, LN), area code (AC), home phone (Hphn), mobile phone (Mphn), address

(street str, city and zip code), date of birth (DOB) and gender.

Input tuples. Each tuple specifies a UK customer.

Editing rule management. Figure 3.10 displays the Web interface for managing eRs.

We show how the users can manage (view/modify/add/delete) eRs using the data ex-

plorer. The system currently only supports to import eRs manually via the rule man-

ager, where the eRs may either be designed by experts or be discovered from CFDs

or MDs. For instance, Figure 3.10 shows nine editing rules φ1–φ9, for the id’s 1–9,

respectively.

◦ φ1 (resp. φ2 and φ3) states that if an input tuple t and a master tuple s have the

same zip code and if t[zip] is already validated, then t can be updated by t[zip] :=

s[zip] (resp. str and city).

◦ φ4 (resp. φ5) states that if the phn of a tuple t matches the Mphn of a master

tuple s, and if t[phn] is validated, then t[FN] := s[FN] (resp. LN). These eRs pose

a constraint (a pattern tuple) t[type] = 2, requiring that phn is mobile phone. This

rule can be viewed or edited by clicking the view/edit frame for the pattern.

◦ φ6 (resp. φ7 and φ8) tells us that if the (AC, phn) attributes of an input tuple t

match the (AC, Hphn) values of a master tuple s, and if t[AC,phn] are validated,

then t[str] := s[str] (resp. city and zip). These eRs have a pattern t[type] = 1, i.e.,

phn is home phone.

◦ φ9 states that when the AC value of an input tuple t is not 0800 (toll free, non-

geographic), if it agrees with a master tuple s on its AC attribute, and moreover,

if t[AC] has been validated, then t should be updated with t[city] := s[city]. As

shown in Fig. 3.10, the pattern “̸= 0800” can be edited via a pop-up frame.

CERFIX automatically tests whether the specified eRs make sense w.r.t. master data,

i.e., the rules do not contradict each other and will lead to a unique fix for any input

tuple. Furthermore, given certain attributes that are validated, it automatically derives

what other attributes can be validated by eR and master data, via an inference system.

Data monitor. We show how CERFIX interacts with users to find a certain fix for each

input tuple.

1. CERFIX suggests a set of attributes for the users to validate. The users may either

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 88

Figure 3.12: Data auditing.

validate these attributes, or opt to assure that some other attributes are correct.

The initial suggestions are computed by region finder.

◦ As shown in Fig. 3.11(a), the attributes suggested by CERFIX are high-

lighted in yellow, i.e., area code AC, phone number phn, phone type, and

product item. The values of the attributes assigned by the users are 201,

075568485, Mobile phone (type 2), and DVD, respectively.

2. If the users opt to validate these attributes, CERFIX iteratively applies editing

rules and master data to the data, and expands the set of attributes validated.

◦ As shown in Fig. 3.11(b), all attributes that have been validated are now

highlighted in green. These include attributes first name FN, last name LN,

and city, for which the correctness is validated by CERFIX. For instance,

the value of FN is normalized from ‘M.’ to ‘Mark’ by eR φ4 with the FN

value of the second master tuple in Fig. 3.10.

The users may decide to validate attributes other than those suggested. CERFIX

reacts by fixing data with editing rules and master data in the same way, based

on the attributes selected and validated by the users.

3. If some attributes of the input tuple are still not validated, CERFIX computes a

new suggestion and goes back to step 1, to interact with the users by providing

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 89

the new suggestion. In each interaction, both the users and CERFIX expand the

attributes that are validated.

◦ As shown in Fig. 3.11(b), CERFIX suggests the users to validate zip code.

After two rounds of interactions, all the attributes are validated. This is

shown in Fig. 3.11(c) with all attributes in green.

When fixing the data, the most time-consuming procedure is to compute sugges-

tions. To reduce the cost, CERFIX pre-computes a set of certain regions with region

finder (see Fig. 3.9), which are provided to the users as initial suggestions, and are

referenced when computing new suggestions.

We remark that data monitor of CERFIX is quite generic, i.e., it does not depend

on any particular system. Indeed, it supports several interfaces to access data, which

could be readily integrated with other database applications.

Data auditing. CERFIX provides a data auditing facility such that after a stream of

input tuples is fixed, the users may inspect the changes made to those tuples.

The users may inspect attributes of an individual tuple. For instance, as shown in

Fig. 3.12, when the users select the FN attribute of a tuple (highlighted in yellow),

CERFIX shows that it has been fixed by normalizing the first name ‘M.’ to ‘Mark’. It

further presents what master tuples and editing rules have been employed to make the

change.

The users may also want to inspect each attribute (column) of the input tuples.

As shown in Fig. 3.12, when FN is selected, CERFIX presents the statistics about the

attribute FN, namely, the percentage of FN values that were validated by the users and

the percentage of values that were automatically fixed by CERFIX. Our experimental

study indicates that in average, 20% of values are validated by users while CERFIX

automatically fixes 80% of the data.

Summary. We exhibit the strength of editing rules and important functionalities of

CERFIX. (1) Editing rules. As opposed to integrity constraints that only detect the

presence of errors in the data, editing rules identify what attributes are erroneous and

tell us how to correct the errors with master data. (2) Region finder. It tells us to

validate an input tuple, what minimal sets of attributes have to be assured correct. (3)

Data monitor. It interacts with the users to find certain fixes, while minimizing human

efforts by suggesting a minimal number of attributes for the users to validate. (4) Data

auditing. It helps the users understand better the quality of input data sets.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 90

3.7 Experimental Study

We next present an experimental study, using real-life data. Two sets of experiments

were conducted, to verify (1) the effectiveness of our method in terms of the quality of

suggestions generated, measured by the number of attributes that are correctly fixed in

a round of user interactions; and (2) the efficiency and scalability of our algorithm for

finding fixes and suggestions.

For the effectiveness study, we compared with the following: (a) GRegion that

greedily finds a certain region. It chooses attributes according to one rule: at each

stage, choose an attribute which may fix the largest number of uncovered attributes;

and (b) IncRep, the algorithm in [CFG+07] for data repairing; given a dirty database D

and a set of constraints, it is a heuristic method to make D consistent, i.e., finds a repair

D′ that satisfies the constraints and “minimally” differs from D. It adopts a metric to

minimize (1) the distance between the original values and the new values of changed

attributes and (2) the weights of the attributes modified.

Experimental data. Real-life datasets were employed to examine the applicability of

our method in practice.

(1) HOSP (Hospital Compare) is publicly available from U.S. Department of Health

& Human Services∗. We used three tables: HOSP, HOSP MSR XWLK, and

STATE MSR AVG, which record the hospital information, the score of measurement

of each hospital and the average score of each hospital measurement, respectively. We

created a big table by joining the three tables with natural join, among which we chose

19 attributes for the schema of both the master relation Rm and the relation R: zip, ST

(state), phn, mCode (measure code), measure name, sAvg (StateAvg), hName (hos-

pital name), hospital type, hospital owner, provider number, city, emergency service,

condition, Score, sample, id, address1, address2, address3.

We designed 21 eRs for the HOSP data, with five representative ones as follows:
φ1 : ((zip,zip) → (ST,ST), tp1[zip] = (nil));
φ2 : ((phn, phn) → (zip, zip), tp2[phn] = (nil));
φ3 : (((mCode, ST), (mCode, ST)) → (sAvg,sAvg), tp3 = ());

φ4 : (((id, mCode), (id, mCode)) → (Score,Score), tp4 = ());

φ5 : ((id, id) → (hName,hName), tp5 = ()).

(2) DBLP is from the DBLP Bibliography†. We first transformed the XML data into

∗http://www.hospitalcompare.hhs.gov/
†http://www.informatik.uni-trier.de/∼ley/db/

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 91

relations. We then created a big table by joining the inproceedings data (conference

papers) with the proceedings data (conferences) on the crossref attribute (a foreign

key). Besides, we also included the homepage info (hp) for authors, which was joined

by the homepage entries in the DBLP data.

From the big table, we chose 12 attributes to specify the schema of both the master

relation Rm and the data relation R, including ptitle (paper title), a1 (the first author),

a2 (the second author), hp1 (the homepage of a1), hp2 (the homepage of a2), btitle

(book title), publisher, isbn, crossref, year, type, and pages.

We designed 16 eRs for the DBLP data, shown below.

ϕ1 : ((a1, a1) → (hp1, hp1), tp1[a1] = (nil));
ϕ2 : ((a2, a1) → (hp2, hp1), tp2[a2] = (nil));
ϕ3 : ((a2, a2) → (hp2, hp2), tp3[a2] = (nil));
ϕ4 : ((a1, a2) → (hp1,hp2), tp4[a1] = (nil));
ϕ5 : (((type, btitle, year), (type, btitle, year)) →

(A, A), tp5[type] = (‘inproceeding’));
ϕ6 : (((type, crossref), (type, crossref) →

(B, B), tp6[type] = (‘inproceeding’));
ϕ7 : (((type, a1, a2, title, pages), (type, a1, a2, title, pages)) →

(C, C), tp7[type] = (‘inproceeding’)).

where the attributes A,B and C range over the sets {isbn,publisher,crossref},

{btitle,year, isbn,publisher} and {isbn,publisher,year,btitle,crossref}, respectively.

Observe that in eRs ϕ2 and ϕ4, the attributes are mapped to different attributes. That

is, even when the master relation Rm and the relation R share the same schema, some

eRs still could not be syntactically expressed as CFDs, not to mention their semantics.

A dirty data generator was developed. Given a clean dataset (HOSP or DBLP),

it generated dirty data controlled by three parameters: (a) duplicate rate d%, which

is the probability that an input tuple matches a tuple in master data Dm, indicating

the relevance and completeness of Dm; (b) noise rate n%, which is the percentage of

erroneous attributes in input tuples; and (c) the cardinality |Dm| of master dataset Dm.

User interactions. User feedback was simulated by providing the correct values of the

given suggestions.

Implementation. All algorithms were implemented in C++. The experiments were

run on a machine with an Intel(R) Core(TM)2 Duo P8700 (2.53GHz) CPU and 4GB

of memory. Each experiment was repeated 5 times and the average is reported here.

Experimental results. We next present our findings.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 92

Exp-1: Effectiveness. The tests were conducted by varying d%, |Dm| and n%, The

default values for d%, |Dm| and n% were 30%, 10K and 20%, respectively. When all

these parameters were fixed, we generated 10K tuples for this set of experiments, but

allowed the dataset to scale to 10M tuples in the scalability study.

This set of experiments includes (1) the effectiveness of certain regions generated

by our algorithm compared with GRegion; (2) the initial suggestion selection; (3) the

effectiveness of suggestions in terms of the number of interaction rounds needed; (4)

the impact of duplicate rate d%; (5) the impact of master data size |Dm|; (6) the impact

of noise rate n%; and (7) the effectiveness of our method compared with IncRep.

The studies were quantified at both the tuple level and the attribute level. Since

we assure that each fixed tuple is correct, we have a 100% precision. Hence the first

measure we used is recall, defined as follows:

recallt = #-corrected tuples / #-erroneous tuples

recalla = #-corrected attributes / #-erroneous attributes

The number of corrected attributes does not include those fixed by the users.

To compare with IncRep, we also used F-measure‡ to combine recall and preci-

sion, since the precision of repairs produced by IncRep is not 100%. Precision and

F-measure are given as follows:

precisiona = #-corrected attributes / #-changed attributes

F-measure = 2 · (recalla ·precisiona)/(recalla +precisiona)

(1) The effectiveness of certain regions. The table below shows the number of at-

tributes in the certain region found by our method CompCRegion [FLM+10] and

its counterpart found by GRegion. It shows that the certain region computed by

CompCRegion has far less attributes than its counterpart by GRegion, which thus min-

imizes user efforts, as expected. Indeed, CompCRegion found the best certain region

(i.e., with the least number of attributes) for both datasets as a suggestion.

Dataset CompCRegion GRegion

HOSP 2 4

DBLP 5 9

(2) The initial suggestion selection. We evaluated the impact of initial suggestions by

using the certain region with the highest quality (denoted by CRHQ) vs. the one with

‡http://en.wikipedia.org/wiki/F-measure

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 93

the median quality (CRMQ). As shown in the table below, when CRHQ is used as

the initial suggestion, CertainFix yields higher F-measure values than its CRMQ coun-

terpart. That is, CRHQ allows CertainFix to automatically fix more attributes than

CRMQ.

Dataset
F-measure

CRHQ CRMQ

HOSP 0.74 0.70

DBLP 0.79 0.69

(3) The effectiveness of suggestions. Fixing the three parameters, we studied recall

w.r.t. user interactions.

Figure 3.13(a) shows the tuple-level recalls. The x-axis indicates the number of

interactions and the y-axis represents recall values. It tells us that few rounds of inter-

actions are required to fix the entire set of attributes of an input tuple, e.g., at most 4

(resp. 3) rounds for HOSP (resp. DBLP). Most tuples could be correctly fixed within

few interactions, e.g., 93% (resp. 100%) of tuples are fixed in the third round for HOSP

(resp. DBLP).

Figure 3.13(b) reports the attribute-level recalls, to complement Figure 3.13(a).

Among the errors fixed, some were automatically corrected by our algorithm, while

the others by user feedback during the interactions. As remarked earlier, the errors

fixed by the users were not counted in our recall values. Hence recalla is typically

below 100%. As shown in Fig. 3.13(b), our method could fix at least 50% of the

errors within 2 rounds of interactions, although the errors were distributed across all

attributes, and moreover, only a portion of the errors were fixable by the given Σ and

Dm given that the duplicate rate d% is only 30%. One can see that the recall value at

the 4th (resp. 3rd) round of interaction for HOSP (resp. DBLP) is unchanged, indicating

that the users corrected the attributes that are irrelevant to Σ and Dm. As will be seen

later, when d% is increased, the attribute-level recall gets higher.

These experimental results verify that our method is able to provide effective sug-

gestions, such that all errors could be fixed within few rounds of user interactions, by

using eRs and master data, even when the master data is not very relevant (when d% =

30%).

(4) Impact of d%. Fixing |Dm| = 10K and n% = 20%, we varied duplicate rate d% from

10% to 50%. Figures 3.14(a) and 3.14(d) (resp. Figures 3.15(a) and 3.15(d)) report the

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 94

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4
R

ec
al

l t

#-interactions

HOSP
DBLP

(a) Tuple-level recalls

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

1 2 3 4

R
ec

al
l a

#-interactions

HOSP
DBLP

(b) Attribute-level recalls

Figure 3.13: Recall values w.r.t. the number of interactions

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5

R
ec

al
l t

Duplicate rate

k=1
k=2

k=3
k=4

(a) Varying d% for HOSP

0.2

0.4

0.6

0.8

1

5 10 15 20 25

R
ec

al
l t

Master data size (*1000)

k=1
k=2

k=3
k=4

(b) Varying |Dm| for HOSP

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5

R
ec

al
l t

Noise rate

k=1
k=2

k=3
k=4

(c) Varying n% for HOSP

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5

R
ec

al
l t

Duplicate rate

k=1
k=2
k=3

(d) Varying d% for DBLP

0.2

0.4

0.6

0.8

1

5 10 15 20 25

R
ec

al
l t

Master data size (*1000)

k=1
k=2
k=3

(e) Varying |Dm| for DBLP

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5

R
ec

al
l t

Noise rate

k=1
k=2
k=3

(f) Varying n% for DBLP

Figure 3.14: Tuple-level fixes when varying one of d%, |Dm| and n%

tuple-level recalls (resp. F-measure) after k rounds of interactions for HOSP and DBLP,

respectively.

Figures 3.14(a) and 3.14(d) show that the larger d% is, the higher the recall is, as

expected, since a larger d% means a higher probability that an input tuple matches

some master tuple such that its errors can be fixed. A closer examination reveals that

early interactions are more sensitive to d%, e.g., when k = 1, the percentage of fixed

tuples increases from 0.1 to 0.5, when d% varies from 10% to 50%. In later interac-

tions, e.g., the last round when k = 4, the users have to ensure the correctness of those

attributes that cannot be fixed by eRs and Dm. Hence recallt remains unchanged there.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 95

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5
F

-m
ea

su
re

Duplicate rate

k=1
k=2
k=3

k=4
IncRep

(a) Varying d% for HOSP

0.2

0.4

0.6

0.8

5 10 15 20 25

F
-m

ea
su

re

Master data size (*1000)

k=1
k=2
k=3

k=4
IncRep

(b) Varying |Dm| for HOSP

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5

F
-m

ea
su

re

Noise rate

k=1
k=2
k=3

k=4
IncRep

(c) HOSP attribute-level w.r.t.

n%

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5

F
-m

ea
su

re

Duplicate rate

k=1
k=2

k=3
IncRep

(d) Varying d% for DBLP

0.2

0.4

0.6

0.8

5 10 15 20 25
F

-m
ea

su
re

Master data size (*1000)

k=1
k=2

k=3
IncRep

(e) Varying |Dm| for DBLP

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5

F
-m

ea
su

re

Noise rate

k=1
k=2

k=3
IncRep

(f) DBLP attribute-level w.r.t. n%

Figure 3.15: Attribute-level fixes when varying one of d%, |Dm| and n%

Figures 3.15(a) and 3.15(d) further verify this observation: most attributes are fixed

by our method in early interactions, while those fixed in later rounds are by the users’

feedback. Moreover, the gap between the first two rounds of interactions (when k = 1

and k = 2) shows that the suggestions generated are effective.

The results tell us that our method is sensitive to duplicate rate d%: the higher d%

is, the more errors could be automatically fixed, in early interactions.

(5) Impact of |Dm|. Fixing d% = 30% and n% = 20%, we varied |Dm| from 5K to

25K. The tuple-level recalls (resp. F-measure values) are reported in Figures 3.14(b)

and 3.14(e) (resp. Figures 3.15(b) and 3.15(e)) after k rounds of interactions for HOSP

and DBLP, respectively.

Figures 3.14(b) and 3.14(e) show that in the first round of interactions, i.e., k = 1,

recallt is insensitive to |Dm|. Indeed, whether a certain fix exists or not in the first

interaction is determined by the duplicate rate d%, rather than |Dm|. As shown in

both figures, the recallt is 0.3 when k = 1, exactly the same as d%. However, when

interacting with the users, the recall values increase for larger Dm. This verifies that

TransFix is effective, which identifies eRs and master data to fix errors.

Figures 3.15(b) and 3.15(e) show that more attributes can be fixed by increasing

|Dm|, i.e., F-measure gets higher, even when the recallt is unchanged (e.g., k = 1), i.e.,

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 96

 0

 200

 400

 600

 800

 1000

1 2 3 4 5
E

la
ps

ed
 ti

m
e

(m
se

c)
#-tuples (*5000)

CertainFix
CertainFix+

(a) Varying |Dm| for HOSP

 0
 50

 100
 150
 200
 250
 300
 350
 400

1 2 3 4 5

E
la

ps
ed

 ti
m

e
(m

se
c)

#-tuples (*5000)

CertainFix
CertainFix+

(b) Varying |Dm| for DBLP

 0

 100

 200

 300

 400

 500

 600

10 102 103 104 105 106 107

E
la

ps
ed

 ti
m

e
(m

se
c)

#-tuples

CertainFix
CertainFix+

(c) Varying |D| for HOSP

 0
 50

 100
 150
 200
 250
 300
 350

10 102 103 104 105 106 107

E
la

ps
ed

 ti
m

e
(m

se
c)

#-tuples

CertainFix
CertainFix+

(d) Varying |D| for DBLP

Figure 3.16: Efficiency and Scalability

when not the entire tuple could be fixed. These results also confirm the observations

above about the sensitivity of later rounds of interactions to |Dm|.
These results tell us that the amount of master data is important to generating ef-

fective suggestions. The more the master data, the higher possibility that eRs could

find master tuples to fix attributes, as expected.

(6) Impact of n%. Fixing d% = 30% and |Dm| = 10K, we varied the noise rate n% from

0.1 to 0.5. Figures 3.14(c) and 3.14(f) (resp. Figures 3.15(c) and 3.15(f)) show the

tuple-level recalls (resp. F-measure) after k rounds of interactions for HOSP and DBLP,

respectively.

The results show that our method is sensitive to n% at neither the tuple level nor the

attribute level. At the tuple level (Figures 3.14(c) and 3.14(f)), recallt is the ratio of the

number of corrected tuples to the number of erroneous tuples. For a set of attributes

asserted by the users, the attributes fixed by our algorithm remain the same for all

input tuples, irrelevant to what attributes are originally erroneous. At the attribute-level

(Figures 3.15(c) and 3.15(f)), since the precision of our algorithm is 100%, F-measure

is determined by the recall values. As recallt is insensitive to n%, so is F-measure.

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 97

(7) Comparison with IncRep. To favor IncRep, we fixed k = 1, since IncRep does

not interact with the users. Since IncRep measures recall at the attribute level only

[CFG+07], we focus on F-measure. Figures 3.15(a) and 3.15(d) (resp. Figures 3.15(b)

and 3.15(e)) show the F-measure values when varying d% (resp. |Dm|) while fixing the

other two parameters. The results tell us that IncRep has slightly higher F-measure val-

ues than our method. This is because IncRep attempts to repair the entire tuple, while

our method only corrects those attributes when the fixes are certain in the first round

of interaction, and defers the repairing of the other attributes to later rounds upon the

availability of user feedback.

Figures 3.15(c) and 3.15(f) show that when the noise rate n% is increased, the F-

measure values of IncRep get substantially lower, and are worse than ours. This is

because IncRep introduces more errors when the noise rate is higher. Our method, in

contrast, ensures that each fix is correct, and hence is insensitive to n%.

Exp-2: Efficiency and scalability. This set of experiments evaluated the efficiency

of our method by varying the size of Dm (resp. a set D of input tuples) in Fig. 3.16(a)

and Fig. 3.16(a) for HOSP (resp. Fig. 3.16(b) and Fig. 3.16(d) for DBLP). We report

the average elapsed time for each round of interaction, i.e., the time spent on fixing

tuples in D and for generating a suggestion. Here CertainFix and CertainFix+ denotes

the algorithm that does not use BDD and employs BDD, respectively.

Figures 3.16(a) and 3.16(b) show that our method takes no more than a second to

fix attributes of a tuple and to come up with a suggestion. Further, the optimization

strategy by using BDD is effective: it substantially reduces the response time. More-

over, both CertainFix and CertainFix+ scale well with master data.

As shown in Figures 3.16(c) and 3.16(d), CertainFix is insensitive to |D|, since

each input tuple is processed independently. For CertainFix+, when |D| is very small

(e.g., 10), BDD does not help us find suggestions, and the elapsed time of CertainFix
+ is similar to the time of CertainFix; when |D| increases from 10 to 100, the response

time is significantly reduced since more suggestions could be found with BDD; when

|D| > 100, BDD can provide effective suggestions such that the average elapsed time

remains unchanged, around 0.1 second.

Summary. The experimental results show the followings. (1) The initial suggestions

computed by our method are more effective than those found by greedy approaches.

(2) Our method is effective: it mostly takes less than four rounds of user interactions to

find a certain fix for an input tuple. (3) The number of interactions highly depends on

Chapter 3. Towards Certain Fixes with Editing Rules and Master Data 98

the relevance of an input tuple to the master data, i.e., d%, and |Dm| to a lesser extent.

(4) Our method is insensitive to the error rate n%. It outperforms the repairing method

of [CFG+07] when the error rate is high, even with two or three rounds of interactions.

(5) Our algorithm scales well with the size of Dm. (6) The optimization strategy with

BDD is effective in finding suggestions with low latency.

It should be remarked that data monitoring incurs extra overhead of fixing input

tuples for the database engine. Nevertheless, as pointed out by [SMO07], it is far less

costly to correct a tuple at the point of data entry than fixing it afterward. The need

for this is particularly evident when it comes to critical data. In addition, as verified

by our experimental results, the extra cost is rather small since effective suggestions

(Exp-1 (1-3)) and certain fixes (Exp-2) can be generated efficiently, below 0.2 second

in average with CertainFix+ (Fig. 12).

Chapter 4

Interaction Between Record Matching

and Data Repairing

4.1 Introduction

In this chapter, we present our study on interaction between record matching and data

repairing, the two central tasks of data cleaning.

Many data cleaning tools in the market support record matching, and some also

support the functionality of data repairing. But these systems treat matching and re-

pairing as independent processes and perform them separately. However, the two pro-

cesses typically interact with each other: matching helps us find repairs and repairing

helps us identify matches, as shown below.

99

Chapter 4. Interaction Between Record Matching and Data Repairing 100

F
N

L
N

S
t

ci
ty

A
C

zi
p

te
l

d
ob

gd

s 1
:

M
ar

k
Sm

ith
10

O
ak

St
E

di
13

1
E

H
8

9L
E

32
56

77
8

10
/1

0/
19

87
M

al
e

s 2
:

R
ob

er
t

B
ra

dy
5

W
re

n
St

L
dn

02
0

W
C

1H
9S

E
38

87
64

4
12

/0
8/

19
75

M
al

e
(a

)
M

as
te

rd
at

a
D

m
:A

n
in

st
an

ce
of

sc
he

m
a
ca
rd

F
N

L
N

S
t

ci
ty

A
C

p
os
t

p
h
n

gd
it
em

w
h
en

w
h
er
e

t 1
:

M
.

Sm
ith

10
O

ak
St

L
dn

13
1

E
H

8
9L

E
99

99
99

9
M

al
e

w
at

ch
,3

50
G

B
P

11
am

28
/0

8/
20

10
U

K

cf
(0

.9
)

(1
.0

)
(0

.9
)

(0
.5

)
(0

.9
)

(0
.9

)
(0

.0
)

(0
.8

)
(1

.0
)

(1
.0

)
(1

.0
)

t 2
:

M
ax

Sm
ith

Po
B

ox
25

E
di

13
1

E
H

8
9A

B
32

56
77

8
M

al
e

D
V

D
,8

00
IN

R
8p

m
28

/0
9/

20
10

In
di

a

cf
(0

.7
)

(1
.0

)
(0

.5
)

(0
.9

)
(0

.7
)

(0
.6

)
(0

.8
)

(0
.8

)
(1

.0
)

(1
.0

)
(1

.0
)

t 3
:

B
ob

B
ra

dy
5

W
re

n
St

E
di

02
0

W
C

1H
9S

E
38

87
83

4
M

al
e

iP
ho

ne
,5

99
G

B
P

6p
m

06
/1

1/
20

09
U

K

cf
(0

.6
)

(1
.0

)
(0

.9
)

(0
.2

)
(0

.9
)

(0
.8

)
(0

.9
)

(0
.8

)
(1

.0
)

(1
.0

)
(1

.0
)

t 4
:

R
ob

er
t

B
ra

dy
n
u
ll

L
dn

02
0

W
C

1E
7H

X
38

87
64

4
M

al
e

ne
ck

la
ce

,2
,1

00
U

SD
1p

m
06

/1
1/

20
09

U
SA

cf
(0

.7
)

(1
.0

)
(0

.0
)

(0
.5

)
(0

.7
)

(0
.3

)
(0

.7
)

(0
.8

)
(1

.0
)

(1
.0

)
(1

.0
)

(b
)

D
at

ab
as

e
D

:A
n

in
st

an
ce

of
sc

he
m

a
tr
an

Fi
gu

re
4.

1:
E

xa
m

pl
e

m
as

te
rd

at
a

an
d

da
ta

ba
se

Chapter 4. Interaction Between Record Matching and Data Repairing 101

Example 4.1.1: Consider two databases Dm and D from a UK bank: Dm maintains

customer information collected when credit cards are issued, and is treated as clean

master data [Los09]; D consists of transaction records of credit cards, which may be

dirty. The databases are specified by schemas:

card(FN,LN,St,city,AC,zip, tel,dob,gd),

tran(FN,LN,St,city,AC,post,phn,gd, item,when,where).

Here a card tuple specifies a UK credit card holder identified by first name (FN), last

name (LN), address (street (St), city, zip code), area code (AC), phone (tel), date of

birth (dob) and gender (gd). A tran tuple is a record of a purchased item paid by a

credit card at place where and time when, by a UK customer who is identified by name

(FN,LN), address (St, city, post code), AC, phone (phn) and gender (gd). Example

instances of card and tran are shown in Figures 4.1(a) and 4.1(b), which are fractions

of Dm and D, respectively (the cf rows in Fig. 4.1(b) will be discussed later).

Following [FGJK08, FJLM09], we use conditional functional dependencies

(CFDs [FGJK08]) φ1–φ4 to specify the consistency of tran data D, and a matching

dependency (MD [FJLM09]) ψ as a rule for matching tuples across D and master card

data Dm:

φ1: tran([AC = 131] → [city = Edi]),

φ2: tran([AC = 020] → [city = Ldn]),

φ3: tran([city,phn] → [St,AC,post]),

φ4: tran([FN = Bob] → [FN = Robert]),

ψ: tran[LN,city,St,post] = card[LN,city,St,zip] ∧
tran[FN]≈ card[FN]→ tran[FN,phn]⇌ card[FN, tel],

where (1) CFD φ1 (resp. φ2) asserts that if the area code is 131 (resp. 020), the city must

be Edi (resp. Ldn); (2) CFD φ3 is a traditional functional dependency (FD) asserting that

city and phone number uniquely determine street, area code and postal code; (3) CFD

φ4 is a data standardization rule: if the first name is Bob, then it should be “normalized”

as Robert; and (4) MD ψ assures that for any tuple in D and any tuple in Dm, if they

have the same last name and address, and moreover, if their first names are similar,

then their phone and FN attributes can be identified.

Consider tuples t3 and t4 in D. The bank suspects that the two refer to the same

person. If so, then these transaction records show that the same person made pur-

chases in the UK and in the US at about the same time (taking into account the 5-hour

Chapter 4. Interaction Between Record Matching and Data Repairing 102

time difference between the two countries). This indicates that a fraud has likely been

committed.

Observe that t3 and t4 are quite different in their FN,city, St,post and Phn at-

tributes. No rule allows us to identify the two directly. Nonetheless, they can indeed

be matched by a sequence of interleaved matching and repairing operations:

(a) get a repair t ′3 of t3 such that t ′3[city] = Ldn via CFD φ2, and t ′3[FN]=Robert by

normalization with φ4;

(b) match t ′3 with s2 of Dm, to which ψ can be applied;

(c) as a result of the matching operation, get a repair t ′′3 of t3 by correcting t ′′3 [phn]

with the master data s2[tel];

(d) find a repair t ′4 of t4 via the FD φ3: since t ′′3 and t4 agree on their city and phn

attributes, φ3 can be applied. This allows us to enrich t4[St] and fix t4[post] by

taking corresponding values from t ′′3 , which have been confirmed correct with

the master data in step (c).

At this point t ′′3 and t ′4 agree on every attribute in connection with personal information.

It is now evident enough that they indeed refer to the same person; hence a fraud.

Observe that not only repairing helps matching (e.g., from step (a) to (b)), but

matching also helps us repair the data (e.g., step (d) is doable only after the matching

in (b)). 2

From this example, we observe the following. (1) When working together, record

matching and data repairing perform much better than being treated as independent

processes. (2) To make practical use of their interaction, matching and repairing oper-

ations should be interleaved. It does not help much to execute these processes consec-

utively one after another.

There has been many works on record matching (e.g., [ARS09, BSIBD09,

CGGM03, FJLM09, HS98, WBGM09]; see [EIV07, HSW09a] for surveys) as well

as on data repairing (e.g., [ABC03, BFFR05, CFG+07, FLM+10, FH76, MNP10,

YENO10]). However, to the best of our knowledge, no previous work has studied

the interaction between record matching and data repairing.

A unified process for repairing and matching is practical, and that it should logi-

cally become part of data cleaning systems.

While master data is desirable in the process, it is not a must. Indeed, in its absence,

our approach can be adapted by interleaving (a) record matching in a single data table

with MDs, as described in [FJLM09], and (b) data repairing with CFDs. While deter-

ministic fixes may have lower accuracy, reliable and heuristic fixes would not degrade

Chapter 4. Interaction Between Record Matching and Data Repairing 103

substantially.

Related work. Record matching is also known as record linkage, entity resolution,

and duplicate detection [ARS09, BSIBD09, CGGM03, FJLM09, HS98, WBGM09,

WN05, DHM05, GDSZ10] (see [HSW09a, EIV07] for surveys). Matching rules are

studied in [FJLM09, HS98] (positive) and [ARS09, WBGM09] (negative). Data re-

pairing was first studied in [ABC03, FH76]. A variety of constraints have been used to

specify data consistency in data repairing, e.g.,FDs [Wij05], FDs and INDs [BFFR05],

and CFDs [CFG+07, FGJK08]. We employ CFDs, and extend MDs of [FJLM09] with

negative rules.

The consistency and implication problems have been studied for CFDs [FGJK08]

and MDs [FJLM09]. We study these problems for MDs and CFDs put together. It is

known that data repairing is NP-complete [BFFR05, CFG+07]. We show that data

cleaning via repairing and matching is NP-complete and approximation-hard. We also

study the termination and determinism analyses of data cleaning, which are not con-

sidered in [BFFR05, CFG+07].

Several repairing algorithms have been proposed [BFFR05, CFG+07, FLM+10,

FH76, MNP10, YENO10]. Heuristic methods are developed in [BFFR05, CFG+07,

FH76], based on FDs and INDs [BFFR05], CFDs [FGJK08], and edit rules [FH76]. The

methods of [BFFR05, CFG+07] employ confidence placed by users to guide a repair-

ing process. Statistical inference is studied in [MNP10] to derive missing values. To

ensure the accuracy of repairs generated, [MNP10, YENO10] require to consult users.

In contrast to the previous work, we (a) unify repairing and matching, (b) use confi-

dence just to derive deterministic fixes, and (c) leverage master data and entropy to im-

prove the accuracy. Closer to our work is [FLM+10], also based on master data. It dif-

fers from our work in the following. (i) While [FLM+10] aims to fix a single tuple via

matching with editing rules (derived from MDs), we repair a database via both match-

ing (MDs) and repairing (CFDs), a task far more challenging. (ii) While [FLM+10]

only relies on confidence to warrant the accuracy, we use entropy analysis when the

confidence is either low or unavailable.

There have also been efforts to interleave merging and matching opera-

tions [WN05, DHM05, WBGM09, GDSZ10]. Among these, (1) [GDSZ10] proposes

to use uniqueness constraints to cluster objects from multiple data sources, and em-

ploys machine learning techniques to discover the true values of the objects; it differs

from this work in the set of constraints used; and (2) [WN05, DHM05, WBGM09]

investigate record matching in the presence of error data, and advocate the need for

Chapter 4. Interaction Between Record Matching and Data Repairing 104

data repairing to match records. The merge/fusion operations adopted there are more

restrictive than updates (value modifications) suggested by cleaning rules of this work.

Furthermore, when no matches are found, no merge or fusion can be conducted,

whereas this work may still repair data with CFDs.

There has also been a host of work on ETL tools (see [HSW09a] for a sur-

vey), which support data transformations, and can be employed to merge and fix

data [NBBW06], although they are typically not based on a constraint theory. These

are essentially complementary to data repairing and this work.

Information entropy measures the degree of uncertainty [CT91]: the less the en-

tropy is, the more certain the data is. It has proved effective in, e.g., database design,

schema matching, data anonymization and data clustering [SV10]. We make a first ef-

fort to use it in data cleaning: we mark a fix reliable if its entropy is below a predefined

threshold.

Organization. Section 4.2 reviews CFDs and extends MDs. Section 4.3 introduces

the framework for data cleaning. Section 4.4 studies the fundamental problems for

data cleaning. Algorithms for finding deterministic and reliable fixes are provided in

Sections 4.5 and 4.6, respectively. Section 4.7 reports our experimental study.

4.2 Data Quality Rules

Below we first review CFDs [FGJK08], which specify the consistency of data for data

repairing. We then extend MDs [FJLM09] to match tuples across (a possibly dirty)

database D and master data Dm. Both CFDs and MDs can be automatically discovered

from data via profiling algorithms (e.g., [CM08, SC09]).

4.2.1 Conditional Functional Dependencies

Following [FGJK08], we define conditional functional dependencies (CFDs) on a rela-

tion schema R as follows.

As depicted in Chapter 2, a CFD φ defined on schema R is a pair R(X → Y , tp),

where (1) X →Y is a standard FD on R, referred to as the FD embedded in φ; and (2) tp

is a pattern tuple with attributes in X and Y , where for each A in X ∪Y , tp[A] is either

a constant in the domain dom(A) of attribute A, or an unnamed variable ‘ ’ that draws

values from dom(A).

Chapter 4. Interaction Between Record Matching and Data Repairing 105

We separate the X and Y attributes in tp with ‘∥’, and refer to X and Y as the LHS

and RHS of φ, respectively.

Example 4.2.1: Recall the CFDs φ1,φ3 and φ4 given in Example 4.1. These can be

formally expressed as follows.

φ1: tran([AC]→ [city], tp1 = (131 ∥ Edi)),

φ3: tran([city,phn]→ [St,AC,post], tp3 = (, ∥ , ,))

φ4: tran([FN]→ [FN], tp4 = (Bob ∥ Robert))

Note that FDs are a special case of CFDs in which pattern tuples consist of only

wildcards, e.g., φ3 given above. 2

To give the formal semantics of CFDs, we use an operator ≍ defined on constants

and ‘ ’: v1 ≍ v2 if either v1 = v2, or one of v1,v2 is ‘ ’. The operator ≍ naturally

extends to tuples, e.g., (131, Edi) ≍ (, Edi) but (020, Ldn) ̸≍ (, Edi).

Consider an instance D of R. We say that D satisfies the CFD φ, denoted by D |= φ,

iff for all tuples t1, t2 in D, if t1[X] = t2[X]≍ tp[X], then t1[Y] = t2[Y]≍ tp[Y].

Example 4.2.2: Recall the tran instance D of Fig. 4.1(b) and the CFDs of Exam-

ple 4.2.1. Observe that D ̸|= φ1 since tuple t1[AC] = tp1[AC], but t1[city] ̸= tp1[city],

i.e., the single tuple t1 violates φ1. Similarly, D ̸|= φ4, as t3 does not satisfy φ4. Intu-

itively, φ4 says that no tuple t can have t[FN] = Bob (it has to be changed to Robert).

In contrast, D |= φ3: there exist no distinct tuples in D that agree on city and phn. 2

We say that an instance D of R satisfies a set Σ of CFDs, denoted by D |= Σ, if

D |= φ for each φ ∈ Σ.

4.2.2 Positive and Negative Matching Dependencies

Following [FJLM09, HS98], we define matching dependencies (MDs) in terms of

a set ϒ of similarity predicates, e.g., q-grams, Jaro distance or edit distance (see

e.g., [EIV07] for a survey).

We define positive MDs and negative MDs across a data relation schema R and a

master relation schema Rm.

Positive MDs. A positive MD ψ on (R,Rm) is defined as:

∧
j∈[1,k](R[A j] ≈ j Rm[B j])→

∧
i∈[1,h](R[Ei]⇌ Rm[Fi]),

Chapter 4. Interaction Between Record Matching and Data Repairing 106

where (1) for each j ∈ [1,k], A j and B j are attributes of R and Rm, respectively, with

the same domain; similarly for Ei and Fi (i ∈ [1,h]); and (2) ≈ j is a similarity predicate

in ϒ that is defined in the domain of R[A j] and Rm[B j]. We refer to
∧

j∈[1,k](R[A j] ≈ j

Rm[B j]) and
∧

i∈[1,h](R[Ei]⇌ Rm[Fi]) as the LHS (premise) and RHS of ψ, respectively.

Note that MDs were originally defined on one or more unreliable data sources

(see [FJLM09] for a detailed discussion of their dynamic semantics). In contrast, we

focus on matching tuples across a dirty source D and a master relation Dm. To cope

with this, we refine the semantics of MDs as follows.

For a tuple t ∈ D and a tuple s ∈ Dm, if for each j ∈ [1,k], t[A j] and s[B j] are

similar, i.e., t[A j]≈ j s[B j], then t[Ei] is changed to s[Fi], the clean master data, for each

i ∈ [1,h].

We say that an instance D of R satisfies the MD ψ w.r.t. master data Dm, denoted

by (D,Dm) |= ψ, iff for all tuples t in D and all tuples s in Dm, if t[A j] ≈ j s[B j] for

j ∈ [1,k], then t[Ei] = s[Fi] for all i ∈ [1,h].

Intuitively, (D,Dm) |= ψ if no more tuples from D can be matched (and hence

updated) with master tuples in Dm.

Example 4.2.3: Recall MD ψ given in Example 4.1.1. Consider an instance D1 of tran

consisting of a single tuple t ′1, where t ′1[city] = Ldn and t ′1[A] = t1[A] for all the other

attributes, for t1 given in Fig. 4.1(b). Then (D1,Dm) ̸|=ψ, since t ′1[FN,phn] ̸= s1[FN, tel]

while (t ′1[LN, city, St, post] = s1[LN,city,St,Zip] and t ′1[FN] ≈ s1[FN]. This suggests

that we correct t ′1[FN,phn] using the master data s1[FN, tel]. 2

Negative MDs. Along the same lines as [ARS09, WBGM09], we define a negative

MD ψ− as follows:

∧
j∈[1,k](R[A j] ̸= Rm[B j])→

∨
i∈[1,h](R[Ei] ̸⇌ Rm[Fi]).

It states that for any tuple t ∈ D and any tuple s ∈ Dm, if t[A j] ̸= s[B j] (j ∈ [1,k]), then

t and s may not be identified.

Example 4.2.4: A negative MD defined on (tran,card) is:

ψ−
1 : tran[gd] ̸= card[gd]→

∨
i∈[1,7](tran[Ai] ̸⇌ card[Bi]),

where (Ai,Bi) ranges over (FN,FN), (LN,LN), (St,St), (AC,AC), (city,city), (post,zip)

and (phn, tel). It says that a male and a female may not refer to the same person. 2

Chapter 4. Interaction Between Record Matching and Data Repairing 107

We say that an instance D of R satisfies the negative MD ψ− w.r.t. master data Dm,

denoted by (D,Dm) |= ψ−, if for all tuples t in D and all tuples s in Dm, if t[A j] ̸= s[B j]

for all j ∈ [1,k], then there exists i ∈ [1,h] such that t[Ei] ̸= s[Fi].

An instance D of R satisfies a set Γ of (positive, negative) MDs w.r.t. master data

Dm, denoted by (D,Dm) |= Γ, if (D,Dm) |= ψ for all ψ ∈ Γ.

Normalized CFDs and MDs. Given a CFD (resp. MD) ξ, we use LHS(ξ) and RHS(ξ)
to denote the LHS and RHS of ξ, respectively. It is called normalized if |RHS(ξ)| =

1, i.e., its right-hand side consists of a single attribute (resp. attribute pair). As shown

by [FGJK08, FJLM09], every CFD ξ (resp. MD) can be expressed as an equivalent

set Sξ of CFDs (resp. MDs), such that the cardinality of Sξ is bounded by the size of

RHS(ξ).
For instance, CFDs φ1,φ2 and φ4 of Example 4.1.1 are normalized. While φ3

is not normalized, it can be converted to an equivalent set of CFDs of the form

([city,phn]→ Ai, tpi), where Ai ranges over St, AC and post, and tpi consists of wild-

cards only; similarly for MD ψ.

We consider normalized CFDs (MDs) only in the sequel.

4.3 A Uniform Framework for Data Cleaning

We propose a rule-based framework for data cleaning. It treats CFDs and MDs uni-

formly as cleaning rules, which tell us how to fix errors, and seamlessly interleaves

matching and repairing operations (Section 4.3.1). Using cleaning rules we introduce

a tri-level data cleaning solution, which generates fixes with various levels of accuracy,

depending on the information available about the data (Section 4.3.2).

Consider a (possibly dirty) relation D of schema R, a master relation Dm of schema

Rm, and a set Θ = Σ∪Γ, where Σ is a set of CFDs on R, and Γ is a set of MDs on

(R,Rm).

4.3.1 A Rule-based Logical Framework

We first state the data cleaning problem, and then define cleaning rules derived from

CFDs and MDs.

Data cleaning. Following [ABC03], we state the data cleaning problem, referred to

as DCP, as follows. It takes D, Dm and Θ as input, and computes a repair Dr of D,

i.e., another database such that (a) Dr |= Σ, (b) (Dr,Dm) |= Γ, and (c) cost(Dr,D) is

Chapter 4. Interaction Between Record Matching and Data Repairing 108

minimum. Intuitively, (a) Dr should be consistent, (b) no more tuples in Dr can be

matched to master data, and (c) Dr is accurate and is close to the original data D.

Following [CFG+07], we define cost(Dr,D) as:

∑
t∈D

∑
A∈attr(R)

t(A).cf ∗ disA(t[A], t ′[A])
max(|t[A]|, |t ′[A]|)

where (a) tuple t ′ ∈ Dr is the repair of tuple t ∈ D, (b) disA(v,v′) is the distance between

values v,v′ ∈ dom(A); the smaller the distance is, the closer the two values are to each

other; (c) |t[A]| denotes the size of t[A]; and (d) t[A].cf is the confidence placed by the

user in the accuracy of the attribute t[A] (see the cf rows in Fig. 4.1(b)).

This quality metric says that the higher the confidence of the attribute t[A] is

and the more distant v′ is from v, the more costly the change is. Thus, the smaller

cost(Dr,D) is, the more accurate and closer to the original data Dr is. We use

dis(v,v′)/max(|v|, |v′|) to measure the similarity of v and v′ to ensure that longer strings

with 1-character difference are closer than shorter strings with 1-character difference.

As remarked in [CFG+07], confidence can be derived via provenance analysis,

which can be reinforced by recent work on determining the reliability of data sources

(e.g., [DBEHS10]).

Cleaning rules. A variety of integrity constraints have been studied for data repair-

ing (e.g., [BFFR05, CFG+07, FGJK08, Wij05]). As observed by [FLM+10], while

there constraints help us determine whether data is dirty or not, i.e., whether errors are

present in the data, they do not tell us how to correct the errors.

To make better practical use of constraints in data cleaning, we define cleaning

rules, which tell us what attributes should be updated and to what value they should be

changed. From each MD in Γ and each CFD in Σ, we derive a cleaning rule as follows,

based on fuzzy logic [KF88].

(1) MDs. Consider an MD ψ =
∧

j∈[1,k](R[A j] ≈ j Rm[B j]) → (R[E] ⇌ Rm[F]). The

cleaning rule derived from ψ, denoted by γψ, applies a master tuple s ∈ Dm to a tuple

t ∈ D if t[A j]≈ j s[B j] for each j ∈ [1,k]. It updates t by letting (a) t[E] := s[F] and (b)

t[C].cf := d for each C ∈ E, where d is the minimum t[A j].cf for all j ∈ [1,k] if ≈ j is

‘=’.

That is, γψ corrects t[E] with clean master value s[F], and infers the new confidence

of t[E] following fuzzy logic [KF88].

(2) Constant CFDs. Consider a CFD φc = R(X → A, tp1), where tp1[A] is a constant.

The cleaning rule derived from φc applies to a tuple t ∈ D if t[X] ≍ tp1[X] but t[A] ̸=

Chapter 4. Interaction Between Record Matching and Data Repairing 109

tp1[A]. It updates t by letting (a) t[A] := tp1[A], and (b) t[A].cf = d, where d is the

minimum t[A′].cf for all A′ ∈ X . That is, the rule corrects t[A] with the constant in the

CFD.

(3) Variable CFDs. Consider a CFD φv = (Y → B, tp2), where tp2[B] is a wildcard ‘ ’.

The cleaning rule derived from φv is used to apply a tuple t2 ∈ D to another tuple

t1 ∈ D, where t1[Y] = t2[Y] ≍ tp2 [Y] but t1[B] ̸= t2[B]. It updates t1 by letting (a) t1[B]

:= t2[B], and (b) t1[B].cf be the minimum t1[B′].cf and t2[B′].cf for all B′ ∈ Y .

While cleaning rules derived from MDs are similar to editing rules of [FLM+10],

rules derived from (constant or variables) CFDs are not studied in [FLM+10]. We use

confidence information and infer new confidences based on fuzzy logic [KF88].

Embedding negative MDs. Recall negative MDs from Section 4.2.2. The example be-

low tells us that negative MDs can be converted to equivalent positive MDs. As a result,

there is no need to treat them separately.

Example 4.3.1: Consider MD ψ in Example 4.1.1 and negative MD ψ− in Exam-

ple 4.2.4. We define ψ′ by incorporating the premise (gd) of ψ− into the premise of

ψ:

ψ′: tran[LN,city,St,post,gd] = card[LN,city,St,zip,gd] ∧
tran[FN]≈ card[FN]→ tran[FN,phn]⇌ card[FN, tel].

Then no tuples with different genders can be identified as the same person, which is

precisely what ψ− is to enforce. In other words, the positive MD ψ′ is equivalent to the

positive MD ψ and the negative MD ψ−. 2

Indeed, it suffices to consider only positive MDs.

Proposition 4.3.1: Given a set Γ+
m of positive MDs and a set Γ−

m of negative MDs, there

exists an algorithm that computes a set Γm of positive MDs in O(|Γ+
m ||Γ−

m|) time such

that Γm is equivalent to Γ+
m ∪Γ−

m . 2

A uniform framework. By treating both CFDs and MDs as cleaning rules, one can uni-

formly interleave matching and repairing operations, to facilitate their interactions.

Example 4.3.2: As shown in Example 4.1.1, to clean tuples t3 and t4 of Fig. 4.1(b),

one needs to interleave matching and repairing operations. These can be readily done

by using cleaning rules derived from φ2, φ4, ψ and φ3. Indeed, the cleaning process

described in Example 4.1.1 is actually carried out by applying these rules. There is no

need to distinguish between matching and repairing in the cleaning process. 2

Chapter 4. Interaction Between Record Matching and Data Repairing 110

D'

Master

data D

Data

quality

rules

Dirty

Data D

Deterministic fixes

Confidence-based
Reliable fixes

Entropy-based
Possible fixes

Heuristic-based

D'' D

Userm

confidence
entropy

≥ η

δ≤

r

Figure 4.2: Framework Overview

4.3.2 A Tri-level Data Cleaning Solution

Based on cleaning rules, we develop a data cleaning system UniClean. It takes as input

a dirty relation D, a master relation Dm, a set of cleaning rules derived from Θ, as well

as thresholds η,δ ∈ [0,1] set by the users for confidence and entropy, respectively. It

generates a repair Dr of D with a small cost(Dr,D), such that Dr |= Σ and (Dr,Dm) |=
Γ.

As opposed to previous repairing systems [BFFR05, CFG+07, FLM+10, FH76,

MNP10, YENO10], UniClean generates fixes by unifying matching and repairing, via

cleaning rules. Further, it stresses the accuracy by distinguishing these fixes with three

levels of accuracy. Indeed, various fixes are found by three algorithms executed one

after another, as shown in Fig. 4.2 and illustrated below.

(1) Deterministic fixes based on confidences. The first algorithm identifies erroneous

attributes t[A] to which there exists a unique fix, referred to as a deterministic fix, when

some attributes of t are accurate. It fixes those errors based on confidence: it uses a

cleaning rule to update t[A] only if certain attributes of t have confidence above the

threshold η. It is evident that such fixes are accurate up to η.

(2) Reliable fixes based on entropy. For attributes with low or unavailable confidence,

we correct them based on the relative certainty of the data, measured by entropy. En-

tropy has proved effective in data transmission [Ham50] and compression [ZL78],

Chapter 4. Interaction Between Record Matching and Data Repairing 111

among other things. We use entropy to clean data: we apply a cleaning rule γ to

update an erroneous attribute t[A] only if the entropy of γ for certain attributes of t is

below the threshold δ. Fixes generated via entropy are accurate to a certain degree, and

are marked as reliable fixes.

(3) Possible fixes. Not all errors can be fixed in the first two phases. For the remaining

errors, we adopt heuristic methods to generate fixes, referred to as possible fixes. To

this end we extend the method of [CFG+07], by supporting cleaning rules derived

from both CFDs and MDs. It can be verified that the heuristic method always finds a

repair Dr of D such that Dr |= Σ, (Dr,Dm) |= Γ, while keeping all the deterministic

fixes produced earlier unchanged

At the end of the process, fixes are marked with three distinct signs, indicating

deterministic, reliable and possible, respectively. We shall present methods based on

confidence and entropy in Sections 4.5 and 4.6, respectively. Due to the space con-

straints, we omit the algorithm for possible fixes, but encourage the reader to consult

[CFG+07] for details.

4.4 Fundamental Problems for Data Cleaning

We now investigate fundamental problems associated with data cleaning. We first

study the consistency and implication problems for CFDs and MDs taken together, from

which cleaning rules are derived. We then establish the complexity bounds of the data

cleaning problem as well as its termination and determinism analyses. These problems

are not only of theoretical interest, but are also important to the development of data

cleaning algorithms. The main conclusion of this section is that data cleaning via

matching and repairing is inherently difficult: all these problems are intractable.

Consider a relation D, a master data Dm, and a set Θ = Σ∪Γ of CFDs and MDs, as

stated in Section 4.3.

4.4.1 Reasoning about Data Quality Rules

There are two classical problems for data quality rules.

The consistency problem is to determine, given Dm and Θ = Σ∪Γ, whether there

exists a nonempty instance D of R such that D |= Σ and (D,Dm) |= Γ.

Intuitively, this is to determine whether the rules in Θ are dirty themselves. The

practical need for the consistency analysis is evident: it does not make sense to derive

Chapter 4. Interaction Between Record Matching and Data Repairing 112

cleaning rules from Θ before Θ is assured consistent itself.

We say that Θ implies another CFD (resp. MD) ξ, denoted by Σ |= ξ, if for any

instance D of R, whenever D |= Σ and (D,Dm) |= Γ, then D |= ξ (resp. (D,Dm) |= ξ).

The implication problem is to determine, given Dm, Σ and another CFD (or MD) ξ,

whether Σ |= ξ.

Intuitively, the implication analysis helps us find and remove redundant rules from

Σ, i.e., those that are a logical consequence of other rules in Σ, to improve performance.

These problems have been studied for CFDs and MDs separately. It is known that

the consistency problem for MDs is trivial: any set of MDs is consistent [FJLM09]. In

contrast, there exist CFDs that are inconsistent, and the consistency analysis of CFDs

is NP-complete [FGJK08]. It is also known that the implication problem for MDs and

CFDs is in quadratic time [FJLM09] and coNP-complete [FGJK08], respectively.

We show that these problems for CFDs and MDs put together have the same com-

plexity as their CFDs counterparts. That is, adding MDs to CFDs does not make our

lives harder.

Theorem 4.4.1: For CFDs and MDs put together, the consistency problem is NP-

complete, and the implication problem is coNP-complete (when ξ is either a CFD or

an MD). 2

Proof. The upper bounds are verified by establishing a small model property. The

lower bounds follow from the intractability for their CFD counterparts, a special case.

2

In the rest of the chapter we consider only collections Σ of CFDs and MDs that are

consistent.

4.4.2 Analyzing the Data Cleaning Problem

Recall the data cleaning problem (DCP) from Section 4.3.

Complexity bounds. One wants to know how costly it is to compute a repair Dr. Be-

low we show that it is intractable to decide whether there exists Dr with cost(Dr,D)

below a predefine bound. Worse still, it is infeasible in practice to find PTIME ap-

proximation algorithm with performance guarantee. Indeed, the problem is not even in

APX, the class of problems that allow PTIME approximation algorithms with approx-

imation ratio bounded by a constant.

Theorem 4.4.2: (a) The data cleaning problem (DCP) is NP-complete. (b) Unless P =

Chapter 4. Interaction Between Record Matching and Data Repairing 113

NP, for any constant ε, there exists no PTIME ε-approximation algorithm for DCP. 2

Proof. (a) The upper bound is verified by giving an NP algorithm. The lower bound

is by reduction from 3SAT [WP05]. (b) This is verified by reduction from 3SAT, using

gap techniques [WP05]. Given any constant ε, we show that there exists an algorithm

with approximation ratio ε for DCP iff there is a PTIME algorithm for deciding 3SAT.

2

It is known that data repairing alone is NP-complete [CFG+07]. Theorem 4.4.2

tells us that when matching with MDs is incorporated, the problem is intractable and

approximation-hard.

Termination and determinism analyses. There are two natural questions about rule-

based data cleaning methods such as the one proposed in Section 4.3. (a) The termina-

tion problem is to determine whether a rule-based process stops. That is, it reaches a

fixpoint, such that no cleaning rules can be further applied. (b) The determinism prob-

lem asks whether all terminating cleaning processes end up with the same repair, i.e.,

all of them reach a unique fixpoint.

The need for studying these problems is evident. A rule-based process is often

non-deterministic: multiple rules can be applied at the same time. We want to know

whether the output of the process is independent of the order of the rules applied.

Worse, it is known that even for repairing only, a rule-based method may lead to an

infinite process [CFG+07].

Example 4.4.1: Consider the CFD φ1 = tran([AC] → [city], tp1 = (131 ∥ Edi)) given

in Example 4.2.1, and another CFD φ5 = tran([post]→ [city], tp5 = (EH8 9AB ∥ Ldn)).

Consider D1 consisting of a single tuple t2 given in Fig. 4.1. Then a repairing process

for D1 with φ1 and φ5 may fail to terminate: it changes t2[city] to Edi and Ldn back

and forth. 2

No matter how important, it is beyond reach in practice to find efficient solutions

to these two problems.

Theorem 4.4.3: The termination and determinism problems are both PSPACE-

complete for rule-based data cleaning. 2

Proof. We verify the lower bound of these problems by reduction from the halting

problem for linear bound automata, which is PSPACE-complete [AKVW93]. We show

the upper bound by providing an algorithm for each of the two problems, which uses

polynomial space in the size of input. 2

Chapter 4. Interaction Between Record Matching and Data Repairing 114

Symbols Semantics

Θ = Σ∪Γ A set Σ of CFDs and a set Γ of MDs

Confidence threshold, update threshold, and
η, δ1, δ2 entropy threshold, respectively

ρ Selection operator in relational algebra

π Projection operator in relational algebra

The set {t | t ∈ D, t[Y] = ȳ} for each ȳ in
∆(ȳ) πY (ρY≍tp[Y]D) w.r.t. CFD (Y → B, tp)

Table 4.1: Summary of notations

4.5 Deterministic Fixes with Data Confidence

As shown in Fig. 4.2, system UniClean first identifies deterministic fixes based on

confidence analysis and master data. In this section we define deterministic fixes (Sec-

tion 4.5.1), and present an efficient algorithm to find them (Section 4.5.2).

In Table 4.1 we summarize some notations to be used in this Section and Sec-

tion 4.6, for the ease of reference.

4.5.1 Deterministic Fixes

We define deterministic fixes w.r.t. a confidence threshold η determined by domain

experts. When η is high enough, e.g., if it is close to 1, an attribute t[A] is assured

correct if t[A].cf ≥ η. We refer to such attributes as asserted attributes. Recall from

Section 4.3 the definition of cleaning rules derived from MDs and CFDs. In the first

phase of UniClean, we apply a cleaning rule γ to tuples in a database D only when

the attributes in the premise (i.e., LHS) of γ are all asserted. We say that a fix is

deterministic w.r.t. γ and η if it is generated as follows, based on how γ is derived.

(1) From an MD ψ =
∧

j∈[1,k](R[A j] ≈ j Rm[B j]) → (R[E] ⇌ Rm[F]). Suppose that

γ applies a tuple s ∈ Dm to a tuple t ∈ D, and generates a fix t[E] := s[F] (see Sec-

tion 4.3.1). Then the fix is deterministic if t[A j].cf ≥ η for all j ∈ [1,k] and moreover,

t[E].cf < η. That is, t[E] is changed to the master value s[F] only if (a) all the premise

attributes t[A j]’s are asserted, and (b) t[E] is not yet asserted.

(2) From a constant CFD φc = R(X → A, tp1). Suppose that γ applies to a tuple t ∈ D

and changes t[A] to the constant tp1[A] in φc. Then the fix is deterministic if t[Ai].cf ≥ η

Chapter 4. Interaction Between Record Matching and Data Repairing 115

for all Ai ∈ X and t[A].cf < η.

(3) From a variable CFD φv = (Y → B, tp). For each ȳ in πY (ρY≍tp[Y]D), we define

∆(ȳ) to be the set {t | t ∈ D, t[Y] = ȳ}, where π and ρ are the projection and selection

operators, respectively, in relational algebra [AHV95]. That is, for all t1, t2 in ∆(ȳ),
t1[Y] = t2[Y] = ȳ ≍ tp[Y].

Suppose that γ applies a tuple t2 in ∆(ȳ) to another t1 in ∆(ȳ) for some ȳ, and

changes t1[B] to t2[B]. Then the fix is deterministic if (a) for all Bi ∈ Y , t1[Bi].cf ≥ η
and t2[Bi].cf ≥ η, (b) t2[B].cf ≥ η, and moreover, (c) t2 is the only tuple in ∆(ȳ) with

t2[B].cf ≥ η (hence t1[B].cf < η). That is, all the premise attributes of γ are asserted,

and t2[B] is the only value of B-attribute in ∆(ȳ) that is assumed correct, while t1[B] is

suspected erroneous.

As observed by [FLM+10], when data quality rules and asserted attributes are as-

sured correct, the fixes generated are unique (called “certain” in [FLM+10]). While

[FLM+10] only considers MDs, the observation remains intact for CFDs and MDs.

Note that when an attribute t[A] is updated by a deterministic fix, its confidence

t[A].cf is upgraded to be the minimum of the confidences of the premise attributes (see

Section 4.3.1). As a result, t[A] also becomes asserted, since all premise attributes have

confidence values above η. In turn t[A] can be used to generate deterministic fixes

for other attributes in the cleaning process. In other words, the process for finding

deterministic fixes in a database D is recursive.

Nevertheless, in the rest of the section we show that deterministic fixes can be

found in PTIME, stated as follows.

Theorem 4.5.1: Given master data Dm and a set Θ of CFDs and MDs, all deterministic

fixes in a relation D can be found in O(|D||Dm|size(Θ)) time, where size(Θ) is Θ’s

length. 2

4.5.2 Confidence-based Data Cleaning

We next present the algorithm, followed by the indexing structures and procedures that

it employs.

Algorithm. The algorithm, denoted by cRepair, is shown in Fig. 4.3. It takes as input

CFDs Σ, MDs Γ, master data Dm, dirty data D, and a confidence threshold η. It returns

a partially cleaned repair D′ with deterministic fixes marked.

Algorithm cRepair first initializes variables and indexing structures (lines 1–6).

Chapter 4. Interaction Between Record Matching and Data Repairing 116

It then recursively computes deterministic fixes (lines 7–15), by invoking procedures

vCFDInfer (line 12), cCFDInfer (line 13), or MDInfer (line 14), for rules derived from

variable CFDs, constant CFDs, or MDs, respectively. It checks each tuple at most once

w.r.t. each rule, makes more attributes asserted at each step, and uses these attributes

to identify more deterministic fixes. It terminates when no more deterministic fixes

can be found (line 15). Finally, a partially cleaned database D′ is returned in which all

deterministic fixes are marked (line 16).

Indexing structures. The algorithm uses the following indexing structures, to improve

performance.

Hash tables. We maintain a hash table for each variable CFD φ = R(Y → B, tp), denoted

as Hφ. Given a ȳ ∈ ρY≍tp[Y](D) as the key, it returns a pair (list,val) as the value, i.e.,

H(ȳ) = (list,val), where (a) list consists of all the tuples t in ∆(ȳ) such that t[Bi].cf ≥ η
for each attribute Bi ∈Y , and (b) val is t[B] if it is the only item in ∆(ȳ) with t[B].cf ≥ η;

otherwise, val is nil. Notably, there exist no two t1, t2 in ∆(ȳ) such that t1[B] ̸= t2[B],

t1[B].cf ≥ η and t2[B].cf ≥ η, if the confidence placed by the users is correct.

Queues. We maintain for each tuple t a queue of rules that can be applied to t, denoted

as Q[t]. More specifically, Q[t] contains all rules ξ ∈ Θ, where t[C].cf ≥ η for all

attributes C in LHS(ξ). That is, the premise of ξ is asserted in t.

Hash sets. For each tuple t ∈ D, P[t] stores the set of variable CFDs φ ∈ Q[t] such

that Hφ(t[LHS(φ)]).val = nil, i.e., no B attribute in ∆(t[LHS(φ)]) has a high enough

confidence.

Counters. For each tuple t ∈ D and each rule ξ ∈ Θ, count[t,ξ] maintains the number

of current values of the attributes C ∈ LHS(ξ) such that t[C].cf ≥ η.

Procedures. We now present the procedures of cRepair.

update. Given a new deterministic fix for t[A], it propagates the change, to find other

deterministic fixes with t[A]. (a) For each rule ξ, if A ∈ LHS(ξ), count[t,ξ] is increased

by 1 as one more attribute becomes asserted. (b) If all attributes in LHS(ξ) are asserted,

ξ is inserted into the queue Q[t]. (c) For a variable CFD ξ′ ∈ P[t], if RHS(ξ′) is A

and Hξ′(t[LHS(ξ′)]).val = nil, the newly asserted t[A] makes it possible for tuples in

Hξ′(t[LHS(ξ′)]).list to have a deterministic fix. Thus ξ′ is removed from P[t] and added

to Q[t].

vCFDInfer. Given a tuple t, a variable CFD ξ and the confidence threshold η, it finds a

deterministic fix for t by applying ξ if it exists. If the tuple t and the pattern tuple t(p,ξ)

Chapter 4. Interaction Between Record Matching and Data Repairing 117

Algorithm cRepair

Input: CFDs Σ, MDs Γ, master data Dm, dirty data D, and

confidence threshold η.

Output: A partial repair D′ of D with deterministic fixes.

1. D′ := D; Hξ := /0 for each variable CFD ξ ∈ Σ;

2. for each t ∈ D′ do

3. Q[t] := /0; P[t] := /0;

4. count[t,ξ] :=0 for each ξ ∈ Σ∪Γ;

5. for each attribute A ∈ attr(Σ∪Γ) do

6. if t[A].cf ≥ η then update(t,A);

7. repeat

8. for each tuple t ∈ D′ do

9. while Q[t] is not empty do

10. ξ := Q[t].pop();

11. case ξ of

12. (1) variable CFD: D′ := vCFDInfer(t, ξ, η);

13. (2) constant CFD: D′ := cCFDInfer(t, ξ, η);

14. (3) MD: D′ := MDInfer(t, η, Dm, ξ);

15. until Q[t ′] is empty for any t ′ ∈ D′;

16. return D′.

Figure 4.3: Algorithm cRepair

match on their LHS(ξ) attributes, it does the following.

(a) If t[RHS(ξ)].cf ≥ η and if no B-attribute value in Hξ(t[LHS(ξ)]).list is asserted, it

takes t[RHS(ξ)] as the B value in the set, and propagates the change via update.

(b) If t[RHS(ξ)]< η but there is an asserted B-attribute value val in Hξ(t[LHS(ξ)]).list,
it makes a deterministic fix by t[RHS(ξ)] := val, and propagates the change via update.

(c) If t[RHS(ξ)] < η and there is no asserted B-attribute in Hξ(t[LHS(ξ)]).list, no de-

terministic fix can be made yet, and t is added to Hξ(t[LHS(ξ)]).list and P[t], for later

checking.

cCFDInfer and MDInfer. The first one takes as input a tuple t, a constant CFD ξ and

Chapter 4. Interaction Between Record Matching and Data Repairing 118

the threshold η. The second one takes as input t,η, master data Dm and an MD ξ. They

find deterministic fixes by applying the rules derived from ξ, as described earlier. The

changes made are propagated by invoking procedure update(t,RHS(ξ)).

Example 4.5.1: Consider master data Dm and relation D of Fig. 4.1. Assume Θ con-

sists of rules ξ1, ξ2 and ξ3 derived from CFDs φ1,φ3 and MD ψ of Example 4.1.1,

respectively. Let the threshold η be 0.8. Using Θ and Dm, cRepair finds deterministic

fixes for t1, t2 ∈ D w.r.t. η as follows.

(1) After initialization (lines 1–6), we have: (a) Hξ2 = /0; (b) Q[t1] = {ξ1}, Q[t2] =

{ξ2}; (c) P[t1] = P[t2] = /0; and (d) count[t1,ξ1] = 1, count[t1,ξ2] = 0, count[t1,ξ3] = 3,

count[t2,ξ1] = 0, count[t2,ξ2] = 2, and count[t2,ξ3] = 2.

(2) After ξ2 ∈ Q[t2] is checked (line 12), we have Q[t2] = /0, P[t2] = {ξ2}, and

Hξ2(t2[city,phn]) = ({t2},nil).

(3) After ξ1 ∈Q[t1] is applied (line 13), Q[t1] = {ξ3}, count[t1,ξ2] = 1 and count[t1,ξ3]

= 4. This step finds a deterministic fix t1[city] := Edi. It upgrades t1[city].cf:=0.8.

(4) When ξ3 ∈Q[t1] is used (line 14), it makes a deterministic fix t1[phn] := s1[tel], and

lets t1[phn].cf = 0.8. Now we have Q[t1] = {ξ2} and count[t1,ξ2] = 2.

(5) When ξ2 ∈Q[t1] is used (line 14), it finds a deterministic fix by letting t2[St] = t1[St]

:= 10 Oak St, and t2[St].cf := 0.8. Now we obtain Q[t1] = /0 and P[t2] = /0.

(6) Finally, the process terminates since Q[t1] = Q[t2] = /0.

Similarly, for tuples t3, t4 ∈ D, cRepair finds a deterministic fix by letting t3[city] :=

Ldn and t3[city].cf := 0.8. 2

Suffix trees for similarity checking of MDs. For cleaning rules derived from MDs,

we need to conduct similarity checking, to which traditional indexing techniques are

not directly applicable. To cope with this, we develop a technique based on suffix

trees [dVKCC09]. The measure of similarity adopted is the length of the longest com-

mon substring of two strings. Generalized suffix trees are built for the blocking process

with all the strings in the active domain. When querying the k-most similar strings of

v of length |v|, we can extract the subtree T of suffix tree that only contains branches

related to v, containing at most |v|2 nodes. We traverse T to find the k-most similar

strings. In this way, we can identify k similar values from Dm in O(k|v|2) time, which

reduces the search space from |Dm| to a constant number k of tuples. Our experimental

study verifies that the technique significantly improves the performance.

Chapter 4. Interaction Between Record Matching and Data Repairing 119

Complexity. Each tuple t in D is examined at most twice for each CFD in Σ,

and is checked at most |Dm| times for each MD, each tuple. Hence cRepair is in

O(|D||Dm|size(Σ ∪ Γ)) time. With the optimization methods above, the time com-

plexity of cRepair is reduced to O(|D|size(Σ∪Γ)).

4.6 Reliable Fixes with Information Entropy

Deterministic fixes may not exist for some attributes, e.g., when their confidences are

low or unreliable. To find accurate fixes for these attributes, UniClean looks for evi-

dence from data itself instead of confidence, using entropy to measure the degree of

certainty. Below we first define entropy for data cleaning (Section 4.6.1), and present

an algorithm to find reliable fixes using entropy (Section 4.6.2). We then present an

indexing structure underlining the algorithm (Section 4.6.3).

4.6.1 Measuring Certainty with Entropy

We start with an overview of the standard information entropy, and then define entropy

for resolving conflicts.

Entropy. The entropy of a discrete random variable X with possible values

{x1, . . . ,xn} is defined as [CT91, SV10]:

H (X) = Σn
i=1(pi ∗ log1/pi),

where pi is the probability of xi for i ∈ [1,n]. The entropy measures the degree of the

certainty of the value of X : when H (X) is sufficiently small, it is highly accurate that

the value of X is the x j having the largest probability p j. The less H (X) is, the more

accurate the prediction is.

Entropy for variable CFDs. We use entropy to resolve data conflicts. Consider a

CFD φ = R(Y → B, tp) defined on a relation D, where tp[B] is a wildcard. Note that

a deterministic fix may not exist when, e.g., there are t1, t2 in ∆(ȳ) (see Table 4.1)

such that t1[B] ̸= t2[B] but both have high confidence. Indeed, using the cleaning rule

derived from φ, one may either let t1[B] := t2[B] by applying t2 to t1, or let t2[B] := t1[B]

by applying t1 to t2.

To find an accurate fix, we define the entropy of φ for Y = ȳ, denoted by H (φ|Y =

ȳ), as

Chapter 4. Interaction Between Record Matching and Data Repairing 120

Algorithm eRepair

Input: CFDs Σ, MDs Γ, master data Dm, dirty data D,

update threshold δ1, entropy threshold δ2.

Output: A partial repair D′ of D with reliable fixes.

1. O := the order of Σ∪Γ, sorted via their dependency graph;

2. D′ := D;

3. repeat

4. for (i = 1; i ≤ |Σ∪Γ|; i++) do

5. ξ := the i-th rule in O;

6. case ξ of

7. (1) variable CFD: D′ := vCFDReslove(D′, ξ, δ1, δ2);

8. (2) constant CFD:D′ := cCFDReslove(D′, ξ, δ1);

9. (3) MD: D′ := MDReslove(D′, Dm, ξ, δ1);

10. until there are no changes in D′;

11. return D′.

Figure 4.4: Algorithm eRepair

H (φ|Y = ȳ) = Σk
i=1(

cntY B(ȳ,bi)
|∆(ȳ)| ∗ logk

|∆(ȳ)|
cntY B(ȳ,bi)

),

where (a) k = |πB(∆(ȳ))|, the number of distinct B values in ∆(ȳ), (b) for each i ∈ [1,k],

bi ∈ πB(∆(ȳ)), (c) cntY B(ȳ,bi) denotes the number of tuples t ∈ ∆(ȳ) with t[B] = bi,

and (d) |∆(ȳ)| is the number of tuples in ∆(ȳ).
Intuitively, we treat X (φ|Y = ȳ) as a random variable for the value of the B attribute

in ∆(ȳ), with a set πB(∆(ȳ)) of possible values. The probability for bi to be the value

is pi =
cntY B(ȳ,bi)

|∆(ȳ)| . When H (φ|Y = ȳ) is small enough, it is highly accurate to resolve

the conflict by letting t[B] = b j for all t ∈ ∆(ȳ), where b j is the one with the highest

probability, i.e., cntY B(ȳ,b j) is maximum among all bi ∈ πB(∆(ȳ)).
In particular, H (φ|Y = ȳ) = 1 when cntY B(ȳ,bi) = cntBA(ȳ,b j) for all distinct

bi,b j ∈ πB(∆(ȳ)). If H (φ|Y = ȳ) = 0 for all ȳ ∈ πY (ρY≍tp[Y]D), then D |= φ.

Chapter 4. Interaction Between Record Matching and Data Repairing 121

Figure 4.5: Example dependency graph

4.6.2 Entropy-based Data Cleaning

We first describe an algorithm based on entropy, followed by its main procedures and

auxiliary structures.

Algorithm. The algorithm, referred to as eRepair, is shown in Fig. 4.4. Given a set

Σ of CFDs, a set Γ of MDs, a master relation Dm, dirty data D, and two thresholds

δ1 and δ2 for update frequency and entropy, respectively, it finds reliable fixes for D

and returns a (partially cleaned) database D′ in which reliable fixes are marked. The

deterministic fixes found earlier by cRepair remain unchanged in the process.

In a nutshell, algorithm eRepair first sorts cleaning rules derived from the CFDs

and MDs, such that rules with relatively bigger impact are applied early. Following

the order, it then applies the rules one by one, until no more reliable fixes can be

found. More specifically, it first finds an order O on the rules in Σ∪Γ (line 1). It

then repeatedly applies the rules in the order O to resolve conflicts in D (lines 3–10),

by invoking procedures vCFDReslove (line 7), cCFDReslove (line 8) or MDReslove

(line 9), based on the types of the rules (lines 5-6). It terminates when either no more

rules can be applied or all data values have been changed more than δ1 times, i.e., when

there is no enough information to make reliable fixes (line 10). A partially cleaned

database is returned with reliable fixes being marked (line 11).

Procedures. We next present the procedures of eRepair.

Sorting cleaning rules. To avoid unnecessary computation, we sort Σ∪Γ based on its

dependency graph G = (V,E). Each rule of Σ∪Γ is a node in V , and there is an edge

from a rule ξ1 to another ξ2 if ξ2 can be applied after the application of ξ1. There exists

an edge (u,v) ∈ E from node u to node v if RHS(ξu)∩LHS(ξv) ̸= /0. Intuitively, edge

(u,v) indicates that whether ξv can be applied depends on the outcome of applying ξu.

Hence, ξu should be applied before ξv. For instance, the dependency graph of the CFDs

and MDs given in Example 4.1.1 is shown in Fig. 4.5.

Based on G, we sort the rules as follows. (1) Find strongly connected components

(SCCs) in G, in linear time [CLRS01]. (2) By treating each SCC as a single node, we

Chapter 4. Interaction Between Record Matching and Data Repairing 122

convert G into a DAG. (3) Find a topological order on the nodes in the DAG. That is, a

rule ξ1 is applied before another ξ2 if the application of ξ1 affects the application of ξ2.

(4) Finally, the nodes in each SCC are further sorted based on the ratio of its out-degree

to in-degree, in a decreasing order. The higher the ratio is, the more effects it has on

other nodes.

Example 4.6.1: The dependency graph G in Fig. 4.5 is an SCC. The ratios of out-

degree to in-degree of the nodes φ1, φ2, φ3, φ4 and ψ are 2
1 , 2

1 , 1
1 , 3

3 and 2
4 , respectively.

Hence the order O of these rules is φ1 > φ2 > φ3 > φ4 > ψ, where those nodes with

the same ratio are sorted randomly. 2

vCFDReslove. It applies the cleaning rule derived from a variable CFD ξ = R(Y →
B, tp). For each set ∆(ȳ) with ȳ in πY (ρY≍tp[Y]D), if H (ξ|Y = ȳ) is smaller than the

entropy threshold δ2, it picks the value b ∈πB(∆(ȳ)) that has the maximum cntY B(ȳ,b).

Then for each tuple t ∈ ∆(ȳ), if t[B] has been changed less than δ1 times, i.e., when

t[B] is not often changed by rules that may not converge on its value, t[B] is changed

to b. As remarked earlier, when the entropy H (ξ|Y = ȳ) is small enough, it is highly

accurate to resolve the conflicts in πB(∆(ȳ)) by assigning b as their value.

cCFDReslove. It applies the rule derived from a constant CFD ξ = R(X → A, tp1). For

each tuple t ∈ D, if (a) t[X] ≍ tp1[X], (b) t[A] ̸= tp1[A], and (c) t[A] has been changed

less than δ1 times, then t[A] is changed to the constant tp1[A].

MDReslove. It applies the cleaning rule derived from an MD ξ =
∧

j∈[1,k] (R[A j] ≈ j

Rm[B j]) → R[E] ⇌ Rm[F]. For each tuple t ∈ D, if there exists a master tuple s ∈ Dm

such that (a) t[A j]≈ j s[B j] for j ∈ [1,k], (b) t[E] ̸= s[F], and (c) t[E] has been changed

less than δ1 times, then it assigns the master value s[F] to t[E].

These procedures do not change those data values that are marked deterministic

fixes by algorithm cRepair.

Example 4.6.2: Consider an instance of schema R(ABCEFH) shown in Fig. 4.6, and

a variable CFD ϕ = R(ABC→ E, tp1), where tp1 consists of wildcards only, i.e., ϕ is an

FD. Observe that (a) H (ϕ|ABC = (a1,b1,c1)) ≈ 0.8, (b) H (ϕ|ABC = (a2,b2,c2)) is 1,

and (c) H (ϕ|ABC = (a2,b2,c3)) and H (ϕ|ABC = (a2,b2,c4)) are both 0.

From these we can see the following. (1) For ∆(ABC = (a2,b2,c3)) and ∆(ABC =

(a2,b2,c4)), the entropy is 0; hence these sets of tuples do not violate ϕ, i.e., there is

no need to fix these tuples. (2) The fix based on H (ϕ|ABC = (a1,b1,c1)) is relatively

accurate, but not those based on H (ϕ|ABC = (a2,b2,c2)). Hence algorithm eRepair

Chapter 4. Interaction Between Record Matching and Data Repairing 123

A B C E F H

t1: a1 b1 c1 e1 f1 h1

t2: a1 b1 c1 e1 f2 h2

t3: a1 b1 c1 e1 f3 h3

t4: a1 b1 c1 e2 f1 h3

t5: a2 b2 c2 e1 f2 h4

t6: a2 b2 c2 e2 f1 h4

t7: a2 b2 c3 e3 f3 h5

t8: a2 b2 c4 e3 f3 h6

Figure 4.6: Example relation of schema R

will only change t4[E] to e1, and marks it as a reliable fix. 2

Complexity. The outer loop (lines 3–10) in algorithm eRepair runs in O(δ1|D|) time.

Each inner loop (lines 4–9) takes O(|D||Σ| + k|D|size(Γ)) time using the optimization

techniques of Section 4.5, where k is a constant. Thus, the algorithm takes O(δ1|D|2|Σ|
+ δ1k|D|2size(Γ)) time.

4.6.3 Resolving Conflicts with a 2-in-1 Structure

We can efficiently identify tuples that match the LHS of constant CFDs by building an

index on the LHS attributes in the database D. We can also efficiently find tuples that

match the LHS of MDs by leveraging the suffix tree structure developed in Section 4.5.

However, for variable CFDs, two issues still remain: (a) detecting violations and (b)

computing entropy. These are rather costly and have to be recomputed when data is

updated in the cleaning process. To do these we develop a 2-in-1 structure, which can

be easily maintained.

Let ΣV be the set of variables CFDs in Σ, and attr(ΣV) be the set of attributes

appearing in ΣV . For each CFD φ = R(Y → B, tp) in ΣV , we build a structure consisting

of a hash table and an AVL tree [CLRS01] T as follows.

Hash table HTab. Recall ∆(ȳ) = {t | t ∈ D, t[Y] = ȳ} for ȳ ∈ πY (ρY≍tp[Y]D) described

earlier. For each ∆(ȳ), we insert an entry (key,val) into HTab, where key = ȳ, and val

is a pointer linking to a node u = (ε, l,r,o), where (a) u.ε = H (φ|Y = ȳ), (b) u.l is the

value-count pair (ȳ, |∆(ȳ)|), (c) u.r is the set {(b,cntY B(ȳ,b)) | b ∈ πB(∆(ȳ))}, and (d)

u.o is the set of (partial) tuple IDs {t.id | t ∈ ∆(ȳ)}.

Chapter 4. Interaction Between Record Matching and Data Repairing 124

Figure 4.7: Example data structure for variable CFDs

AVL tree T . For each ȳ ∈ πY (ρY≍tp[Y]D) with entropy H (φ|Y = ȳ) ̸= 0, we create a

node v = HTab(ȳ) in T , a pointer to the node u for ∆(ȳ) in HTab. For each node v in

T , its left child vl.ε ≤ v.ε and its right child vr.ε ≥ v.ε.

Note that both the number |HTab| of entries in the hash table HTab and the number

|T | of nodes in the AVL tree T are bounded by the number |D| of tuples in D.

Example 4.6.3: Consider the relation in Fig. 4.6 and the variable CFD ϕ given in

Example 4.6.2. The hash table HTab and the AVL tree T for ϕ are shown in Fig. 4.7.

2

We next show how to use and maintain the structures.

(1) Lookup cost. For the CFD φ, it takes (a) O(log |T |) time to identify the set ∆(ȳ)
of tuples with minimum entropy H (φ|Y = ȳ) in the AVL tree T , and (b) O(1) time to

check whether two tuples in D satisfy φ via the hash table HTab.

(2) Update cost. The initialization of both the hash table HTab and the AVL tree T can

be done by scanning the database D once, and it takes O(|D| log |D||ΣV |) time.

After resolving some conflicts, the structures need to be maintained accordingly.

Consider a set ∆(ȳ) of dirty tuples. When a reliable fix is found for ∆(ȳ) based

on H (φ|Y = ȳ), we do the following: (a) remove a node from tree T , which takes

O(log |T |) time, where |T | ≤ |D|; and (b) update the hash tables and trees for all other

CFDs, which takes O(|∆(ȳ)||ΣV |+ |∆(ȳ)| log |D|) time in total.

(3) Space cost. The structures take O(|D|size(ΣV) space for all CFDs in ΣV in total,

where size(ΣV) is the size of ΣV .

Putting these together, the structures are efficient in both time and space, and are

easy to maintain.

Chapter 4. Interaction Between Record Matching and Data Repairing 125

4.7 Experimental Study

We next present an experimental study of UniClean, which unifies matching and re-

pairing. Using real-life data, we evaluated (1) the effectiveness of our data cleaning

algorithms, (2) the accuracy of deterministic fixes and reliable fixes, and (3) the scala-

bility of our algorithms with the size of data.

Experimental Setting. We used two real-life data sets.

(1) HOSP data was taken from US Department of Health & Human Services∗. It has

100K records with 19 attributes. We designed 23 CFDs and 3 MDs for HOSP, 26 in

total.

(2) DBLP data was extracted from DBLP Bibliography†. It consists of 400K tuples,

each with 12 attributes. We designed 7 CFDs and 3 MDs for DBLP, 10 in total.

(3) Master data for both datasets was carefully selected from the same data sources so

that they were guaranteed to be correct and consistent w.r.t. the designed rules.

(4) Dirty datasets were produced by introducing noises to data from the two sources,

controlled by four parameters: (a) |D|: the data size; (b) noi%: the noise rate, which

is the ratio of the number of erroneous attributes to the total number of attributes in D;

(c) dup%: the duplicate rate, i.e.,, the percentage of tuples in D that can find a match

in the master data; and (d) asr%: the asserted rate. For each attribute A, we randomly

picked asr% of tuples t from the data and set t[A].cf = 1, while letting t ′[A].cf = 0 for

the other tuples t ′. The default value for asr% is 40%.

Algorithms. We implemented the following algorithms, all in Python: (a) algo-

rithms cRepair, eRepair and hRepair (an extension of algorithm in [CFG+07]) in

UniClean; (b) the sorted neighborhood method of [HS98], denoted by SortN, for record

matching based on MDs only; and (c) the heuristic repairing algorithm of [CFG+07],

denoted by quaid, based on CFDs only. We use Uni to denote cleaning based on both

CFDs and MDs (matching and repairing), and Uni(CFD) to denote cleaning using CFDs

(repairing) only.

We used edit distance for similarity test, defined as the minimum number of single-

character insertions, deletions and substitutions needed to convert a value from v to v′.

Quality measuring. We adopted precision, recall and F-measure, which

are commonly used in information retrieval, where F-measure = 2 · (precision ·
∗http://www.hospitalcompare.hhs.gov/
†http://www.informatik.uni-trier.de/∼ley/db/

Chapter 4. Interaction Between Record Matching and Data Repairing 126

recall)/(precision+ recall).

For record matching, (a) precision is the ratio of true matches (true positives) cor-

rectly found by an algorithm to all the duplicates found, and (b) recall is the ratio of

true matches correctly found to all the matches between a dataset and master data. For

data repairing, (a) precision is the ratio of attributes correctly updated to the number of

all the attributes updated, and (b) recall is the ratio of attributes corrected to the number

of all erroneous attributes.

All experiments were conducted on a Linux machine with a 3.0GHz Intel CPU

and 4GB of Memory. Each experiment was run more than 5 times, and the average is

reported here.

Experimental Results. We conducted five sets of experiments: (a) in the first two

sets of experiments, we compared the effectiveness of our cleaning methods with both

matching and repairing against its counterpart with only matching or only repairing;

(b) we evaluated the accuracy of deterministic fixes, reliable fixes and possible fixes

in the third set of experiments; (c) we evaluated the impact of the duplicate rate and

asserted rate on the percentage of deterministic fixes found by our algorithm cRepair in

the fourth set of experiments; and (d) the last set of experiments tested the scalability of

Uni with both the size of dirty data and the size of master data. In all the experiments,

we set the threshold for entropy and confidence to be 0.8 and 1.0, respectively. We

used dirty datasets and master data consisting of 60K tuples each. We now report our

findings.

Exp-1: Matching helps repairing. In the first set of experiments we show that match-

ing indeed helps repairing. We compare the quality (F-measure) of fixes generated by

Uni, Uni(CFD) and quaid. Fixing the duplicate rate dup% = 40%, we varied the noise

rate noi% from 2% to 10%. Observe that dup% is only related to matching via MDs. To

favor Uni(CFD) and quaid, which use CFDs only, we focused on the impact of various

noise rates.

The results on HOSP data and DBLP data are reported in Figures 4.8(a) and 4.8(b),

respectively, which tell us the following. (1) Uni clearly outperforms Uni(CFD) and

quaid by up to 15% and 30%, respectively. This verifies that matching indeed helps

repairing. (2) The F-measure decreases when noi% increases for all three approaches.

However, Uni with matching is less sensitive to noi%, which is another benefit of uni-

fying repairing with matching. (3) Even only with CFDs, our system Uni(CFD) still

outperforms quaid, as expected. This is because quaid only generates possible fixes

with heuristic, while Uni(CFD) finds both deterministic fixes and reliable fixes. This

Chapter 4. Interaction Between Record Matching and Data Repairing 127

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

2 4 6 8 10

F
-m

ea
su

re

Noise rate (%)

Uni
Uni(CFD)

Quaid

(a) HOSP repairing

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10

F
-m

ea
su

re

Noise rate (%)

Uni
Uni(CFD)

Quaid

(b) DBLP repairing

 70
 75
 80
 85
 90
 95

 100

2 4 6 8 10

M
at

ch
ed

 a
tt

ri
bu

te
s

(%
)

Noise rate (%)

SortN(MD)
Uni

(c) HOSP matching

 40

 50

 60

 70

 80

 90

2 4 6 8 10

M
at

ch
ed

 a
tt

ri
bu

te
s

(%
)

Noise rate (%)

SortN(MD)
Uni

(d) DBLP matching

 0.9

 0.92

 0.94

 0.96

 0.98

 1

2 4 6 8 10

P
re

ci
si

on

Noise rate (%)

cRepair
cRepair+eRepair

Uni

(e) HOSP precision

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

2 4 6 8 10

R
ec

al
l

Noise rate (%)

cRepair
cRepair+eRepair

Uni

(f) HOSP recall

 0.9

 0.92

 0.94

 0.96

 0.98

 1

2 4 6 8 10

P
re

ci
si

on

Noise rate (%)

cRepair
cRepair+eRpair

Uni

(g) DBLP precision

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2 4 6 8 10

R
ec

al
l

Noise rate (%)

cRepair
cRepair+eRepair

Uni

(h) DBLP recall

 20
 30
 40
 50
 60
 70
 80

20 40 60 80 100

D
et

er
m

in
is

ti
c

fi
xe

s
(%

)

Duplicate rate (%)

HOSP
DBLP

(i) Deterministic fixes (dup%)

 0

 20

 40

 60

 80

 100

0 20 40 60 80

D
et

er
m

in
is

ti
c

fi
xe

s
(%

)

Asserted attributes by users (%)

HOSP
DBLP

(j) Deterministic fixes (asr%)

 300

 500

 700

 900

 1100

20 40 60 80 100

T
im

e
(s

ec
on

d)

of tuples x 1000

|D|
|Dm|

(k) HOSP scalability

 400

 550

 700

 850

 1000

 1150

80 160 240 320 400

T
im

e
(s

ec
on

d)

of tuples x 1000

|D|
|Dm|

(l) DBLP scalability

Figure 4.8: Experimental results

also verifies that deterministic and reliable fixes are more accurate than possible fixes.

Exp-2: Repairing helps matching. In the second set of experiment, we show that re-

pairing indeed helps matching. We evaluate the quality (F-measure) of matches found

by (a) Uni and (b) SortN using MDs, denoted by SortN(MD). We used the same setting

as in Exp-1. We also conducted experiments by varying the duplicate rate, but found

that its impact is very small; hence we do not report it here.

The results are reported in Figures 4.8(c) and 4.8(d) for HOSP data and DBLP data,

Chapter 4. Interaction Between Record Matching and Data Repairing 128

respectively. We find the following. (a) Uni outperforms SortN(MD) by up to 15%,

verifying that repairing indeed helps matching. (b) The F-measure decreases when the

noise rate increases for both approaches. However, Uni with repairing is less sensitive

to noi%, which is consistent with our observation in the last experiments.

Exp-3: Accuracy of deterministic and reliable fixes. In this set of experiments we

evaluate the accuracy (precision and recall) of (a) deterministic fixes generated in the

first phase of UniClean, denoted by cRepair, (b) deterministic fixes and reliable fixes

generated in the first two phases of UniClean, denoted by cRepair+eRepair, and (c) all

fixes generated by Uni. Fixing dup% = 40%, we varied noi% from 2% to 10%. The

results are reported in Figures 4.8(e)–4.8(h).

The results tell us the following: (a) Deterministic fixes have the highest precision,

and are insensitive to the noise rate. However, their recall is low, since cRepair is

“picky”: it only generates fixes with asserted attributes. (b) Fixes generated by Uni

have the lowest precision, but the highest recall, as expected. Further, their precision is

quite sensitive to noi%. This is because the last step of UniClean is by heuristics, which

generates possible fixes. (c) The precision and recall of deterministic fixes and reliable

fixes by cRepair+ eRepair are in the between, as expected. Further, their precision is

also sensitive to noi%. From these we can see that the precision of reliable fixes and

possible fixes is sensitive to noi%, but not their recall. Moreover, when noi% is less

than 4%, their precision is rather indifferent to noi%.

Exp-4: Impact of dup% and asr% on deterministic fixes. In this set of experiments

we evaluated the percentage of deterministic fixes found by algorithm cRepair.

Fixing the asserted rate asr% = 40%, we varied the duplicate rate dup% from 20%

to 100%. Figure 4.8(i) shows the results. We find that the larger dup% is, the more

deterministic fixes are found, as expected.

Fixing dup% = 40%, we varied asr% from 0% to 80%. The results are shown in

Fig. 4.8(j), which tell us that the number of deterministic fixes found by cRepair highly

depends on asr%. This is because to find deterministic fixes, cleaning rules are only

applied to asserted attributes.

Exp-5: Scalability. The last experiments evaluated the scalability of Uni with the size

|D| of dirty data and the size |Dm| of master data. We fixed noi% = 6% and dup%

= 40% in these experiments. The results are reported in Figures 4.8(k) and 4.8(l) for

HOSP and DBLP data, respectively.

Figure 4.8(k) shows two curves for HOSP data: one by fixing |Dm| = 60K and

Chapter 4. Interaction Between Record Matching and Data Repairing 129

varying |D| from 20K to 100K, and the other by fixing |D| = 60K and varying |Dm|
from 20K to 100K. The results show that Uni scales reasonably well with both |D|
and |Dm|. In fact Uni scales much better than quaid [CFG+07]: quaid took more than

10 hours when |D| is 80K, while it took Uni about 11 minutes. These results verify

the effectiveness of our indexing structures and optimization techniques developed for

Uni. The results are consistent for DBLP data, as shown in Fig. 4.8(l).

Summary. From the experimental results on real-life data, we find the following. (a)

Data cleaning by unifying matching and repairing substantially improves the quality

of fixes: it outperforms matching and repairing taken as independent processes by up

to 30% and 15%, respectively. (b) Deterministic fixes and reliable fixes are highly

accurate. For example, when the noise rate is no more than 4%, their precision is close

to 100%. The precision decreases slowly when increasing noise rate. These tell us

that it is feasible to find accurate fixes for real-life applications. (c) Candidate repairs

generated by system UniClean are of high-quality: their precision is about 96%. (d)

Our data cleaning methods scale reasonably well with the size of data and the size of

master data. It is more than 50 times faster than quaid a data repairing tool using CFDs

only.

Chapter 5

Inferring Data Currency and

Consistency for Conflict Resolution

5.1 Introduction

In this chapter, we study a new approach for conflict resolution, by inferring both data

currency and consistency (Chapter 5).

Given a database instance It with all tuples referring to the same real world entity,

we want to identify a single tuple in which each attribute has consistent and the most

current value (the latest value) taken from It , referred to as the true values of the entity

relative to It . The need for studying this problem is evident in data integration, where

conflicts are often generated by values that refer to the same real world entity but come

from multiple data sources and time.

It is also common to find multiple values of the same entity presenting in one

database. While these values were once correct, i.e., they were the true values of the

entity at some time, some of them may have become out of date and thus inconsis-

tent. The need for resolving conflicts for, e.g., data fusion [BN08, DN09], data clean-

ing [ABC03] and query answering with current values [FGW11] becomes evident.

However, it is already highly nontrivial to find consistent values for an en-

tity [ABC03, CFG+07]. Moreover, it is hard to identify the most current values of

one entity [FGW11] since in the real world, reliable timestamps are often absent or

unreliable [ZDI10, RG95]. Add to this the complication that one has to find the entity

values that are both consistent and most current to resolve conflicts.

Example 5.1.1: The photo in Fig. 5.1 is known as “V-J Day in Times Square”.

130

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 131

Figure 5.1: V-J Day

The nurse and sailor in the photo have been identified as Edith Shain and George

Mendonça, respectively, and their information is collected in sets E1 and E2 of tuples,

respectively, shown in Fig. 5.2.

We want to find the true values of these entities, i.e., a tuple t1 for Edith (resp. a

tuple t2 for George) such that the tuple has the most current and consistent attribute

values for her (resp. his) status, job, the number of kids, city, AC (area code), zip and

county in E1 (resp. E2). However, the values in E1 (E2) have conflicts, and worse still,

they do not carry timestamps. They do not tell us, for instance, whether Edith still lives

in NY, or even whether she is still alive. 2

Although the situation is bad, it is not hopeless. We can often discover certain cur-

rency orders based on the semantics of the data. Also, dependencies such as CFDs have

shown effective in improving the consistency of the data. Better still, data currency and

consistency interact with each other. When they are taken together, we can often find

some true values from inconsistent tuples, even when without timestamps, as shown

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 132

name status job kids city AC zip county

E1 r1: Edith Shain working nurse 0 NY 212 10036 Manhattan

r2: Edith Shain retired n/a 3 SFC 415 94924 Dogtown

r3: Edith Shain deceased n/a null LA 213 90058 Vermont

E2 r4: George Mendonça working sailor 0 Newport 401 02840 Rhode Island

r5: George Mendonça retired veteran 2 NY 212 12404 Accord

r6: George Mendonça unemployed n/a 2 Chicago 312 60653 Bronzeville

Figure 5.2: Instances E1 for entity Edith and E2 for George

Currency constraints: φ1: ∀t1, t2 (t1[status] = “working” ∧ t2[status] = “retired” → t1 ≺status t2)

φ2: ∀t1, t2 (t1[status] = “retired” ∧ t2[status] = “deceased” → t1 ≺status t2)

φ3: ∀t1, t2 (t1[job] = “sailor” ∧ t2[job] = “veteran” → t1 ≺job t2)

φ4: ∀t1, t2 (t1[kids]< t2[kids]→ t1 ≺kids t2) φ5: ∀t1, t2 (t1 ≺status t2 → t1 ≺job t2)

φ6: ∀t1, t2 (t1 ≺status t2 → t1 ≺AC t2) φ7: ∀t1, t2 (t1 ≺status t2 → t1 ≺zip t2)

φ8: ∀t1, t2 (t1 ≺city t2 ∧ t1 ≺zip t2 → t1 ≺county t2)

Constant CFDs: ψ1 : (AC = 213 → city = LA); ψ2 : (AC = 212 → city = NY);

Figure 5.3: Currency constraints and constant CFDs

below.

Example 5.1.2: From the semantics of the data, we can deduce the currency con-

straints and CFDs shown in Fig. 5.3.

(1) Currency constraints. We know that for each person, status only changes from

working to retired and from retired to deceased, but not from deceased to working or

retired. These can be expressed as φ1 and φ2 given in Fig. 5.3, referred to as currency

constraints. Here t1 ≺status t2 denotes a partial currency order defined on the attribute

status, indicating that t2 is more current than t1 in attribute status. Similarly, we know

that job can only change from sailor to veteran but not the other way around. We can

express this as currency constraint φ3, shown in Fig. 5.3. Moreover, the number of

kids typically increases monotonically. We can express this as φ4, assuring that t2 is

more current than t1 in attribute kids if t1[kids]< t2[kids].

In addition, we know that for each person, if tuple t2 is more current than t1 in

attribute status, then t2 is also more current than t1 in job, AC and zip. Furthermore,

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 133

if t2 is more current than t1 in attributes city and zip, it also has a more current county

than t1. These can be expressed as currency constraints φ5–φ8.

(2) Constant CFDs. In the US, if the AC is 213 (resp. 212), then the city must be

LA (resp. NY). These are expressed as conditional functional dependencies ψ1 and ψ2

shown in Fig. 5.3.

We can apply these constraints to the set E1 of tuples given in Fig. 5.2, to improve

the currency and consistency of the data. By interleaving inferences of data currency

and data consistency, we can actually identify the true values of entity Edith, as fol-

lows:

(a) from the currency constraints φ1 and φ2, we can conclude that her latest status

is deceased;

(b) similarly, by φ4, we find that her true kids value is 3 (assuming null < k for any

number k);

(c) from (a) above and φ5–φ7, we know that her latest job, AC and zip are n/a, 213

and 90058, respectively;

(d) after currency inferences (a) and (c), we can apply the CFD ψ1 and find her latest

city as LA; and

(e) after the consistency inference (d), from (c) and (d) we get her latest county as

Vermont, by applying the currency constraint φ8.

Now we have identified a single tuple

t1 = (Edith Shain, deceased, n/a, 3, LA, 213, 90085, Vermont)

as the true values of Edith Shain relative to the set E1 of tuples (the address is for her

cemetery). 2

This example shows that data currency and consistency could be interleaved when

resolving conflicts. In addition, both data currency and data consistency can be speci-

fied with constraints, and hence, can be processed in a uniform logical framework.

While the need for deducing the consistent and most current values has been pro-

moted for conflict resolution [DN09, MA06], prior work mostly assumes the avail-

ability of timestamps. Previous work on data quality focuses on either data consis-

tency (e.g., [ABC03, FGJK08, CFG+07, YENO10]) or data currency (e.g., [FGW11]).

However, no models or algorithms are yet in place to combine data consistency and

currency for conflict resolution.

We contend that this work provides fundamental results for conflict resolution, and

proposes a practical solution by inferring data currency and data consistency.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 134

Related work. Conflict resolution has been studied for decades, started from [Day83].

It aims to combine data from different sources into a single representation (see [BN08,

DN09] for surveys). In that context, inconsistencies are typically resolved by select-

ing the max,min,avg,any value [BN08]. While the need for data currency was also

observed there (e.g., [DN09, MA06]), previous work identifies current values only by

using timestamps. This work differs from the traditional work in the following. (1) We

revise the conflict resolution problem to identify values of entities that are both consis-

tent and most current. (2) We do not assume the availability of timestamps, which are

often missing in practice [ZDI10, RG95]. (3) We resolve conflicts by using currency

constraints and CFDs [ABC03, FGJK08, CFG+07], instead of picking max,min,avg

or any value. (4) We employ automated reasoning to identify true values by unifying

the inferences of data currency and consistency.

There has been work on truth discovery from data sources [DBES09b, GAMS10,

YHY08]. Their approaches include (1) vote counting and probabilistic computation

based on the trustworthiness of data sources [GAMS10, YHY08]; (2) source depen-

dencies to find copy relationships and reliable sources [DBES09b]; and (3) employing

lineage information and probabilities [Wid05]. In contrast, we assume no information

about the accuracy of data sources, but derive true values based on data currency and

consistency. In addition, we adopt a logical approach via automated reasoning about

constraints, as opposed to probabilistic computation. This work is complementary to

the previous work and can be combined with the prior approaches.

This work extends [FGW11, FGJK08]. A data currency model was presented

in [FGW11] with partial currency orders and denial constraints [ABC03]. CFDs

were studied for specifying data consistency [FGJK08]. This work differs from

[FGW11, FGJK08] in the following. (1) We propose a conflict resolution model that

combines data currency and consistency. In contrast, [FGW11] only studies data cur-

rency, while [FGJK08] only considers data consistency. (2) We interleave inferences of

data currency and consistency, which is far more intriguing than handling currency and

consistency separately, and requires new techniques to capture the interaction between

the two. (3) We use currency constraints, which are simpler than denial constraints, to

strike a balance between the complexity of inferring true values and the expressivity

needed for specifying currency (Section 5.4). (4) No practical algorithms were given

in [FGW11] for deriving current values.

Previous work on data consistency [ABC03, FGJK08, CFG+07, YENO10,

GSTZ03] has been focusing on consistent query answering and data repairing [Ber11],

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 135

topics different from conflict resolution. The study of preferred repairs [GSTZ03] also

advocates partial orders. It differs from the currency orders we study here in that they

use PTIME functions to rank different repairs over the entire database, whereas we de-

rive the currency orders by automated reasoning about both available partial temporal

information and currency constraints. Preferred repairs are implemented by [CFG+07]

via a cost metric, and by [YENO10] based on a decision theory, which can be incor-

porated into our framework.

There has been a large body of work on temporal databases (see [CT05] for a sur-

vey). In contrast to that line of work, we do not assume the availability of timestamps.

It has also recently been shown that temporal information helps record linkage iden-

tify records that refer to the same entity [LDMS11]. Here we show that data currency

helps conflict resolution as well, a different process that takes place after record link-

age has identified tuples pertaining to the same entity. While [LDMS11] is based on

timestamps, we do not assume it here.

Organization. The rest of the chapter is organized as follows. We propose a model

for specifying conflicts in Section 5.2, based on data currency and consistency, and

introduce a framework for resolving conflicts in Section 5.3. Problems fundamental to

conflict resolution are studied in Section 5.4, and practical algorithms underlying the

conflict resolution framework are developed in Section 5.5. An experimental study is

reported in Section 5.6

5.2 A Conflict Resolution Model

We first show how to capture conflicts in terms of data currency and consistency. We

start with currency (Section 5.2.1) and consistency (Section 5.2.2) specifications. We

then present the model (Section 5.2.3).

5.2.1 Data Currency

We specify the currency of data by means of (a) partial currency orders, and (b) cur-

rency constraints.

Data with partial currency orders. Consider a relation schema R = (A1, . . . ,An),

where each attribute Ai has a domain dom(Ai). In this work we focus on entity in-

stances Ie of R, which are sets of tuples of R all pertaining to the same real-world

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 136

entity e, and are typically much smaller than a database instance. Such entity instances

can be identified by e.g., record linkage techniques (see [EIV07] for a survey).

For an attribute Ai ∈ R and an entity instance Ie of R, we denote by adom(Ie.Ai) the

set of Ai-attribute values that occur in Ie, referred to as the active domain of Ai in Ie.

For example, two entity instances are given in Fig. 5.2: E1 = {r1,r2,r3} for entity

“Edith”, and E2 = {r4,r5,r6} for “George”; and adom(E1.city) = {NY, SFC, LA}.

A temporal instance It of Ie is given as (Ie,≼A1 , . . . ,≼An), where each ≼Ai is a

partial order on Ie, referred to as the currency order for attribute Ai for the entity

represented by Ie. For t1, t2 ∈ Ie, t1 ≼Ai t2 if and only if (iff) either t1 and t2 share the

same Ai-attribute value (i.e., t1[Ai] = t2[Ai]), or that t2[Ai] is more current than t1[Ai]

(denoted by t1 ≺Ai t2).

Intuitively, currency orders represent available temporal information about the

data. Observe that ≼Ai is a partial order, possibly empty. For example, for E1 above,

we only know that r3 ≼kids r1 and r3 ≼kids r2 since r3[kids] is null, which are in

the currency order ≼kids, while the currency orders for other attributes are empty,

excluding the case when tuples carry the same attribute value. Similarly for E2. In

particular, t1 ≼Ai t2 if t1[Ai] is null, i.e., an attribute with value missing is ranked the

lowest in the currency order.

Current instances. Currency orders are often incomplete. Hence we consider possible

completions of currency orders.

A completion Ic
t of It is a temporal instance Ic

t = (Ie,≼c
A1
, . . . ,≼c

An
), such that for

each i ∈ [1,n], (1) ≼Ai ⊆ ≼c
Ai

, and (2) for all tuples t1, t2 ∈ Ie, either t1≼c
Ai

t2 or t2≼c
Ai

t1.

That is, ≼c
Ai

induces a total order on tuples in Ie.

That is, Ic
t totally sorts the attribute values in Ie such that the most current value of

each attribute is the last in the order.

We define the most current Ai-attribute value of Ic
t to be t[Ai] that comes last in the

total order ≼c
Ai

. The current tuple of Ic
t , denoted by LST(Ic

t) (i.e., last), is the tuple tl
such that for each attribute Ai, tl[Ai] is the most current Ai-value of Ic

t , i.e., tl contains

the most current values from Ic
t .

Currency constraints. One can derive additional currency information from the se-

mantics of the data, which is modeled as currency constraints. A currency constraint

φ is of the form

∀t1, t2 (ω → t1 ≺Ar t2),

where ω is a conjunction of predicates of the form: (1) t1≺Al t2, i.e., t2 is more current

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 137

than t1 in attribute Al; (2) t1[Al] op t2[Al], where op is one of =, ̸=,>,<,≤,≥; and (3)

ti[Al] op c for i ∈ {1,2}, where c is a constant.

In contrast to denial constraints in the model of [FGW11], currency constraints are

defined on two tuples, like functional dependencies. Such constraints suffice to specify

currency information commonly found in practice (see, e.g., Example 5.1.2).

Currency constraints are interpreted over completions Ic
t of It . We say that Ic

t sat-

isfies φ, denoted by Ic
t |= φ, if for any two tuples t1, t2 in Ie, if these tuples and related

order information in Ic
t satisfy the predicates in ω, following the standard semantics of

first-order logic, then t1 ≺c
Ar

t2.

We say that Ic
t satisfies a set Σ of currency constraints, denoted by Ic

t |= Σ, if Ic
t |= φ

for all φ ∈ Σ.

Example 5.2.1: Recall the entity instances E1 and E2 given in Fig. 5.2. Currency

constraints on these instances include φ1–φ8 as specified in Fig. 5.3 and interpreted in

Example 5.1.2.

It is readily verified that for any completion Ec
1 of E1, if it satisfies these constraints,

it yields LST(Ec
1) of the form (Edith, deceased, n/a, 3, xcity, 213, 90058, xcounty) for

Edith, in which the most current values for attributes name, status, job, kids, AC and

zip are deduced from the constraints and remain unchanged, while xcity and xcounty are

values determined by the total currency order given in Ec
1. Observe that the values of

the current tuple are taken from different tuples in E1, e.g., kids = 3 from r2 and AC =

213 from r3.

Similarly, for any completion of E2, its current tuple has the form (George, xstatus,

xjob, 2, xcity,xAC,xzip,xcounty), if they satisfy all constraints. Hence, currency constraints

help us find some but not all of the most current values of entities. 2

5.2.2 Data Consistency

To specify the consistency of data, we use constant CFDs [FGJK08] (as depicted in

Chater 2).

A constant CFD ψ on a relation schema R is of the form tp[X]→ tp[B], where (1)

X ⊆ R, B ∈ R; and (2) tp is the pattern tuple of ψ with attributes in X and B, where for

each A in X ∪{B}, tp[A] is a constant in dom(A) of A.

For example, ψ1 and ψ2 in Table 5.3 are constant CFDs on the relation of Table 5.2,

as interpreted in Example 5.1.2.

Such CFDs are defined on the current tuple of a completion. Consider a completion

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 138

Ic
t of It and let tl = LST(Ic

t) be the current tuple of Ic
t . We say that the completion Ic

t

satisfies a constant CFD ψ = tp[X]→ tp[B], denoted by Ic
t ⊨ ψ, iff when tl[X] = tp[X]

then tl[B] = tp[B].

Intuitively, this assures that if tl[X] = tp[X] and if tl[X] contains the most current

X-attribute values, then tl[B] can be repaired by taking the value tp[B] in the pattern,

and moreover, tl[B] is the most current value in attribute B.

We say that Ic
t satisfies a set Γ of constant CFDs, denoted as Ic

t ⊨ Γ, iff Ic
t ⊨ ψ for

each ψ ∈ Γ.

Observe that a constant CFD is defined on a single tuple LST(Ic
t). In light of this,

we do not need general CFDs of [FGJK08] here, which are typically defined on two

tuples.

Example 5.2.2: Recall the current tuples for E1 in Example 5.2.1. Then all comple-

tions of E1 that satisfy ψ1 in Fig. 5.3 have the form (Edith, deceased, n/a, 3, LA, 213,

90058, Vermont), in which xcity is instantiated as LA by ψ1, and as a result, xcounty
becomes Vermont by the currency constraint φ8. 2

5.2.3 Conflict Resolution

We are ready to bring currency and consistency together.

Specifications. A specification Se = (It ,Σ,Γ) of an entity consists of (1) a temporal

instance It = (Ie,≼A1, . . . ,≼An); (2) a set Σ of currency constraints; and (3) a set Γ of

constant CFDs. A completion I c
t = (Ie,≼c

A1
, . . . ,≼c

An
) of It is a valid completion of Se

if I c
t satisfies both Σ and Γ. We say that Se is valid if there exists a valid completion

I c
t of Se, e.g., the specification of E1 (or E2) and the constraints in Fig. 5.3 is valid.

True values. There may be many valid completions Ic
t , each leading to a possibly

different current tuple LST(Ic
t). When two current tuples differ in some attribute, there

is a conflict. We aim to resolve such conflicts. If all such current tuples agree on all

attributes, then the specification is conflict-free, and a unique current tuple exists for

the entity e specified by Se. In this case, we say that this tuple is the true value of e.

More formally, the true value of Se, denoted by T(Se), is the single tuple tc such

that for all valid completions I c of Se, tc = LST(Se), if it exists. For each attribute Ai

of R, we call tc[Ai] the true value of Ai in Se.

The conflict resolution problem. Consider a specification Se = (It ,Σ,Γ), where It =

(Ie,≼A1, . . . ,≼An). Given Se, conflict resolution is to find the minimum amount of

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 139

additional currency information such that the true value exists.

The additional currency information is specified in terms of a partial temporal

order Ot = (I,≼′
A1
, . . . ,≼′

An
). We use Se ⊕Ot to denote the extension S′e = (I′t ,Σ,Γ)

of Se by enriching It with Ot , where I′t = (Ie ∪ I,≼A1 ∪≼′
A1
, . . . ,≼An∪≼′

An
). We only

consider partial temporal orders Ot such that ≼Ai∪≼′
Ai

is a partial order for all i∈ [1,n].

We use |Ot | to denote Σi∈[1,n]|≼′
Ai
|, i.e., the sum of the sizes of all the partial orders

in Ot .

Given a valid specification Se = (It ,Σ,Γ) of an entity, the conflict resolution prob-

lem is to find a partial temporal order Ot such that (a) T(Se ⊕Ot) exists and (b) |Ot | is

minimum.

Example 5.2.3: Recall from Example 5.2.1 the current tuples for George. Except

for name and kids, we do not have a unique current value for the other attributes.

Nonetheless, if a partial temporal order Ot with, e.g., r6 ≺status r5 is provided by the

users (i.e., status changes from unemployed to retired), then the true value of George

in E2 can be derived as (George, retired, veteran, 2, NY, 212, 12404, Accord) from the

currency constraints and CFDs of Fig. 5.3. 2

5.3 A Conflict Resolution Framework

We propose a framework for conflict resolution. As depicted in Fig. 5.4, given a spec-

ification Se = (It ,Σ,Γ) of an entity e, the framework is to find the true value T(Se) of e

by reasoning about data currency and consistency, and by interacting with the users to

solicit additional data currency information.

The framework provides the users with suggestions. A suggestion is a minimum

set A of attributes of e such that if the true values of these attributes are provided by

the users, T(Se) is automatically deduced from the users’ input, Σ, Γ and It . The true

values for A are represented as a temporal order Ot . More specifically, the framework

deduces T(Se) as follows.

(1) Validity checking. It first inspects whether Se⊕Ot is valid, via automated reasoning,

where Ot is a partial temporal order provided by the users, initially empty (see step (4)

below for details about Ot). If so, it follows the ‘Yes’ branch. Otherwise the users need

to revise Ot by following the ‘No’ branch.

(2) True value deducing. After Se ⊕Ot is validated, it derives as many true values for

the attributes of e as possible, via automated reasoning.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 140

A temporal

Instance It

Currency

constraints

CFDs

 IsValid ?

 Deduce T(S Ot)+

+T(S Ot) exists?

Generate a suggestion

Yes

No

+T(S Ot)return

Yes

some true values V
S

Calculate from VOt

S Ot+
e

e

e

e

e

Figure 5.4: Framework overview

(3) Finding the true value. If T(Se ⊕Ot) exists, it computes and returns it following

the ‘Yes’ branch. Otherwise, it follows the ‘No’ branch and goes to step (4).

(4) Generating suggestions. It computes a suggestion A along with its candidate

values taken from the active domain of Se, such that if the users pick and validate the

true values for A , then T(Se ⊕Ot) is warranted to be found. The users are expected to

provide V, the true values of some attributes in A , represented as a partial temporal

order Ot . Given Ot , Se ⊕Ot is constructed and the process goes back to step (1).

The process proceeds until T(Se ⊕Ot) is found, or when the users opt to settle

with true values for a subset of attributes of e. That is, if users do not have sufficient

knowledge about the entity, they may let the system derive true values for as many at-

tributes as possible, and revert to the traditional methods to pick the max,min,avg,any

values for the rest of the attributes.

Remarks. (1) To specify users’ input, let It in Se be (Ie,≼A1, . . . ,≼An) and A ∪A ′∪B

= {A1, . . . ,An}, where (i) A is the set of attributes identified in step (4) for which the

true values are unknown; (ii) for B , their true values VB have been deduced (step (2));

and (iii) A ′ is the set of attributes whose true values can be deduced from VB and

the suggestion for A . Given a suggestion, the user is expected to provide a set V of

true values for (a subset of) A that they are confident of. Here V consists of either

the candidate values taken from the suggestion, or some new values not in the active

domains of Se that users opt to choose. The users do not have to enter values for all

attributes in A .

From the input V, a partial temporal order Ot is automatically derived, by treating

V as the most current values of those attributes involved. Indeed, Ot has the form

(Ie ∪{to},≼′
A1

, . . . ,≼′
An
), where to is a new tuple such that for all attributes A, to[A] =

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 141

V(A) if V has a value V(A) for A, and to[A] = null otherwise, while to[B] = VB remains

unchanged. Moreover, ≼′
A extends ≼A by including t[A]≼A to[A] if to[A] ̸= null, for all

tuples t ∈ Ie. Then Se ⊕Ot can be readily defined.

(2) There have been efficient methods for discovering constant CFDs, e.g., [FGLX11].

Along the same lines as CFD discovery [CM08, FGLX11], automated methods can be

developed for discovering currency constraints from (possibly dirty) data. With certain

quality metric in place [CM08], the constraints discovered can be as accurate as those

manually designed (such as those given in Fig. 5.3), and can be used by the framework

as input.

(3) To simplify the discussion we do not allow users to change constraints in Se.

(4) We assume that the values in entity instances were once correct. When a temporal

instance contains errors, one may inspect different samples and only take those cur-

rency orders that are consistent among the samples. or have sufficient support (e.g.,

frequency).

5.4 Fundamental Problems

In this section, we identify fundamental problems associated with conflict resolution

based on both data currency and consistency, and establish their complexity. These

results are not only of theoretical interest, but also tell us where the complexity arises,

and hence guide us to develop effective (heuristic) algorithms.

Satisfiability. The first one is the satisfiability problem for entity specifications. It

is to decide, given a specification Se = (It ,Σ,Γ) of an entity, whether Se is valid, i.e.,

whether there exists a valid completion of Se.

Intuitively, it is to check whether Se makes sense, i.e., whether the currency con-

straints, constant CFDs and partial orders in Se, when put together, have conflicts them-

selves. The analysis is needed by the step (1) of the framework of Fig. 5.4. In practice,

this analysis tells us whether we have to revise constraints in Se, or ask users to validate

its partial orders.

The problem is obviously important, but is NP-complete. One might think that the

absence of currency constraints or CFDs would simplify the analysis. Unfortunately,

its intractability is rather robust.

Theorem 5.4.1: The satisfiability problem for entity specifications is NP-complete. It

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 142

remains NP-hard for valid specifications Se = (It ,Σ,Γ) of an entity when (1) both Σ and

Γ are fixed; (2) Γ = /0, i.e., when only currency constraints are present; or (3) Σ = /0,

i.e., when only constant CFDs are present. 2

Proof. ∗ For the upper bound it suffices to observe that the following NP algorithm

correctly decides whether a given specification has a valid completion. Given a spec-

ification Se = (It ,Σ,Γ), the algorithm simply guesses a completion Ic
t of It and then

checks whether (i) Ic
t |= Σ; and (ii) Ic

t |= Γ. If the guessed completion passes these

checks, then the algorithm returns “yes”. Otherwise, the guessed completion is re-

jected. Note that a “guess” simply completes the partial orders on the values of It , and

there are finitely many guesses in total. The algorithm is in NP since checking can be

done in PTIME.

The NP-lower bound is established by reduction from the 3-satisfiability problem.

An instance of the 3-satisfiability problem is formula φ = C1 ∧ ·· · ∧Cr with C j =

ℓ
j
1 ∨ ℓ

j
2 ∨ ℓ

j
3, where for k ∈ {1,2,3} and j ∈ [1,r], ℓ j

k is either a variable or a negation

of a variable from a set X = {x1, . . . ,xn} of variables. It is to determine whether φ is

satisfiable, i.e., whether there exists a truth assignment of variables in X that satisfies

φ. This problem is known to be NP-complete (cf. [Pap94]).

Given φ, we define a specification Se = (It ,Σ,Γ) such that there exists a valid com-

pletion of Se iff φ is satisfiable. The specification Se consists of a temporal instance

It of schema R(D,C,P,U,V,W) and a fixed set of currency constraints Σ. No constant

CFDs are defined in Se. Intuitively, D is to distinguish between tuples that encode truth

assignments and tuples that correspond to clauses in φ; C is to identify variables (by

xi) and clauses (by j ∈ [1,r]); P is used to enforce the validity of clauses and finally,

U , V and W represent the positions (1, 2 and 3, resp) of variables in each clause.

We first explain how the temporal instance It of R together with the currency con-

straints in Σ is to encode truth assignments for X and clauses in φ. More specifically,

for each variable xi ∈ X , we use two constants ai and bi such that ai ≼A bi encodes that

xi is set to true, whereas bi ≼A ai encodes that x̄i is set to true (or, equivalently that xi

is set to false). Here A ranges over attributes U , V and W . More specifically, for each

variable xi ∈ X we include two tuples in It :

(0,xi,0,ai,ai,ai) and (0,xi,0,bi,bi,bi).

These encode truth assignments of X . To ensure that the choice of truth value for

∗This proof is a joint work with Floris Geerts.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 143

variables is consistent, we include the following currency constraints in Σ:

∀t1, t2 ∈ R(t1[D] = 0∧ t2[D] = 0∧ t1[C] = t2[C]∧

t1[A]≺ t2[A]→ t1[B]≺ t2[B]),

where A and B range over distinct pairs taken form {U,V,W}. These currency

constraints enforce that variables xi are set to true (resp. false) independent of the

position at which they appear in clauses (i.e., in attribute U , V or W).

We next consider the clauses in φ. Let C j = ℓ
j
1 ∨ ℓ

j
2 ∨ ℓ

j
3. observe that this can be

equivalently written as ℓ̄ j
1 ∧ ℓ̄

j
2 → ℓ

j
3. For instance, consider a clause C = x1 ∨ x̄2 ∨ x̄3.

This is equivalent to x̄1 ∧ x2 → x̄3. Given this, we include two tuples in It for each

clause:

(1, j,1,v1,v2,v3) and (1, j,2,v′1,v
′
2,v

′
3),

where vi = ak and v′i = bk if ℓ̄ j
i = xk, and vi = bk and v′i = ak if ℓ j

i = xk, for i = 1,2, and

conversely for i = 3. The example clause C is thus encoded by (1, ,1,b1,a2,b3) and

(1, ,2,a1,b2,a3). The connection between truth assignments selected by completions

and the validity of clauses is established by means of the following currency constraint:

∀t1, t2 ∈ R(t1[D] = 1∧ t2[D] = 1∧ t1[C] = t2[C]∧

t1[P] = 1∧ t1[P] = 2∧

t1[U]≺ t2[U]∧ t1[V]≺ t2[V]→ t1[W]≺ t2[W]).

This constraint tells us that whenever the truth assignment (represented by a com-

pletion) makes ℓ̄ j
1 ∧ ℓ̄

j
2 true, then it must also make ℓ

j
3 true.

We next show the correctness of the reduction. Suppose that φ is true and let

µX be a satisfying truth assignment. We define a valid completion of Se as follows:

For attributes D, C and P we order the tuples in It arbitrarily. For attributes U (and

consequently also for V and W by the currency constraints) we set ai ≼c
U bi if µX(xi)

is true, and bi ≼c
U ai otherwise. We need to verify that the second currency constraint

is satisfied. This follows immediately from the fact that each clause is satisfied by µX .

Conversely, suppose that we have a valid completion of Se. From this, we define µX by

simply setting µX(xi) = 1 if ai ≼c
U bi and µX(xi) = 0 otherwise. Similarly as above, it

is readily verified that µX satisfies all the clauses. Indeed, this follows from the second

currency constraint given above.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 144

It remains to show that the satisfiability problem is NP-complete when (a) Σ and Γ
are fixed; (b) Γ = /0; or (c) Σ = /0. Since we have shown that the satisfiability problem is

in NP, for general Σ and Γ, it suffices to show the lower bounds. Furthermore, observe

the proof above uses (i) a fixed set of currency constraints, i.e., the currency constraints

Σ are independent of the input instance φ, and (ii) it does not use any constant CFDs.

In other words, (a) and (b) follow directly from the lower bound proof given above. It

remains to show (c), i.e., the satisfiability problem is NP-hard even when only constant

CFDs are present.

We establish this lower bound by reduction from the complement of the tautology

problem, which is known to coNP-complete (cf. [Pap94]). An instance of the tautology

problem is a formula φ = C1 ∨ ·· · ∨Cr, where C j = ℓ
j
1 ∧ ℓ

j
2 ∧ ℓ

j
3 and each ℓ

j
k is either

a variable or a complement of a variable from X = {x1, . . . ,xn}. It is to determine

whether φ is true for all truth assignments of X . We define a specification Se = (It ,Σ =

/0,Γ) such that Se has a valid completion iff φ is not a tautology.

The temporal instance It of Se is an instance of schema R′(X1, . . . ,Xn,C); it consists

of two tuples (0,0, . . . ,0) and (1,1, . . . ,1). We impose no currency order or currency

constraints on It . Note that each completion Ic
t yields a current tuple LST(Ic

t) that

encodes a truth assignment µX of X in its first n attributes.

The set Γ of constant CFDs is given as follows. For each clause C j, we define

ψ j = tp[L1,L2,L3] → tp[C] where Li = Xk if ℓ j
i or ℓ̄ j

i is xk and the pattern tuple tp =

(v1,v2,v3,1) is given by vi = 1 if ℓ j
i = xk and vi = 0 if ℓ j

i = x̄k. Clearly, a completion

Ic
t |= ψ j if the truth assignment µX encoded by the current tuple LST(Ic

t) makes C j true.

We further add ψC = sp[C] → sp[C] with sp = (1,0) to Γ, which intuitively prevents

any clause to be satisfied. Indeed, a completion Ic
t such that Ic

t |= ψC must set the C-

attribute of its current tuple to 0. Contrast this with the requirement on the C-attribute

of current tuples imposed by the ψ j’s.

We next show the correctness of the reduction. If φ is a tautology then every truth

assignment µX makes at least one clause C j true. That is, any valid Ic
t must set the

C-attribute of its current to 1 (by ψ j) and at the same time it must set the C-attribute to

0 (by ψC). Hence, no valid completion can exists. Conversely, if there exists a valid

completion Ic
t of Se such that Ic

t |= Γ, then its current tuple must have its C-attribute set

to 0. In other words, none of the left-hand sides of the ψ j’s can be true, and hence µX

must make all clauses false. In other words, µX is a counterexample to the validity of

φ and hence φ is not a tautology. 2

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 145

Implication. The second problem aims to deduce partial temporal orders that are

logical consequences of the given currency order and currency constraints. Consider

a valid specification Se = (It ,Σ,Γ) of an entity e and a partial temporal order Ot =

(Ie,≼′
A1
, . . . ,≼′

An
). We say that Ot is implied by Se, denoted by Se |= Ot , iff for all

valid completions Ic
t of Se, Ot ⊆ Ic

t . Here Ot ⊆ Ic
t if ≼′

Ai
⊆≼c

Ai
for all i∈ [1,n], where

Ic
t = (Ie,≼c

A1
, . . . ,≼c

An
).

The implication problem for conflict resolution is to decide, given a valid specifi-

cation Se and a partial temporal order Ot , whether Se |= Ot .

That is, no matter how we complete the temporal instance It of Se, as long as the

completion is valid, the completion includes Ot in its currency orders. The implication

analysis is conducted at step (2) of the framework of Fig. 5.4, for deducing true values

of attributes.

Unfortunately, this problem is also intractable.

Theorem 5.4.2: The implication problem for conflict resolution is coNP-complete. It

remains coNP-hard for valid specifications Se = (It ,Σ,Γ) of an entity when (1) both Σ
and Γ are fixed; (2) Γ = /0; or (3) Σ = /0. 2

Proof. † The coNP upper bound is verified by providing an NP algorithm for the

complement problem. In a nutshell, given a specification Se = (It ,Σ,Γ) and a partial

temporal order Ot , the algorithm simply guesses a completion Ic
t of It and then verifies

whether (i) Ic
t |= Σ; (ii) Ic

t |= Γ; and (iii) Ot ̸⊆ Ic
t . If Ic

t passes these checks successfully,

then the algorithm returns “yes” since Se ̸|=Ot . Otherwise, the current guess is rejected.

This is clearly an NP algorithm for the complement problem and hence the implication

problem is in coNP.

For the lower bounds, we show that the implication problem is coNP-hard when

(1) both Σ and Γ are fixed; (2) Γ = /0; or (3) Σ = /0. The lower bounds for (1) and (2) are

established by a revision of the proof of Theorem 5.4.1. More specifically, we revise

the reduction used there as follows. First, the relation schema used in that proof is

extended with an additional attribute A. Second, each tuple t in the temporal instance

It has now two copies: a tuple ta with its A-attribute set to a constant a, i.e., ta[A] = a,

and a tuple tb with its tb[A] = b. Finally, the premise of each currency constraint used

in that proof carries an additional condition “t1[A] = a∧ t2[A] = b∧ t1[A] ≼A t2[A]”.

These conditions enforce the constraints to have an effect only on completions in

which b is more current than a in attribute A.
†This proof is a joint work with Floris Geerts.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 146

Denote by S′e = (I′t ,Σ′,Γ = /0) the specification obtained from Se in the proof of

Theorem 5.4.1 after such revisions. Let Ot be the partial temporal order (I′t ,{tb ≼A

ta}, /0, . . . , /0), where ta and tb are the two copies of an arbitrary tuple t in It . We claim

the following: (i) S′e is valid; and (ii) S′e |= Ot iff the formula φ is not satisfiable.

For (i) it suffices to observe that for any completion (I′t)
c, as long as it puts tb ≼A ta

in its currency order for A and arbitrarily completes currency orders for all the other

attributes, it makes a valid completion. Indeed, this is simply because the conditions

added to the premise of constraints used in the proof of Theorem 5.4.1 are false, and

hence the currency constraint vacuously hold. Hence, S′e is valid.

For (ii), assume first that there exists a truth assignment µX that makes φ true. We

define a completion (I′t)
c of I′t by setting ta ≼A tb, where t is the tuple used to define Ot ,

and by completing the currency orders for the attributes based on µX as in the proof of

Theorem 5.4.1. As a result, Ot ̸⊆ (I′t)
c and S′e ̸|= Ot . Conversely, suppose that S′e ̸|= Ot .

This implies the existence of a valid completion (I′t)
c of I′t that includes ta ≼A tb and

satisfies all currency constraints in Σ′. Similar to the proof of Theorem 5.4.1 it is

readily verified that a truth assignment µX can be constructed from (I′t)
c that makes φ

true. Hence, S′e |= Ot iff φ is not satisfiable. Observe that the proof only uses a fixed

set of currency constraints and does not require any constant CFDs.

Similarly, the coNP-lower bound for (3) is established by a similar modification of

the specification for its counterpart given in the proof of Theorem 5.4.1, by reduction

from the tautology problem. More specifically, given an instance φ of the tautology

problem as stated in the proof of Theorem 5.4.1, we extend the schema R′ given there

with an additional attribute A. Its temporal instance I′t now consists of two tuples

t0 = (a,0, . . . ,0) and t1 = (b,1, . . . ,1). We further extend the constant CFDs ψ j =

tp[L1,L2,L3] → tp[C] in the proof of Theorem 5.4.1 to ψ′
j = t ′p[A,L1,L2,L3] → t ′p[C],

where t ′p = (a, tp). Similarly for ψC. That is, these constant CFDs only have an effect

when the current tuple has a as its A-attribute value. Denote by S′e = (I′t ,Σ = /0,Γ′) the

specification obtained in this way. Clearly, S′e is consistent since we just need to en-

force t0 ≼c
A t1 in a completion to assure that the corresponding current tuple vacuously

satisfies the CFDs in Γ′. Consider Ot = (I′t ,{t0 ≼c
A t1}, /0, . . . , /0). Then, similar to the

argument given above, one can readily verify that S′e |= Ot iff φ is a tautology. 2

True value deduction. The third problem is the true value problem for conflict resolu-

tion. It is to decide, given a valid specification Se for an entity e, whether T(Se) exists.

That is, there exists a tuple tc such that for all valid completions Ic
t of Se, LST(Ic

t) = tc.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 147

This analysis is needed by step (3) of the framework (Fig. 5.4) to decide whether Se

has enough information to deduce T(Se), i.e., whether additional temporal information

is needed to determine the true value of e.

No matter how important this problem is, it is also nontrivial: it is coNP-complete,

and remains intractable in several practical special cases.

Theorem 5.4.3: The true value problem for conflict resolution is coNP-complete. It

remains coNP-hard for valid specifications Se = (It ,Σ,Γ) for an entity even when (1)

both Σ and Γ are fixed; (2) Γ = /0; or (3) Σ = /0. 2

Proof. ‡ The upper bound is verified by providing an NP algorithm for the comple-

ment problem. Given a specification Se = (It ,Σ,Γ), the algorithm simply guesses two

completions Ic
t and (Ic

t)
′ of It and then checks whether both completions are valid and

generate different current tuples. If so, the algorithm returns “yes” and concludes that

no true value of Se can be determined. Otherwise, the current guesses are rejected.

This is clearly an NP algorithm for the complement problem, and hence the true value

problem is in coNP.

For the lower bounds, we need to show that the true value problem is coNP-hard

when (1) both Σ and Γ are fixed; (2) Γ = /0; or (3) Σ = /0. The lower bounds for (1)

and (2) are verified by a modification of the proof of its counterpart for Theorem 5.4.2.

Indeed, it suffices to add two tuples ta
= (a,#, . . . ,#) and tb

= (b,#, . . . ,#) to the tem-

poral instance given there, together with additional currency constraints that enforce #

to come after any other constant in the currency orders for all attributes of the schema

except for A (which does not carry #). Denote by S′′e = (I′′t ,Σ′′,Γ = /0) the specification

obtained in this way from S′e given in the proof of Theorem 5.4.2. As a consequence,

any completion of S′′e can only yields current tuples ta
or tb

.

As argued there, S′′e is valid since one only has to consider a completion that in-

cludes tb
≼A ta

. Furthermore, we next show that a true value exists iff φ is not satisfi-

able. Indeed, suppose that φ is not satisfiable. Then for any valid completion (I′′t)
c of

I′′t , if (I′′t)
c |= Σ′′, then it has to set tb

≼A ta
. Indeed, otherwise the currency constraints

will be triggered and the completion would generate a satisfying truth assignment for

φ, which by assumption does not exist. Hence, the true value will be the tuple ta
. Con-

versely, suppose that no true value exists. This implies that there exist two completions

of I′′t , such that one leads to current tuple ta
, and the other one leads to current tuple tb

.

In the second case, ta
≼A tb

and hence, as argued in the proof of Theorem 5.4.2, one

‡This proof is a joint work with Floris Geerts.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 148

can construct a satisfying truth assignment for φ from the completions. Hence, if no

true value exists, then φ must be satisfiable.

The coNP-lower bound for (3) is established by a modification of the specification

given in the proof for the case of constant CFDs in Theorem 5.4.1, by reduction from

the tautology problem. The modification is as follows. Given an instance φ of the

tautology problem as stated in the proof of Theorem 5.4.1, we introduce a third tuple

tb = (b,b, . . . ,b) to the temporal instance given there, and extend the set Γ′ of constant

CFDs by including ψi
a¬b = tp[AXi] → tp[A] with tp = (a,b,b), for i ∈ [1,n]. These

constant CFDs prevent the current tuple t in completions to have t[A] = a and t[Xi] = b

for all i ∈ [1,n]. In addition, we add ψi
bb = sp[A]→ sp[Xi] with sp = (b,b), and ψbb =

sp[A]→ sp[C] with sp = (b,b). These assure that for all current tuples t, it t[B] = b, the

t has the constant b in all of its attributes.

Denote by S′′e = (I′′t ,Σ = /0,Γ′′) the specification obtained this way from S′e given

in the proof of Theorem 5.4.1. A completion that results in current tuple tb is clearly a

valid completion, and hence S′′e is valid itself. Moreover, it is readily verified that a true

value exists iff φ is a tautology. Indeed, observe first that completions either result in

the current tuple tb or a tuple of the form (a,µX ,0), where µX is a truth assignment for

X . While tb can always be witnessed by a valid completion of S′′e (as mentioned above),

(a,µX ,0) can only be witnessed provided that µX makes φ false (using the argument

given in the proof of Theorem 5.4.1). Hence tb is the true value iff φ is a tautology. 2

Coverage analysis. Finally, the minimum coverage problem is to determine, given a

valid specification Se = (It ,Σ,Γ) of an entity and a positive integer k, whether there

exists a partial temporal order Ot such that (1) T(Se ⊕Ot) exists, and (2) |Ot | ≤ k.

Intuitively, this is to check whether one can add a partial temporal order Ot of

a bounded size to a specification such that the enriched specification has sufficient

information to deduce all the true values of an entity. The ability to solve this problem

helps us identify what minimum additional temporal information is needed to deduce

the true value. The analysis of minimum Ot is required by step (4) of the framework of

Fig. 5.4.

This problem is Σp
2-complete (NPNP or NPcoNP), unfortunately. Worse still, it

remains Σp
2-hard even in several practical special cases, as stated below.

Theorem 5.4.4: The minimum coverage problem is Σp
2-complete. It remains Σp

2-hard

for valid specifications Se = (It ,Σ,Γ) for an entity even when (1) both Σ and Γ are

fixed; (2) Γ = /0; or (3) Σ = /0. 2

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 149

Proof. § For the Σp
2 upper bound it suffices to observe that the following NPcoNP

algorithm correctly decides whether there exists a partial temporal order Ot of size

|Ot | ≤ k such that T(Se ⊕Ot) exists. Given a valid specification Se = (It ,Σ,Γ), the

algorithm first guesses a partial temporal order Ot and then checks whether |Ot | ≤ k

and whether T(Se ⊕Ot) exists. The latter can be done in coNP (see Theorem 5.4.3).

If the guessed partial temporal order passes these checks, then the algorithm returns

“yes”. Otherwise, the guessed order is rejected. The algorithm is in Σp
2 since it is a

non-deterministic PTIME algorithm by calling a coNP oracle (see, e.g., [Pap94] for

detailed discussion about Σp
2).

We now show that the problem is Σp
2-hard when (1) Σ and Γ are fixed; (2) Γ = /0;

or (3) Σ = /0.

For (1) and (2) we establish the Σp
2-lower bound by reduction from the ∃∗∀∗DNF

problem, which is known to be Σp
2-complete [Sto76]. An instance of the ∃∗∀∗DNF prob-

lem is a formula of the form φ= ∃X∀Y ψ, where X = {x1, . . . ,xn} and Y = {y1, . . . ,ym},

ψ = C1 ∨ ·· · ∨Cr; for j ∈ [1,r], C j = ℓ
j
1 ∧ ℓ

j
2 ∧ ℓ

j
3, and for k = 1,2,3, the literal ℓ j

k is

either a variable or the complement of a variable in X ∪Y . It is to determine whether

φ is true.

Given an instance φ of the ∃∗∀∗DNF problem, we define a specification Se =

(It ,Σ,Γ) and a constant k such that the minimal coverage problem for Se and k has

a solution iff φ is true. In particular, in Se we have a fixed set of currency constraints

and no constant CFDs. Hence, the reduction shows (1) and (2).

Recall the relation schema R(A,D,C,P,U,V,W) used in the proof of Theo-

rem 5.4.2. We populate its temporal instance It = (I,≼A,≼D,≼C,≼P,≼U ,≼V ,≼W) as

follows: We assume the presence of 2(n+m) distinct constants ai and bi for i ∈ [1,n]

and ci and di for i ∈ [1,m]. As in the proof of Theorem 5.4.2, truth values for variables

in X are encoded by means of two tuples:

(a,0,xi,0,ai,ai,ai) and (a,0,xi,0,bi,bi,bi).

with their A-attribute set to a, and two tuples

(b,0,xi,0,ai,ai,ai) and (b,0,xi,0,bi,bi,bi).

with their A-attribute set to b. Similarly, truth values for variables in Y are encoded by

the following tuples:

§This proof is a joint work with Floris Geerts.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 150

(a,0,yi,0,ci,ci,ci) and (a,0,yi,0,ci,ci,ci) and

(b,0,yi,0,di,di,di) and (b,0,yi,0,di,di,di).

Moreover, we add a currency constraint to Σ for every pair of attributes (L,L′) taken

from {U,V,W}:

∀t1, t2 ∈ R(t1[D] = 0∧ t2[D] = 0∧ t1[C] = t2[C]∧

t1[A] = a∧ t2[A] = b∧ t1[A]≺A t2[A]∧

t1[L]≺ t2[L]→ t1[L′]≺ t2[L′].

These constraints ensure that whenever a ≺A b, the order between ai and bi (resp. ci

and di) is consistent for all attributes U , V and W . As before, ai ≺U bi indicates that

xi is set to true, whereas bi ≺U ai indicates that xi is false; similarly for variables in Y

but using the constants ci and di instead. In other words, with every completion of It in

which a ≺A b, we can associate truth assignments µX and µY of X and Y , respectively.

We next encode the clauses in φ in a similar way the one given in the proof of

Theorem 5.4.2. More specifically, given C1∨·· ·∨Cr we encode its negation C̄1∧·· ·∧
C̄r with C̄ j = ℓ̄

j
1 ∨ ℓ̄

j
2 ∨ ℓ̄

j
3. Such clauses can be equivalently written as ℓ j

1 ∧ ℓ
j
2 → ℓ̄

j
3 by

means of the tuples

(a,1, j,1,v1,v2,v3) and (a,1, j,2,v′1,v
′
2,v

′
3),

and their b-variants

(b,1, j,1,v1,v2,v3) and (a,1, j,2,v′1,v
′
2,v

′
3).

Here vi = ak and v′i = bk if ℓ j
i = xk, and vi = bk and v′i = ak if ℓ̄ j

i = xk, for i = 1,2; we

define vi and v′i the other way around for i = 3; similarly for variables in Y but then

using constants ci and di instead. For example, consider the clause C = x1 ∧ x̄2 ∧ ȳ3

whose complement is C̄ = x̄1 ∨ x2 ∨ y3. Equivalently, we write C̄ as x1 ∧ x̄2 → y3.

Hence, we encode C̄ by (a,1, ,1,a1,b2,c3) and (a,1, ,2,b1,a2,d3), together with

their b-counterparts (b,1, ,1,a1,b2,c3) and (b,1, ,2,b1,a2,d3).

The link between truth assignments selected by completions and the validity of

(complemented) clauses is established by the following currency constraint:

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 151

∀t1, t2 ∈ R(t1[D] = 1∧ t2[D] = 1∧ t1[C] = t2[C]∧

t1[P] = 1∧ t1[P] = 2∧

t1[A] = a∧ t2[A] = b∧ t1[A]≺A t2[A]∧

t1[U]≺ t2[U]∧ t1[V]≺ t2[V]→ t1[W]≺ t2[W].

This constraint tells that whenever the truth assignment (represented by a completion)

makes ℓ j
1 ∧ ℓ

j
2 true, then it must also make ℓ̄

j
3 true, provided that a ≺A b.

We also include two tuples ta
= (a,#, . . . ,#) and tb

= (b,#, . . . ,#) in It , which serves

as potential true values of the entity represented by Se. We enforce the symbol # to

come after any other constant in currency orders by means of currency constraints

(one for each attribute in R), as defined in the proof of Theorem 5.4.3. Clearly, in valid

completions, if a ≺A b then tb
is the current tuple; when b ≺A a, ta

is the current tuple.

Finally, we ensure that the partial temporal order Ot can only add currency infor-

mation related to the values ai and bi in the instance, so that Ot can only affect the

choice of truth values for variables in X . To achieve this, observe that given instance

It constructed so far, |Ot | is no larger than 7|I|2, where 7 is simply the number of at-

tributes in R. We let k = 7|I|2. Next, for each constant v different from the ai’s and

bi’s we add p > k tuples of the form (vid,v, . . . ,v), where vid is a unique identifier for

each of these tuples. Let I′t denote the temporal instance obtained in this way and let

Se = (I′,Σ,Γ = /0). Clearly, for any Ot that relates tuples in an attribute with values

different from ai and bi, Ot will cause the addition of more than k tuples. Indeed, let B

be an arbitrary attribute. Then the addition of t ≺B t ′ implies that s ≺B s′ for all tuples s

and s′ that share the same B-attribute value with t and t ′, respectively. By the choice of

k and the addition of p > k tuples for each constant, any Ot of size ≤ k can only relate

tuples that contain ai or bi values in one of its attributes.

Observe that the specification Se defined above is valid. Indeed, any completion

that makes a more current than b in the A-attribute vacuously satisfies the currency

constraints in Σ. As a consequence ta
will always be one of the possible current tuples.

We next show that the minimum coverage problem has a solution iff φ is true.

Suppose first that φ is false. In other words, for every µX of X , there exists a truth

assignment µY of Y that makes C1 ∨ ·· · ∨Cr false. Consider a partial temporal order

Ot with |Ot | ≤ k. By the construction, Ot can only add temporal information between

tuples that concern variables in X . In other words, the impact of Ot is that it restricts

the set of truth assignments of X that can be obtained by means of valid completions.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 152

However, since φ is false, even for each µX in this restricted set, there exists a µY that

makes the C1 ∨ ·· · ∨Cr false. This in turn implies that tb
can be a current tuple in a

completion that sets a ≺A b. Indeed, simply consider the completion that (i) sets a ≺A

b; (ii) selects a µX that belongs to the restricted set; (iii) selects µY such that the clauses

are false; and (iv) arbitrarily complete partial currency orders for the other attributes.

It is easily verified that this completion indeed satisfies all currency constraints since it

satisfies the constraints related to truth assignments and all constraints corresponding

to the negated clauses (recall that µX and µY make all C̄ j true). Hence, when φ is false,

both ta
and tb

are current tuples and no true value can exist, no matter what Ot is.

Conversely, suppose that φ is true. That is, there exists a truth assignment µX of X

such that for all µY of Y , C1 ∨ ·· · ∨Cr is true. We let Ot be the partial temporal order

that restricts the choices of truth assignments for X to be µX . By the construction,

this can be done by using ≤ k added pairs. Then it is impossible that tb
becomes a

current tuple. Indeed, for this to happen we need a completion that sets a ≺A b and in

addition satisfies all constraints in Σ. This, however, would imply the existence of a

truth assignment µY of Y , which, together with µX , makes C1 ∨ ·· · ∨Cr false. This in

contrast to the assumption that φ holds for µX . As a consequence, T(Se ⊕Ot) exists

and is equal to ta
.

Finally, we show that the problem is Σp
2-hard for case (3), when Σ = /0. This is

verified again by reduction from the ∃∗∀∗DNF problem, but now we use constant CFDs

only. The idea behind the reduction is similar to that of the reduction given for cases

(1) and (2).

Given an instance φ of the ∃∗∀∗DNF problem, we define a relation schema

R(A,X1, . . . ,Xn, Y1, . . . ,Ym,C). To populate its corresponding temporal instance It , we

start with two tuples t0 = (a,0,0, . . . ,0) and t1 = (b,1,1, . . . ,1). Completions thus lead

to current tuples ranging over all possible truth assignments for X and Y . We further

introduce a tuple tb = (b,b, . . . ,b), which will correspond to the true value of the entity

if it exists. Finally, let k = n and add p > n tuples of the form (ci, . . . ,ci,0,0,0, . . .) and

(ci, . . . ,ci,1, . . . ,1) to It , for i ∈ [1, p]. Here the ci’s are values of the attributes A and

X1, . . . ,Xn. We further assume that initial temporal orders are available, asserting that

the ci’s come before a, b, 0 and 1. Intuitively, the addition of these p tuples will cause

any additional temporal information in the Y -attributes (and A-attribute) to have more

than “k effects”, i.e., if t0 ≺Y t1 is in Ot , then this addition needs to be imposed on all

p tuples as well since these tuples contain the same values in their Y -attributes as t0
and t1. As a consequence, any partial temporal order Ot of size ≤ k can only enrich

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 153

currency orders for the X-attributes. In other words, adding Ot will cause the selection

of a truth assignment for X .

We use the same constant CFDs as those defined in the proof of Theorem 5.4.3,

and let Se = (It ,Σ = /0,Γ) be the resulting specification. As argued in the proof of

Theorem 5.4.3, Se is valid because any completion of Se with a ≺A b satisfies the CFDs

in Γ. Recall also that tb will be the current tuple in this case.

We next show that the minimum coverage problem has a solution for Se and k iff φ
is true. Indeed, suppose that φ is false. Then for all truth assignments µX of X , there

exists a µY of Y , such that C1 ∨ ·· · ∨Cr is false. Let Ot be any partial temporal order

of size ≤ k. As argued above, the addition of Ot causes the selection of a subset of

truth assignments of X . For any such µX we have a µY that makes the clauses false. In

other words, a completion exists, which puts (i) b ≺A a; (ii) selects a µX ; and (iii) picks

µY that falsifies φ. By the definition of the CFDs, this implies that a current tuple of

the form (a, . . .) exists and hence there is no true value for the entity (since tb is also a

current tuple).

Conversely, if φ is true, we simple take Ot that selects the satisfying truth assign-

ment µX of X such that for all µY of Y , all the clauses in φ are satisfied. Such Ot can

be taken of size ≤ k. In other words, completions with b ≺A a cannot exist by the

definition of the constant CFDs. Hence, tb is the only possible current tuple and thus

the true value of Se exists. 2

Remark. From these results we find the following.

(i) The main conclusion is that while these problems are important in practice, they

are hard. In fact as we have shown that the lower bounds of all these problems remain

intact for specifications Se = (It ,Σ,Γ) of an entity when (1) both Σ and Γ are fixed;

(2) Γ = /0, i.e., when constant CFDs are absent; or (3) Σ = /0, i.e., when currency con-

straints are absent. Hence unless P = NP, efficient (PTIME) algorithms for solving

these problems are necessarily heuristic.

(ii) The results not only reveal the complexity of reasoning about conflict resolution,

but also advance our understanding of data currency and consistency. Indeed, while

the minimum coverage problem is specific for conflict resolution and has not been

studied before, the other three problems are also of interest to the study of data

currency. Taken together with the complexity results of [FGW11], Theorems 5.4.1,

5.4.2 and 5.4.3 show that currency constraints make our lives easier as opposed to

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 154

denial constraints: they reduce the complexity of inferring data currency [FGW11],

from Σp
2-complete, Πp

2-complete (coNPNP) and Πp
2-complete down to NP-complete,

coNP-complete and coNP-complete, respectively,

When it comes to data consistency, it is known that the satisfiability and im-

plication problems for general CFDs are NP-complete and coNP-complete, respec-

tively [FGJK08]. Theorems 5.4.1 and 5.4.2 give a stronger result: these lower bounds

already hold for constant CFDs.

5.5 Algorithms for Conflict Resolution

We next provide algorithms underlying the framework depicted in Fig. 5.4. We first

present an algorithm for checking whether a specification is valid (step (1) of the frame-

work; Section 5.5.1). We then study how to deduce true attribute values from a valid

specification (step (2); Section 5.5.2). Since not all true attribute values can be de-

duced automatically, we further discuss algorithms to generate suggestions such that

the users may solicit true values of some attributes (step (4); Section 5.5.3), which can

in turn help the deduction procedure.

5.5.1 Validity Checking

We start with algorithm IsValid that, given a specification Se=(It ,Σ,Γ), returns true if

Se is valid, and false otherwise. As depicted in Fig. 5.4, IsValid is invoked for an initial

specification Se and its extensions Se ⊕Ot with the input Ot from the users.

Theorem 5.4.1 tells us that it is NP-complete to determine whether Se is valid. In

other words, IsValid is necessarily heuristic if it is to be efficient. Instead of designing

an efficient algorithm from scratch, we approach this by reducing the problem to SAT,

one of the most studied NP-complete problem, which is to decide whether a Boolean

formula is satisfiable (see, e.g., [BHvMW09]). Several high-performance tools for SAT

(SAT-solvers) are already in place [BHvMW09], which have proved effective in e.g.,

software verification, AI and operations research. For instance, MiniSAT [GT04] can

effectively solve a formula with 4,500 variables and 100K clauses in 1 second.

Algorithm IsValid leverages existing SAT-solvers. We convert a given specification

Se to a propositional formula in the conjunctive normal form (CNF), and then employ

an SAT-solvers to decide the satisfiability of Se.

Algorithm. More specifically, given a specification Se of an entity e, IsValid works in

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 155

three steps as follows.

(i) Instantiation: It first expresses Se as a set of (propositional) predicate formulas.

(ii) ConvertToCNF: It then converts the predicate formulas from (i) into a CNF such

that the given specification is valid iff the CNF is satisfiable.

(iii) Finally, it applies an SAT-solver to the CNF resulted from (ii), and concludes that

the input specification Se is valid iff the CNF is satisfiable.

We next present procedures Instantiation and ConvertToCNF. Consider Se =

(It ,Σ,Γ), where It = (Ie,≼A1, . . . ,≼An) is a temporal instance of schema R. We de-

note also by R the set {Ai | i ∈ [1,n]} of attributes in R. We define the extended

active domain of Ai, denoted by adomv(Ie.Ai), to be the set including all the values

in adom(Ie.Ai) and all the constants that appear in attribute Ai of some constant CFDs

in Γ. To check whether Se is satisfiable, it suffices to consider the values from the

extended active domains only.

Instantiation. To uniformly treat partial currency orders, currency constraints and con-

stant CFDs as predicate formulas, we introduce a notion of instance constraints. The

set of instance constraints of Se, denoted as Ω(Se), is defined in terms of values in

the extended active domains, and a strict partial order ≺v
Ai

on adomv(Ie.Ai). These

constraints are derived from Se as follows.

(1) Currency orders. To encode the partial currency orders in It , for each Ai ∈ R, we

include the following instance constraints in Ω(Se).

(a) Partial orders in It : (true→ t1[Ai]≺v
Ai

t2[Ai]) for each t1 ≼Ai t2 in It , as long as

t1[Ai] ̸= t2[Ai].

(b) Transitivity of ≺Ai : (a1 ≺v
A a2∧a2 ≺v

A a3 → a1 ≺v
A a3) for all distinct values

a1,a2,a3 in adomv(Ie.Ai).

(c) Asymmetry: (a≺v
Ai

b)→¬(b≺v
Ai

a) for all distinct values a,b∈adomv(Ie.Ai).

Intuitively, these assure that each ≺v
Ai

is a strict partial order (via both (b) and (c)),

and express available temporal information in It as predicate formulas (via (a)).

(2) Currency constraints. For each currency constraint φ = ∀t1, t2 (ω → t1 ≺Ar t2) in Σ
and for all distinct tuples s1,s2 ∈ Ie, we include the following in Ω(Se):

ins(ω,s1,s2) → s1[Ar]≺v
Ar

s2[Ar],

where ins(ω,s1,s2) is obtained from ω by (a) substituting si[A j] for ti and≺v
A j

for≺A j

in each predicate t1≺A j t2, for i ∈ [1,2]; and (b) evaluating each conjunct of ω defined

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 156

with a comparison operator to its truth value w.r.t. s1 and s2. Intuitively, ins(ω,s1,s2)

“instantiates” ω with values in s1 and s2.

Example 5.5.1: For currency constraint φ1 in Fig. 5.3, and tuples r1 and r2 in Fig. 5.2

for Edith, its instance constraint is derived to be (true→ working ≺v
status retired). Ob-

serve that the precondition of φ1 is evaluated to be true on these two particular tuples,

by instantiating variables of φ1 with values in r1 and r2.

Similarly, from currency constraint φ6 and tuples r1 and r2, we derive instance

constraint (working ≺v
status retired → 212 ≺v

AC 415), by replacing ≺status with ≺v
status,

and by replacing variables in φ6 with the corresponding attribute values from r1 and

r2. 2

(3) Constant CFDs. For each CFD tp[X]→tp[B] in Γ and each b∈adomv(Ie.B)\{tp[B]},

Ω(Se) includes

ψ = (ωX → b ≺v
B tp[B]),

where ωX is the conjunction of all the formulas of the form a≺v
A j

tp[A j], where a ranges

over all the values in adomv(Ie.A j)\{tp[A j]}, for all attributes A j ∈ X .

Intuitively, constraint ψ asserts that if tp[X] is the true value of attributes X , then

tp[B] is the true value of attribute B. Indeed, the CFD is defined on LST(Ic
t) for a

completion Ic
t of It (see Section 5.2.2), and ψ assures that this semantics is enforced.

Example 5.5.2: Recall constant CFD ψ1 from Fig. 5.3. For the entity instance E1 of

Edith, the CFD is encoded by two instance constraints given below, included in ΩE1:

212 ≺v
AC 213 ∧ 415 ≺v

AC 213 → NY ≺v
city LA,

212 ≺v
AC 213 ∧ 415 ≺v

AC 213 → SFC ≺v
city LA,

i.e., LA is her true city value if her true AC is 213. 2

ConvertToCNF. After we derive Ω(Se), we convert the instance constraints of Ω(Se)

into a CNF Φ(Se) as follows. We first substitute a Boolean variable xAi
a1a2

for each

predicate a1 ≺v
Ai

a2 in Ω(Se). We then rewrite each formula of the form (x1∧·· ·∧
xk → xk+1) into equivalent (¬x1∨·· ·∨¬xk∨xk+1). Finally, Φ(Se) is defined to be the

conjunction of all such formulas obtained from Ω(Se), which is obviously in CNF.

One can readily verify the following (by contradiction), which justifies the reduc-

tion from the satisfiability of the specification Se to the SATinstance Φ(Se).

Lemma 5.5.1: Specification Se is valid iff its converted CNF Φ(Se) is satisfiable. 2

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 157

Complexity: Observe the following. (a) The size |Ω(Se)| of Ω(Se) is bounded by

O((|Σ|+ |Γ|)|It |2 + |It |3), since encoding currency orders, currency constraints and

constant CFDs is in time O(|It |3), O(|Σ||It |2) and O(|Γ||It |2), respectively. (b) It takes

O(|Ω(Se)|) time to convert Ω(Se) into Φ(Se). Hence the size of the CNF Φ(Se) is

bounded by O((|Σ|+ |Γ|)|It |2 + |It |3). In practice, an entity instance It is typically

much smaller than a database, and the sets Σ and Γ of constraints are also small. As

will be seen in Section 5.6, SAT-solvers can efficiently process CNFs of this size.

5.5.2 Deducing True Values

We next present an algorithm that, given a valid specification Se = (It ,Σ,Γ) of an entity

e, deduces true values for as many attributes of e as possible.

Intuitively, it is to find a maximum partial order Od such that Se |= Od , i.e., (a) for

all valid completions Ic
t of Se, Od ⊆ Ic

t (Section 5.4), and (b) for tuples t1, t2 ∈ Ie and

Ai ∈ R, if Se |= t1≺Ai t2 then t1≺Ai t2 is in Od .

5.5.2.1 Partial Order Deduction

To deduce true values, below we first present a heuristic approach, and then discuss an

exact algorithm.

5.5.2.1.1 A heuristic approach. Given Se, we want to deduce a maximum partial

order Od such that Se |= Od . As an immediate corollary of Theorem 5.4.2, one can

show that the decision problem of this problem is also coNP-complete, even when

either Σ or Γ is fixed or absent. Thus we give a heuristics to strike a balance between

its complexity and accuracy. The algorithm is based on the following lemma, which is

easy to verify.

Lemma 5.5.2: For the CNF Φ(Se) converted from a valid specification Se, and for all

tuples t1, t2 in Se such that t1[Ai] = a1 and t2[Ai] = a2, Se |= t1≺Ai t2 iff Φ(Se)→ xAi
a1a2

is a tautology, where xAi
a1a2

is the variable denoting a1≺v
Ai

a2 in Φ(Se). 2

Observe that the condition Φ(Se) → xAi
a1a2

indicates that for any truth assignment

µ, if µ satisfies Φ(Se), then µ(xAi
a1a2

) is true. That is, the one-literal clause xAi
a1a2

is

implied by Φ(Se), which in turn encodes Se. Based on this observation, our algorithm

checks one-literal clauses in Φ(Se) one by one, and enriches the known partial order

accordingly.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 158

Algorithm DeduceOrder

Input: A valid specification Se = (It ,Σ,Γ) of an entity.

Output: A partial temporal order Od such that Se |= Od .

1. Ω(Se) := Instantiation(Se);

2. Φ(Se) := ConvertToCNF(Ω(Se));

3. Od := (Ie, /0, . . . , /0);
4. while there exists a one-literal clause C in Φ(Se) do

/* xA
a1a2

in C is the variable denoting a1 ≺v
A a2 */

5. if C is a one-literal clause (xA
a1a2

) then
6. add a1 ≺v

A a2 to Od;

7. C¬ := ¬xA
a1a2

;

8. if C is a one-literal clause (¬xA
a1a2

) then
9. add a2 ≺v

A a1 to Od;

10. C¬ := xA
a1a2

;

11. for each C′ ∈ Φ(Se) do
12. if C′ contains C¬ then
13. C′ :=C′ \C¬;

14. if C′ contains C then
15. Remove C′ from Φ(Se);

16. return Od .

Figure 5.5: Algorithm DeduceOrder

Algorithm. The algorithm for deducing true values, referred to as DeduceOrder, is

given in Fig. 5.5. It first converts a specification Se to a CNF Φ(Se) (lines 1-2; see

Section 5.5.1). For each literal C of the form xAi
a1a2

or ¬xAi
a1a2

, it checks whether C is

a clause in (i.e., implied by) Φ(Se) (line 4); and if so, it will enrich the partial order

(lines 5-10). It then reduces Φ(Se) by using C and its negation C¬ (lines 11-15). That

is, for each clause C′ that contains C, the entire C′ is removed since C′ is true if C

has to be satisfied (lines 12-13). Similarly, for each clause C′′ that contains C¬, C¬ is

removed from C′′, as C¬ has to be false (lines 14-15). The deduced partial order is then

returned (line 16).

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 159

Example 5.5.3: Given the entity instance E2 of Fig. 5.2 and the constraints of Fig. 5.3,

DeduceOrder finds Od including: (1) 0 ≺v
kids 2 by φ4, (2) working ≺v

status retired by

φ1, (3) sailor ≺v
job veteran, 401 ≺v

AC 212 and 02840 ≺v
zip 12404, by (2) and φ5, φ6 and

φ7, respectively. A current tuple of George is then of the form (George, xstatus,xjob, 2,

xcity,xAC,xzip,xcounty), with variables.

Assume that the users assure that the true value of the attribute status is retired.

Then the algorithm can deduce the following from the extended specification:

(a) xjob, xAC and xzip as n/a, 212 and 12404, from tuple r5 via currency constraints φ5,

φ6 and φ7, respectively;

(b) xcity = NY, from the true value of AC (i.e., 212 deduced in step (a) above) and the

constant CFD ψ2;

(c) xcounty as Accord, from φ8 and the true values of city and zip deduced in steps (b)

and (a), respectively.

The automated deduction tells us that the true value for George is t2 = (George,

retired, n/a, 2, NY, 212, 12404, Accord). This shows that inferences of currency con-

straints help consistency inference (from step (a) to (b)), and vice versa (e.g., from (b)

to (c)). 2

Complexity. (1) It takes O((|Σ|+ |Γ|)|It |2 + |It |3) time to convert Se into Φ(Se)

(lines 1-2; see Section 5.5.1). (2) The total time taken by the while loop (lines 4-

15) is in O((|Σ|+ |Γ|)|It |2 + |It |3). Indeed, we maintain a hash-based index for lit-

erals C, in which the key is C and its value is the list of clauses in Φ(Se) that

contain C or C¬. In the process, Φ(Se) decreases monotonically. Hence in to-

tal it takes at most O(|Φ(Se)|) time to reduce Φ(Se) for all literals, where |Φ(Se)|
is bounded by O((|Σ|+ |Γ|)|It |2 + |It |3). Putting these together, the algorithm is in

O((|Σ|+ |Γ|)|It |2 + |It |3) time.

5.5.2.1.2 An exact approach. By Lemma 5.5.2, one might want to compute a tem-

poral order O′
d consisting of all such variables xAi

a1a2
that Φ(Se)∧¬xAi

a1a2
is not satisfi-

able. That is, for each variable xAi
a1a2

, we inspect the satisfiability of Φ(Se)∧¬xAi
a1a2

by

invoking an SAT-solver.

This approach, referred to as NaiveDeduce, is given in Fig. 5.6. It first converts

specification Se to CNF Φ(Se) (lines 1-2). For each attribute A (line 4), it then

enumerates values pair a1,a2 in adomv(A) (line 5). It examines whether Φ(Se)→ xA
a1a2

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 160

Algorithm NaiveDeduce

Input: A valid specification Se = (It ,Σ,Γ) of an entity.

Output: A partial temporal order Od such that Se |= Od .

1. Ω(Se) := Instantiation(Se);

2. Φ(Se) := ConvertToCNF(Ω(Se));

3. Od := (Ie, /0, . . . , /0);
4. for each A ∈ R do
5. for each a1,a2 ∈ adomv(A) do

/* xA
a1a2

is the variable denoting a1 ≺v
A a2 */

6. if ¬ SAT(Φ(Se)∪{¬xA
a1a2

}) then
7. add a1 ≺v

A a2 to Od;

8. return Od .

Figure 5.6: Algorithm NaiveDeduce

is a tautology by invoking the SAT-solver to check whether Φ(Se) ∧ ¬xA
a1a2

is not

satisfiable (line 6). If Φ(Se) → xA
a1a2

is a tautology, it adds a1 ≺v
A a2 to Od (line 7).

The procedure returns Od when all the possible partial orders are examined (line 8).

NaiveDeduce is an exact algorithm for deducing Od provided the the SAT-solver it

invokes is an exact algorithm. However, NaiveDeduce calls the SAT-solver |It |2 times.

As will be seen in Section 5.6, DeduceOrder finds Od with its accuracy comparable to

O′
d , without incurring the cost of repeatedly calling an SAT-solver.

5.5.2.2 True Value Deduction

Using the partial temporal order Od found by DeduceOrder or NaiveDeduce, one can

readily deduce true attributes values as follows: a value a1 is the true value of attribute

Ai if for all values a2 ∈ adomv(Ie.Ai)\{a1}, the currency order a2 ≺v
A a1 is in Od .

5.5.3 Generating Suggestions

True value deduction procedures given in the previous section find us the true values

VB for a set of attributes B ⊆ R. To identify the true value of the entity e specified

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 161

by Se = (It ,Σ,Γ), instead of asking the users for input on all those attributes whose

true values remain all unknown, we compute a suggestion for a set of attributes A ⊆ R

such that if the true values for A are validated, the true value of the entire e can be

determined, even for attributes in R\ (B ∪A) (see Fig. 5.4).

Below we first formally define suggestions and a notion of derivation rules

(Section 5.5.3.1). We then provide an algorithm for computing suggestions (Sec-

tion 5.5.3.2).

5.5.3.1 Suggestions and Derivation Rules

For each attribute Ai ∈ R\B , we denote by V(Ai) the set of candidate true values for

Ai, i.e., for any candidate a1 ∈ V(Ai), there exists no a2 ∈ adomv(Ie.Ai)\{a1} such that

a1 ≺v
A a2 is in Od . For a set X of attributes, we write V(X) = {V(Ai) | Ai ∈ X}.

Suggestion. A suggestion for Se is a pair (A ,V(A)), where A = (A1, . . . ,Am) is a set

of attributes of R such that A ∩B = /0 and moreover, (1) there exist values (a1, . . . ,am)

such that if (a1,. . ., am) are validated as the true values of A , then the true value T(Se)

of Se exists; and (2) for all possible values (a′1, . . . ,a
′
m) that satisfy condition (1), a′i is

in V(Ai) for i∈ [1,m].

Intuitively, condition (1) says that when the true values of A are validated, so is

T(Se). That is, the true values of attributes in A ′ = R \ (B ∪A) can be automatically

deduced from VB and the true values of A . Condition (2) says that V(A) gives “com-

plete” candidates for the true values of A from their active domains.

One naturally wants a suggestion to be as “small” as possible, so that it takes the

users minimal efforts to validate the true values of A . This motivates us to study the

minimum suggestion problem, which is to find a suggestion (A ,V(A)) with the mini-

mum number |A | of attributes. Unfortunately, this problem is Σp
2-complete (NPNP),

which can be verified by reduction from the minimum coverage problem (Theo-

rem 5.4.4).

Corollary 5.5.3: The (decision version of) minimum suggestion problem for conflict

resolution is Σp
2-complete. 2

Proof. ¶ It suffices to observe that a solution of the minimal suggestion problem of size

ℓ relates to a solution of the minimal coverage problem of size k = ℓ|I|2. Conversely,

one can show that a solution of the minimal coverage problem of size k relates to a

¶This proof is a joint work with Floris Geerts and Wenfei Fan.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 162

solution of the minimal suggestion problem of size ⌈k/|I|2⌉. 2

In light of the high complexity, we develop an effective heuristic algorithm to com-

pute suggestions. To do this, we examine how true values are inferred by using cur-

rency constraints and constant CFDs in a specification Se, by expressing them as a

uniform set of rules.

Derivation rules. A true-value derivation rule for Se has the form (X ,P[X])→ (B,b),

where (1) X is a set of attributes, B is a single attribute, and (2) b is a value that is either

in adom(Ie.B) or in attribute B of some constant CFD; and (3) for each Ai ∈ X , P[Ai]

is drawn from adomv(Ie.Ai). It assures if P[X] is the true value of X , then b is the true

value of B.

Derivation rules are computed from instance constraints Ω(Se) of Se, which is il-

lustrated below and will be elaborated in Section 5.5.3.2.

Example 5.5.4: Sample rules for George in Fig. 5.2 include:

n1 : ({status}, {retired}) → (job, veteran)

n2 : ({status}, {retired}) → (AC, 212)

n3 : ({status}, {retired}) → (zip, 12404)

n4 : ({city, zip}, {NY, 12404}) → (county, Accord)

n5 : ({AC}, {212}) → (city, NY)

n6 : ({status}, {unemployed}) → (job, n/a)

n7 : ({status}, {unemployed}) → (AC, 312)

n8 : ({status}, {unemployed}) → (zip, 60653)

n9 : ({city, zip}, {Chicago, 60653})

→ (county, Bronzeville)

Here rule n5 is derived from CFD ψ2, which states that if his true AC is 212, then his

true city must be NY. Rule n1 is from tuple r5 and constraint φ5 (Fig. 5.3), which states

that if his true status is retired, then his true job is veteran. Note that in n1, status is

instantiated with retired. Similarly, n6 is derived from r6 and φ5; n2 and n3 (resp. n7

and n8) are derived from tuple r5 (resp. r6) and constraints φ6 and φ7, respectively; and

n4 (resp. n9) is derived from r5 (resp. r6) and φ8. 2

To find a suggestion, we want to find a set A of attributes so that a maximum

number of derivation rules can be applied to them at the same time. As a consequence,

the true values of as many other attributes as possible can be derived from these rules.

To capture this idea, we introduce the following notion.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 163

n1

n2

n3

n5

n4

n6

n7

n8

n9

C1

Figure 5.7: Sample compatibility graph

Compatibility graphs. Consider a set Π of derivation rules. The compatibility graph

G(N,E) of Π is an undirected graph, where (1) each node x in N is a rule (Xx,Px[Xx])→
(Bx,bx) in Π, and (2) an edge (x,y) is in E iff Bx ̸= By and Px[Xxy] = Py[Xxy], where

Xxy = (Xx ∪Bx)∩ (Xy ∪By).

Intuitively, two nodes are connected (i.e., compatible) in G if their associated

derivation rules derive different attributes (i.e., Bx ̸= By), and they agree on the val-

ues of their common attributes (i.e., Px[Xxy] = Py[Xxy]). Hence these rules have no

conflict with each other and can be applied at the same time.

Example 5.5.5: The compatibility graph of the rules given in Example 5.5.4 is shown

in Fig. 5.7. There is an edge (n1,n2) in the graph since their common attribute status

has the same value retired; similarly for the other edges. In contrast, there is no edge

between n5 and n7 since the values of their common attribute AC are different: 212 for

n5 and 312 for n7. 2

Observe that each clique C in the compatibility graph indicates a set of derivation

rules that can be applied together. Let A ′ be the set of attributes whose true values can

be derived from the rules in C , if C and Se have no conflicts (will be discussed shortly).

To find a suggestion, we compute a maximum clique C from the graph, and derive a

suggestion as (A ,V(A)) from C , where A consists of attributes in R \ (A ′ ∪B), and

V(A) is the set of candidate true values for A .

Example 5.5.6: Example 5.2.3 shows that for George with entity instance E2, only

the true values of name and kids are known, i.e., B = {name,kids} and VB = (George,

2). To find a suggestion for George, we identify a clique C1 with five nodes n1–n5

in the compatibility graph of Fig. 5.7. Observe the following. (a) The values of job,

AC and zip depend on the value of status by rules n1, n2 and n3, respectively. (b)

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 164

The value of AC in turn decides city by n5. (c) From city and zip one can derive

county by n4. Hence, the set of attributes that can be derived from clique C1 is A ′ =

{job,AC,zip,city,county}. This yields a suggestion (A ,V(status)), where A = R \
(A ′∪B) = {status}, and V(status) = {retired, unemployed}. As long as users identify

the true value of status, the true value of George exists, and can be automatically

deduced as described in Example 5.5.3. 2

However, a clique C and Se may still have conflicts and as a result, C may not yield

a valid completion of Se, as illustrated by the example below.

Example 5.5.7: Consider the clique C2 shown in Fig. 5.7 with three nodes n5, n6 and

n8. Observe the following: (a) n5 indicates that 312 ≺v
AC 212, since 212 is assumed

the latest AC value; whereas (b) n6, n8 and constraint φ6 in Fig. 5.3 state that 312 is the

latest AC value, i.e., 212 ≺v
AC 312. These tell us that the values embedded in clique C2

may not lead to a valid completion for entity instance E2, i.e., C2 and Se have conflicts.

2

To handle conflicts between C and Se, we use MaxSat to find a maximum sub-

graph C ′ of C that has no conflicts with Se (MaxSat is to find a maximum set of

satisfiable clauses in a Boolean formula; see e.g., [SK04]). For instance, for clique

C2 of Example 5.5.7, we use a MaxSat-solver [SK04] to identify clique C ′
2 with

nodes n6 and n8, which has no conflicts with the specification for George. We then

derive A ′ = {job,zip} from C ′
2. Since B is {name,kids} (Example 5.5.6), we find

A = R\ (A ′∪B) = {status,city,AC,county} for a suggestion.

5.5.3.2 Computing Suggestions

We are now ready to present the algorithm for computing suggestions, referred to as

Suggest, which is shown in Fig. 5.8. It takes as input a specification Se of e, partial

orders Od deduced from Se (Se |= Od , by Algorithm DeduceOrder), and the set VB of

validated true values. It finds and returns a suggestion (A ,V(A)).

Algorithm Suggest first computes candidate true values for all attributes whose true

values are yet unknown (line 1). It then deduces a set of derivation rules from instance

constraints Ω(Se) (line 2) of Se (line 3; as illustrated in Example 5.5.4). Based on

these derivation rules, it builds a compatibility graph (line 4; see Example 5.5.5) and

identifies a maximum clique C in the graph (line 5). Finally, it generates a suggestion

using the clique (line 6; see Examples 5.5.6 and 5.5.7).

We next present the details of the procedures used in algorithm Suggest one by

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 165

Algorithm Suggest

Input: A specification Se = (It ,Σ,Γ) of an entity,

order Od (Se |= Od), and VB .

Output: A suggestion (A ,V(A)).

1. V(R) := DeriveVR(It ,Od);

2. Ω(Se) := Instantiation(Se);

3. Π := TrueDer(Ω(Se),V(R));

4. G := CompGraph(Π,Se);

5. C :=MaxClique(G);

6. A := GetSug(Se,C ,Ω(Se),VB);

7. return (A ,V(A));

Figure 5.8: Algorithm Suggest

one.

5.5.3.2.1 DeriveVR: For each attribute A whose true value is yet unknown, it com-

putes a set V(A) of candidate true values for A. Observe that given an attribute A, for

any value a1 in its active domain adomv(A), if there exists another value a2 also from

adomv(A), such that a1 ≺v
A a2, then a1 must not be the true value for A. In other words,

a1 is known not to be the most current value.

Based on this observation, DeriveVR works as follows (not shown). Initially, V(A)

takes the active domain adomv(Ie.A). It then removes all values a1 in adomv(Ie.A)

from V(A) if there exists a value a2 in adomv(Ie.A)\{a1} such that a1 ≺v
A a2 is in the

deduced partial order Od , as a2 is more current than a1 in A. DeriveVR takes O(|It |2)
time with an index, since it checks at most |Od| partial orders, and |Od| ≤ |It |2.

5.5.3.2.2 TrueDer: Given a set Ω(Se) of instance constraints, procedure TrueDer

deduces a set Π of derivation rules following the same way as shown in Example 5.5.4.

(1) From constant CFDs, the derivation rules could be deduced directly as long as they

do not have conflicts with the candidate true values derived by DeriveVR.

(2) From those instance constraints that represent currency constraints and currency

orders, it deduces derivation rules of the form (X ,P(X))→ (B,b), for each attribute B

whose true value is unknown and for each b ∈ V(B), if such a rule exists. While it is

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 166

Procedure TrueDer

Input: A specification Se of an entity,

a set of instance constraints Ω(Se), and

the candidate true values V(R).

Output: A set Π of derivation rules.

1. Π := /0 ;

2. for each (tp[Xφ]→ tp[Bφ]) ∈ Γ do
3. if for all attribute A ∈ Xφ ∩B , A(tp[A] ∈V (A)) then
4. Π := Π∪{(Xφ, tp[Xφ])→ (Bφ, tp[Bφ])};

5. for each B ∈ R do
6. for each b ∈V (B) do
7. U(B,b) := {bi ≺v

B b | bi ∈ V(B)\{b}};

8. Ω(B,b) := {ϕ | ϕ ∈ Ω(Se)∧ϕ = ω → bi ≺v
B b};

9. X := /0;P(X) := nil; success := true;

10. for each bi ∈U(B,b) do
11. pick a rule ϕ from Ω(B,b) for bi ≺B b;

12. if P(X) satisfies ϕ then
13. populate X ,P(X);

14. else success :=false; break;

15. if success then Π := Π∪{(X ,P(X))→ (B,b)};

16. return Π;

Figure 5.9: Procedure TrueDer

prohibitively expensive to enumerate all these rules, we use a heuristics to find a set of

derivation rules. For each candidate true value b, it first identifies instance constraints

that could complement the missing partial orders when assuming b as true value. Then

it maintains and populates pattern (X ,P(X)) from unknown attributes and candidate

true values that could satisfy the premise of each of those instance constraints.

For example, the rule n1 in Example 5.5.4 could be deduced as follows. Observe

that with φ5 (Fig. 5.3) and r5,r6 (Fig. 5.2), the instance constraint

(unemployed ≺v
status retired → n/a ≺v

job veteran)

could be derived. Here V(job) consists of 2 values “n/a” and “veteran”. The users may

inspect the two values and choose one from the two as the true value of V(job). If one

wants to assume “veteran” as the true value, “n/a” ≺v
job “veteran” is missing from the

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 167

Procedure CompGraph

Input: A set Π of derivation rules, and a specification Se.

Output: A compatibility graph G of Π.

1. initialize G to be an empty graph;

2. for each derivation rule n ∈ Π do
3. add a node in G for n;

4. for each node ni ∈ G do
5. for each node n j ∈ G where ni ̸= n j do
6. if ni and n j are compatible then
7. add an edge (ni,n j) to G;

8. return G;

Figure 5.10: Procedure CompGraph

partial order. Nonetheless, this can be complemented with the instance constraint given

above. In light of this, we populate X as {status}, and P(X) as “retired” (∈ V(status))

to satisfy the premise of the constraint. When (X ,P(X)) is in place, the derivation rule

n1 : ({status}, {retired}) → (job, veteran) can be deduced.

More specifically, procedure TrueDer is given in Fig. 5.9. It works as follows,

starting with an empty set Π of derivation rules (line 1).

(1) Deduce rules from CFDs: for each constant CFD (tp[Xφ]→ tp[Bφ])∈ Γ (line 2), if

tp[A]∈V[A] for each A∈ Xφ∩B , i.e., when the values of the CFD have no conflict

with those candidate true values (line 3), then we add (Xφ, tp[Xφ])→ (Bφ, tp[Bφ])

as a new derivation rule (line 4).

(2) Deduce rules from those instance constraints in Ω(Se) that represent currency

constraints and partial currency orders in Se, as follows:

(i) for each attribute B whose true value is unknown (line 5) and each value

b in V(B) that can possibly be its true value (line 6), let U(B,b) = {bi ≺v
B

b | bi ∈ V(B) \ {b}}, which is the set consisting of all the missing partial

orders when b is assumed to be the true value of B (line 7);

(ii) partition instance constraints based on U(B,b): for each value b in U(B,b),

let Ω(B,b) consist of all instance constraints ϕ ∈ Ω(Se) such that ϕ is of the

form ω → bi ≺v
B b (line 8); note that each ϕ appears in at most one of the

partitions;

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 168

(iii) for each bi ∈U(B,b) (line 10), we pick a rule ϕ = ω → bi ≺v
B b from Ω(B,b)

(line 11); we then expand X and the pattern P(X) so that the premise ω can

be satisfied (line 13), until either (X ,P(X)) can no longer satisfy ω (success

= false) (line 14), or each bi ≺v
B b in U(B,b) is covered by such a rule ϕ

(success = true); in the latter case, we add the rule (X ,P(X))→ (B,b) to

Π (line 15). Note that |X | ≤ |R|.

The procedure is in O((|Σ|+ |Γ|)|It |2 + |It |3) time. Indeed, the cost of step (1) is

bounded by O(|Γ|); and for step (2), since U(B,b)’s are disjoint, Ω(B,b)’s partition Ω(Se),

and moreover, each ϕ in Ω(Se) is used at most once, it takes at most O((|Σ|+ |Γ|)|It |2+
|It |3) time.

5.5.3.2.3 CompGraph: Given a set of derivation rules, procedure CompGraph gen-

erates their compatibility graph G(N,E) (see Example 5.5.5 for a running example).

More specifically, CompGraph is presented in Fig. 5.10. It takes a set Π of deriva-

tion rules as input. It constructs and returns a compatibility graph for Π. The procedure

works as follows. It first initializes a compatibility graph (line 1). It then generates a

node for each derivation rule (line 2). The edges are then added (lines 3-6). For any

two distinct nodes, if their associated rules are compatible (line 5, see the definition

of compatibility graphs given earlier), an edge is added to connect these two nodes

(line 6). It terminates and returns a compatibility graph G (line 7).

It is readily to verify that the procedure takes at most O(|Π|2) time, where |Π| is

no larger than |R||It |.

5.5.3.2.4 MaxClique: Given a compatibility graph G(N,E), this procedure com-

putes a maximum clique C of G(N,E). While it is intractable to find a maximum

clique, several tools have been developed for computing maximum cliques, with a good

approximation bound (e.g., [Fei05]). We employ one of these tools as MaxClique.

5.5.3.2.5 GetSug: Given a specification Se of an entity, a set Ω(Se) of instance con-

straints, a clique C , and VB , the procedure computes a suggestion as output. As shown

in Examples 5.5.6 and 5.5.7, the clique returned by MaxClique represents a sugges-

tion, but the suggestion may contain conflicts. This procedure is to convert the the

clique to a suggestion, and revise it in the presence of conflicts by invoking a weighted

MaxSat-solver.

More specifically, GetSug is given in Fig. 5.11. It works as follows. It first

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 169

Procedure GetSug

Input: A specification Se, instance constraints Ω(Se),

a clique C , and VB .

Output: A set A of attributes as suggestion.

1. A ′ := R;P′[A ′] := nil;

2. for each (X ,P(X))→ (B,b) ∈ C do
3. A ′ := A ′ \{B}
4. P′[X] := P(X);

5. instantiate P′ and convert P′ to CNF Φ′;

6. Φu := Φ′∪Φ(Se);

/* each clause in Φ′ is assigned with a weight of 1.0,

and each clause in Φ(Se) is assigned with a weight of +∞.*/

7. Φs := Weighted-MAXSAT (Φu);

8. convert Φs to P′′;

9. A := R\VB ;

10. for each (X ,P(X))→ (B,b) ∈ C do
11. if P(X) ̸= P′′[X] then remove (X ,P(X))→ (B,b) from C ;

12. else A := A \{B};

13. return A ;

Figure 5.11: Procedure GetSug

identifies the required attributes A ′ and pattern P′[A] by applying derivation rules in

C (lines 1-4). It then converts P′ to a CNF Φ′, along the same line as procedures

Instantiation and ConvertToCNF given earlier (line 5). Since Φ′ may have conflicts

with the Φ(Se), it invokes a weighted MAXSAT-solver to minimally revise Φ′ such

that Φ′ ∪Φ(Se) is satisfiable (lines 6-7). It then finds the subset of C corresponding

to the revised Φ′, which has no conflicts with Se (lines 8-12). It also derives a set A

of attributes from the subset of C (line 12; see Example 5.5.6). Finally, it returns A

(line 13). Recall that V(A) is computed by procedure DeriveVR given earlier. Note that

the input to the MaxSat-solver is no larger than |R|2|It |2. Moreover, there are efficient

MaxSat-solvers available, with a reasonable approximation bound [SK04].

Correctness. Algorithm Suggest guarantees to generate a suggestion (A ,V(A)). In-

deed, (1) the clique C ′ revised by MaxSat has no conflicts with Se, and thus C ′ and

Se warrant to have a valid completion Ic
t . Let tc = LST(Ic

t). If V(A) are validated for

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 170

A , then tc must be the true value T(Se) of Se, since tc[B] = VB remains unchanged for

all valid completions of Se, and tc[A ′] is uniquely determined by tc[A] and VB by the

construction. (2) All possible true values for A from their active domains are already

included in V(A).

5.6 Experimental Study

We conducted experiments using both real-life and synthetic data. We evaluated the

accuracy and scalability of (1) IsValid for validating a specification, (2) DeduceOrder

for deducing true values, (3) Suggest for computing suggestions, and (4) the over-

all performance of conflict resolution supporting (1-3) above. Note that IsValid and

DeduceOrder are useful in their own right, since users may want to check their speci-

fications and infer true values outside the interaction framework.

Experimental data. We used two real-life datasets (NBA and CAREER) and synthetic

data (Syn). Constraints were discovered using profiling algorithms [CM08, FGLX11],

and examined manually. Timestamps for the datasets were either missing (for CAREER

and Syn) or incomplete (NBA). We assumed empty currency orders in all the exper-

iments even when partial timestamps were given. The available (incomplete) times-

tamps were used for designing currency constraints and for evaluating the quality of

the derived true values.

NBA player statistics. This dataset was retrieved from the following sites:

(1) http://databasebasketball.com/, (2) http://www.infochimps.com/marketplace, and (3)

http://en.wikipedia.org/wiki/List of National Basketball Association arenas. It consists of

three tables: (a) Player (from sources 1 and 3) contains information about players,

identified by player id (pid). (b) Stat (from 1) includes the statistics of these play-

ers from the 2005/2006 season to the 2010/2011 season. (c) Arenas (from 3) records

the historical team names and arenas of each team. We created a table, referred to as

NBA, by first joining Player and Stat via equi-join on the pid attribute, and then joining

Arenas via equi-join on the team attribute. The NBA table consists of 19573 tuples for

760 entities (i.e., players). Its schema is (pid, name, true name, team, league, tname,

points, poss, allpoints, min, arena, opened, capacity, city). When producing the NBA

table we took care of the attributes containing multiple values for a player, e.g., multi-

ple teams for the same player, and multiple teams for one arena. We ensure that only

one attribute value (e.g., team) appears in any tuple. Only data from (1) and (3) carries

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 171

(partial) timestamps. Therefore, the true values of entities in the NBA table cannot be

directly derived when putting (1), (2) and (3) together.

The number of tuples pertaining to an entity ranges from 2 to 136, about 27 in

average. We consider entity instances, i.e., tuples referring to the same entity, which

are much smaller than a database.

We found 54 currency constraints: 15 for team names (tname) as shown by φ1

below; 32 for arena, similar to φ2; and 4 (resp. 3) for attribute allpoints that were scored

since 2005 (resp. arena), similar to φ3 (resp. φ4), where B ranges over points, poss, min

and tname (resp. opened, capacity and years). We deduced 58 constant CFDs, e.g., ψ1

below. Note that some rules are derived automatically, while the others are designed

manually based on the semantics of the data.

φ1: ∀t1, t2 (t1[tname] = “New Orleans Jazz”

∧ t2[tname] = “Utah Jazz” → t1 ≺tname t2);

φ2: ∀t1, t2 (t1[arena] = “Long Beach Arena”

∧ t2[arena] = “Staples Center” → t1 ≺arena t2);

φ3: ∀t1, t2 (t1[allpoints]< t2[allpoints] ∧ t1[B] ̸= t2[B]

→ t1 ≺B t2)

φ4: ∀t1, t2 (t1 ≺arena t2 ∧ t1[B] ̸= t2[B]→ t1 ≺B t2)

ψ1: (arena = “United Center” → city = “Chicago, Illinois”)

(2) CAREER. This data set was retrieved as is from the source

http://www.cs.purdue.edu/commugrate/data/citeseer. Its schema is (first name, last name,

affiliation, city, country). We chose 65 persons from the dataset, and for each one, we

collected all of his/her publications, one tuple for each. No reliable timestamps were

available for this dataset. The number of tuples pertaining to an entity ranges from 2

to 175, about 32 in average.

We derived 503 currency constraints: if two papers A and B are by the same person

and A cites B, then the affiliation and address (city and country) used in paper A are

more current than those used in paper B. We also found a single CFD of the form:

(affiliation → city, country), but with 347 patterns with different constants.

The constraints for each dataset (NBA and CAREER) have essentially the same

form, and only differ in their constants. Indeed, we find that the number of constraints

with different forms is rather small in practice.

(3) Syn data. The synthetic data adheres to the schema given in Table 5.2. We found

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 172

983 currency constraints (of the same form but with distinct constant values for status,

job and kid) and a single CFD AC→ city with 1000 patterns (counted as distinct con-

stant CFDs), similar to those in Table 5.3. The data generator used two parameters:

n denotes the number of entities, and s is the size of entity instances (the number of

tuples pertaining to an entity). For each entity, it first generated a true value tc, and

then produced a set E of tuples that have conflicts but do not violate the currency con-

straints; we treated E \{tc} as the entity instance. We generated n = 10k entities, with

s from 1 to 10k. We used empty currency orders here.

Algorithms. We implemented the following algorithms in C++: (a) IsValid (Sec-

tion 5.5.1): it calls MiniSat [GT04] as the SAT-solver; (b) DeduceOrder and

NaiveDeduce, where NaiveDeduce repeatedly invokes MiniSat [GT04], as described

in Section 5.5.2; and (c) Suggest: it uses MaxClique [Fei05] to find a maximal clique,

and MaxSat-solver [SK04] to derive a suggestion (Section 5.5.3). We simulated user

interactions by providing true values for suggested attributes, some with new values,

i.e., values not in the active domain. We also implemented (d) Pick, a traditional

method that randomly takes a value [BN08]; to favor Pick, we picked a value from

those that are not less current than any other values, based on currency constraints

∀t1, t2(ω→t1≺At2) in which ω is a conjunction of comparison predicates only, e.g.,

φ1–φ3 above.

Accuracy. To measure the quality of suggestions, we used F-measure

(http://en.wikipedia.org/wiki/F-measure):

F-measure = 2 · (recall ·precision)/(recall+precision).

Here precision is the ratio of the number of values correctly deduced to the total number

of values deduced; and recall is the ratio of the number of values correctly deduced to

the total number of attributes with conflicts or stale values.

All experiments were conducted on a Linux machine with a 3.0GHz Intel CPU and

4GB of Memory. Each experiment was repeated 5 times, and the average is reported

here.

Experimental results. We next present our findings. Due to the small size of the

CAREER data for each entity, experiments conducted on it took typically less than 10

milliseconds (ms). Hence we do not report its result in the efficiency study.

Exp-1: Validity checking. We first evaluated the scalability of IsValid. The average

time taken by entity instances of various sizes is reported in Fig. 5.12(a), where the

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 173

lower x-axis shows the sizes of NBA, and the upper x-axis is for Syn data. The results

show that IsValid suffices to validate specifications of a reasonably large size. For

example, it took 220 ms for NBA entity instances of 109-135 tuples and 112 constraints,

with 14 attributes in each tuple. For Syn, it took an average of 4.7 seconds on entities

of 8k-10k tuples and 1983 constraints. We also find IsValid accurate: specifications

reported (in)valid are indeed (in)valid.

Exp-2: Deducing true values. We next evaluated the performance of algorithms

DeduceOrder and NaiveDeduce. The results on both NBA and Syn data are reported in

Fig. 5.12(b), which tell us the following: (a) DeduceOrder scales well with the size of

entity instances, and (b) DeduceOrder substantially outperforms NaiveDeduce on both

datasets, for reasons given in Section 5.5.2. Indeed, DeduceOrder took 51 ms on NBA

entity instances with 109-135 tuples, and 914 ms on Syn entities of 8k-10k tuples;

in contrast, NaiveDeduce spent 13585 ms and over 20 minutes (hence not shown in

Fig. 5.12(b)) on the same datasets, respectively.

We also find that DeduceOrder derived as many true values as NaiveDeduce on

both datasets (not shown). This tells us that DeduceOrder can efficiently deduce true

values on large entity instances without compromising the accuracy of the true values

found.

Exp-3: Suggestions for user interactions. We evaluated the accuracy of suggestions

generated from currency constraints Σ and CFDs Γ put together. The results on NBA,

CAREER and Syn are given in Figures 5.12(e), 5.12(i) and 5.12(m), respectively, where

the x-axis indicates the rounds of interactions, and the y-axis is the percentage of true

attribute values deduced.

These results tell us the following. (a) Few rounds of interactions are needed to find

all the true attribute values for an entity: at most 2, 2 and 3 rounds for NBA, CAREER

and Syn data, respectively. (b) A large part of true values can be automatically deduced

by means of currency and consistency inferences: 35%, 78% and 22% of true values

are identified from Σ + Γ without user interaction, as indicated by the 0-interaction in

Figures 5.12(e), 5.12(i) and 5.12(m), respectively.

Impact of |Σ| and |Γ|. To be more precise when evaluating the accuracy, we use F-

measure, which combines precision and recall, and take the cases of using |Γ| only

or |Σ| only into consideration. Figures 5.12(f)–5.12(h), 5.12(j)–5.12(l) and 5.12(n)–

5.12(p) show the results for NBA, CAREER and Syn, respectively, when varying both |Σ|
and |Γ|, |Σ| only, and varying |Γ| alone, respectively. The x-axis shows the percentage

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 174

of Σ or Γ used, and the y-axis shows the corresponding F-measure values.

These results tell us the following. (a) As shown in Figures 5.12(f), 5.12(j) and

5.12(n), our method substantially outperforms the traditional method Pick, by 201%

in average on all datasets, even when we favor Pick by allowing it to capitalize on

currency orders. This verifies that data currency and consistency can significantly

improve the accuracy of conflict resolution. (b) When Σ and Γ are taken together,

the F-measure value is up to 0.930 for NBA (Fig. 5.12(f), the top right point), 0.958

for CAREER (Fig. 5.12(j)), and 0.903 for Syn (Fig. 5.12(n)), in contrast to 0.830 in

Fig. 5.12(g), 0.907 in Fig. 5.12(k), and 0.826 in Fig. 5.12(o), respectively, when Σ is

used alone, and as opposed to 0.210 in Fig. 5.12(h), 0.741 in Fig. 5.12(l), and 0.234

in Fig. 5.12(p), respectively, with Γ only. These further verify that the inferences of

data currency and consistency should be unified instead of taking separately. (c) The

more currency constraints and/or CFDs are available, the higher the F-measure is, as

expected. (d) The two curves for the 2- and 1-interaction overlap in Figures 5.12(f)–

5.12(h) for NBA, 2- and 1-interaction in Figures 5.12(j)–5.12(l) for CAREER, and 3-

and 2-interaction in Figures 5.12(n)–5.12(p) for Syn. These indicate that the user in-

teractions are needed to provide true values for those attributes that we do not have

enough information to deduce their true values.

Exp-4: Efficiency. The overall performance for resolving conflicts in the NBA

(resp. Syn) data is reported in Fig. 5.12(c) (resp. Fig. 5.12(d)). Each bar is divided into

the elapsed time taken by (a) validity checking, (b) true value deducing, and (c) sugges-

tion generating, including computing maximal cliques and running MaxSat. The result

shows that conflict resolution can be conducted efficiently in practice, e.g., each round

of interactions for NBA took 380 ms. Here validating specifications takes most time,

dominated by the cost of SAT-solver, while deducing true values takes the least time.

Summary. From the experimental results we find the following. (a) Conflict resolu-

tion by reasoning about data currency and consistency substantially outperforms the

traditional method Pick, by 201%. (b) It is more effective to unify the inferences of

data currency and consistency than treating them independently. Indeed, when Σ and Γ
are taken together, the F-measure improves over Σ only and Γ only by 11% and 236%,

respectively. (c) Our conflict resolution method is efficient: it takes less than 0.5 sec-

ond on the real-life datasets even with interactions. (d) Our method scales well with the

size of entities and the number of constraints. Indeed, it takes an average of 7 seconds

to resolve conflicts in Syn entity instances of 8k-10k tuples, with 1983 constraints. (e)

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 175

At most 2-3 rounds of interactions are needed for all datasets.

Chapter 5. Inferring Data Currency and Consistency for Conflict Resolution 176

 0

 1000

 2000

 3000

 4000

 5000

[1,27]
[28,54]

[55,81]
[82,108]

[109,135]

[1,2000]

[2001,4000]

[4001,6000]

[6001,8000]

[8001,10000]

el
ap

se
d

tim
e

(m
se

c) NBA: (|Σ| = 54, (|Γ| = 58)
Person (|Σ| = 983, (|Γ| = 1000)

(a) Validity checking (#-
tuples)

 10

 100

 1000

 10000

 100000

[1,27]
[28,54]

[55,81]
[82,108]

[109,135]

[1,2000]

[2001,4000]

[4001,6000]

[6001,8000]

[8001,10000]

el
ap

se
d

tim
e

(m
se

c) NBA-DeduceOrder
NBA-NaiveDeduce

Person-DeduceOrder

(b) Deducing true values

 0

 100

 200

 300

 400

 500

[1,27]
[28,54]

[55,81]
[82,108]

[109,135]

el
ap

se
d

tim
e

(m
se

c) Suggest
DeduceOrder

Validity

(c) NBA: Overall time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

[1,2000]
[2001,4000]

[4001,6000]

[6001,8000]

[8001,10000]

el
ap

se
d

tim
e

(m
se

c) Suggest
DeduceOrder

Validity

(d) Syn: Overall time

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2
en

tit
ie

s%
 o

f
tr

ue
 v

al
ue

s

Σ+Γ

(e) NBA: #-interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F-
m

ea
su

re

0-interaction
1-interaction
2-interaction

Pick

(f) NBA: varying |Σ|+ |Γ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F-
m

ea
su

re

0-interaction
1-interaction
2-interaction

(g) NBA: varying |Σ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F-
m

ea
su

re

0-interaction
1-interaction
2-interaction

(h) NBA: varying |Γ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2
en

tit
ie

s%
 o

f
tr

ue
 v

al
ue

s

Σ+Γ

(i) CAREER: #-interactions

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F-
m

ea
su

re

0-interaction
1-interaction
2-interaction

Pick

(j) CAREER: varying |Σ|+
|Γ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F-
m

ea
su

re

0-interaction
1-interaction

(k) CAREER: varying |Σ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F-
m

ea
su

re

0-interaction
1-interaction
2-interaction

(l) CAREER: varying |Γ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3

en
tit

ie
s%

 o
f

tr
ue

 v
al

ue
s

Σ+Γ

(m) Syn: #-interaction

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F-
m

ea
su

re

0-interaction
1-interaction
2-interaction
3-interaction

Pick

(n) Syn: varying |Σ|+ |Γ|

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

F-
m

ea
su

re

0-interaction
1-interaction
2-interaction
3-interaction

(o) Syn: varying |Σ|

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 1

F-
m

ea
su

re

0-interaction
1-interaction
2-interaction

(p) Syn: varying |Γ|

Figure 5.12: Experimental results

Chapter 6

Determining the Relative Accuracy of

Attributes

6.1 Introduction

In this chapter, we next report our study on (relative) data accuracy, one of the central

issues.

Given a set Ie of tuples pertaining to the same entity e, data accuracy aims to find

the most accurate values for e. More specifically, it is to compute a tuple te, referred

to the target tuple for e from Ie, such that for each attribute A of e, te[A] is a value in Ie

that is closest to the true A-value of e.

Although important, data accuracy has not been well studied by and large. Prior

work on data quality has typically focused on other issues such as data consistency

[BS06, FG12]. Consistency refers to the validity and integrity of the data. Although

data accuracy and consistency are connected, the two are quite different. Indeed, a

database D may be consistent, but the values in D may still be inaccurate.

FN MN LN rnds totalPts J# league team arena

t1: MJ null null 16 424 45 NBA Chicago Chicago Stadium

t2: Michael null Jordan 27 772 23 NBA Chicago Bulls United Center

t3: Michael null Jordan 1 19 45 NBA Chicago Bulls United Center

t4: Michael Jeffrey Jordan 127 51 45 SL Birmingham Barons Regions Park

Table 6.1: Entity instance stat for Michael Jordon in the 1994-95 season

Example 6.1.1: Consider relation stat given in Table 6.1, which collects performance

177

Chapter 6. Determining the Relative Accuracy of Attributes 178

FN LN league season team

s1: Michael Jordan NBA 1994-95 Chicago Bulls

s2: David Robinson NBA 1994-95 San Antonio Spurs

s3: Michael Jordan NBA 2001-02 Washington Wizards

Table 6.2: Master data nba

φ1: ∀t1, t2 ∈ stat (t1[league] = t2[league]∧ t1[rnds]< t2[rnds]→ t1 ⪯rnds t2)

φ2 : ∀t1, t2 ∈ stat (t1 ≺rnds t2 → t1 ⪯J# t2)

φ3: ∀t1, t2 ∈ stat (t1 ≺rnds t2 → t1 ⪯totalPts t2)

φ4 : ∀t1, t2 ∈ stat (t1 ≺league t2 → t1 ⪯rnds t2)

φ5 : ∀t1, t2 ∈ stat (t1 ≺MN t2 → t1 ⪯FN t2)

φ6 : ∀tm ∈ nba(tm[FN,LN] = te[FN,LN]∧ tm[season] = “1994-95” → te[league, team] = tm[league, team])

Table 6.3: Accuracy rules

statistics of Michael Jordan (Fig. 6.1) in the season of 1994-95, when Michael played

for a baseball team Birmingham Barons in the Southern League (SL) in 1994, followed

by his return to NBA, playing 27 games for Chicago Bulls in 1995. Each tuple in stat

specifies the name (FN, MN, LN), performance (total points totalPts after rnds rounds

played), jersey number J#, league, team and arena.

We want to find the target tuple for Michael from stat, consisting of the most

accurate values for all the attributes at the end of 1994-95 NBA season. However, there

are multiple values in stat for some attributes. For instance, we do not know whether

45 is more accurate than 23 for his J#.

The stat data is consistent. Indeed, constraints specifying its consistency include

(a) functional dependency (FD [AHV95]): [FN,MN,LN, league, rnds→ totalPts], i.e.,

player, rnds and league uniquely determine totalPts, and (b) conditional functional

dependency (CFD [BFG+07]): [team = “Chicago Bulls” → arena = “United Center”],

asserting that if team is Chicago Bulls, then arena must be United Center. While all

tuples in stat satisfy these constraints and are hence consistent, most of the data values

in stat are, however, not accurate. 2

Not all is lost. By using master data, one is able to identify accurate values for

some attributes. For example, a master relation nba is given in Table 6.2, in which a

tuple specifies the FN, LN, league, season, and team of an NBA player. Then tuple

s1 in Table 6.2 tells us that in the 1994-95 season, Michael played for Chicago Bulls

Chapter 6. Determining the Relative Accuracy of Attributes 179

Figure 6.1: MJ’s return

in NBA. Thus t1 is more accurate than t4 in attribute league (resp. team), denoted by

t6≺league t1 (resp. t4≺team t1).

To find the relative accuracy of those attributes not presented in the master data

is much more challenging. That is, given tuples t1, t2 and an attribute A, we want to

find whether t1≺A t2 when A is not covered by master data, such as J# in relation stat

of Table 6.1. This is hard, but not hopeless. From the semantics of the data, one can

discover accuracy rules (ARs), which tell us whether one tuple is more accurate than

another in certain attributes.

Example 6.1.2: An analysis of the semantics of the stat data yields the ARs given in

Table 6.1. Based on these rules, we can deduce relative accuracy as follows.

(1) We know that in a season, the number of rounds (rnds) monotonically increases (up

to an bound). Hence for tuples t and t ′ referring to the same league, if t[rnds]< t ′[rnds],

then t ≺rnds t ′, i.e., t ′[rnds] is more current (and thus more accurate) than t[rnds]. This

is expressed as rule φ1 in Table 6.1. From φ1 we can deduce that ti ≺rnds t2 for i∈ [1,3].

(2) For tuples t and t ′, if t ′ is more accurate than t in rnds, then t⪯J# t ′, denoting either

t[J#]= t ′[J#] or t ≺J# t ′; similarly for totalPts. That is, if t ′ is more accurate (current)

Chapter 6. Determining the Relative Accuracy of Attributes 180

than t in attribute rnds, then so are its correlated attributes t ′[J#] and t ′[totalPts]. These

are expressed as rules φ2 and φ3 in Table 6.1, respectively. From these ARs and (1)

we find that t2[totalPts] = 772 and t2[J#] = 23 are more accurate than ti[totalPts] and

ti[J#], respectively, for i ∈ [1,3].

(3) We know that Michael ended up in NBA in the 1994-95 season. Moreover, if t ′ is

more accurate than t in league, then so is t ′ in attributes rnds, totalPts, J# and arena.

These can also be expressed as ARs, e.g., φ4. These tell us that ti is more accurate than

t4 in these attributes, for i ∈ [1,3].

(4) For tuples t and t ′, if t[A] is null but t ′[A] is not, then t ′ is more accurate than t in

attribute A. This can also be expressed as an AR (not shown in Table 6.1). Moreover,

if t ′ is more accurate than t in MN, then so is t ′ in the correlated attribute FN, as

t ′[MN] and t ′[FN] typically come together. This is expressed as φ5 in Table 6.1. These

tell us that t4[MN]=“Jeffrey” is most accurate in MN and t1 ≺FN t4.

(5) As remarked earlier, we can use master data to find the most accurate values for

certain attributes. This is shown as AR φ6 in Table 6.1. It asserts that if there exists a

master tuple tm ∈ nba such that tm[FN,LN] = te[FN,LN] and tm[season] = “1994-95”,

then te[league, team] should take the value of tm[league, team]. Here te is the target

tuple in which attributes te[FN,LN] already find their most accurate values.

Putting these together, we can deduce the relative accuracy of attributes and better

still, a large part of the target tuple te. Indeed, the values of te in FN, MN, LN, rnds,

totalPts, league, team are found to be Michael, Jeffrey, Jordan, 27, 772, 23, NBA, and

Chicago Bulls, respectively. 2

This example tells us that even in the absence of true values of an entity, one can

still find a large part of the target tuple for the entity, by taking both accuracy rules

and available master data. This, however, requires an inference system and efficient

algorithms for deducing the relative accuracy of attributes whenever possible.

We contend that ARs, master data and inference algorithms yield a promising ap-

proach to determining relative accuracy. As shown in Example 6.1.2, while master

data is helpful, it is not a must for the analysis of relative accuracy. In the absence of

complete master data, we can still deduce true values for critical attributes based on

accuracy rules and inference, as will be verified by our experimental study.

Related works. There has been a host of work on data quality issues such

as data consistency, data currency, information completeness and entity resolution

Chapter 6. Determining the Relative Accuracy of Attributes 181

(see [BS06, FG12] for recent surveys). While data accuracy has long been advo-

cated [BS06, FLM09, NJE+09], the prior work has mostly focused on metrics for

accuracy measurement; we are not aware of any formal treatment of relative accuracy

in the absence of true values.

Rules and master data have been used in repairing data (data consistency) [BKL11,

FLM+11a] and specifying relative information completeness [FG12]. This work dif-

fers from the prior work in the following. (1) ARs are quite different from the de-

pendencies used for specifying consistency and completeness. As a result, the ter-

mination problem for rules of [FLM+11a], for instance, is PSPACE-complete, while

our inference (chase) process always terminates. (2) Data repairing and information

completeness consider problems different from those studied here. (3) We give an

operational semantics for ARs in terms of chase [AHV95]. In contrast, chase was

not considered in the prior work except [BKL11]. While [BKL11] adapted chase for

data repairing [BKL11] based on matching dependencies, it studied neither how to de-

duce relative accuracy, nor the complexity of determining whether a chase process is

Church-Rosser.

Also related is prior work on truth discovery from data sources [BCMP10,

FGTY13, GAMS10, WM11, YHY08, DBES09b, Wid05, ZRGH12]. Those ap-

proaches include (i) dependencies on sources to detect copy relationships and identify

reliable sources [DBES09b]; (ii) employing lineage and probabilistic [Wid05]; (iii)

vote counting and probabilistic analysis based on the trustworthiness of data sources

[BCMP10, GAMS10, WM11, YHY08, ZRGH12]. In contrast, we deduce relative ac-

curacy following a logical approach based on ARs and master data, without assuming

knowledge about data sources. Our method is complementary to the prior approaches

for truth discovery, and can be combined with them by deducing trust in attributes with

ARs in truth discovery (see Sections 6.3 and 6.7 for details).

Closer to this work is [FGTY13], on conflict resolution by reasoning about data

consistency and currency. It used partial orders, currency constraints and constant

CFDs [BFG+07]. This work differs from [FGTY13] in the following. (1) We study

relative data accuracy rather than conflict resolution. This said, currency orders and

constant CFDs can be expressed as ARs and hence, our techniques can also be used in

data fusion [BN08]. (2) We use ARs for actions in a chase process, as opposed to static

dependencies of [FGTY13]. (3) Our approach is quite different from [FGTY13]. We

infer accuracy via chase, use available master data to improve accuracy, and provide

algorithms to compute top-k target tuples. These were not studied in [FGTY13].

Chapter 6. Determining the Relative Accuracy of Attributes 182

Our algorithms for computing top-k target tuples are related to top-k query an-

swering, which aims to retrieve top-k tuples from query result, ranked by a monotone

scoring function [IBS08, FLN03]. One of our top-k algorithms extends algorithms

for top-k rank join queries [SP08, IAE04] by embedding score computation in top-k

selection, rather than assuming that the scores are already given, and by additionally

checking whether selected tuples observe ARs. We also provide a new algorithm that

does not require the input to be ranked; it is instance optimal w.r.t. the number of visits

to the data, and can be used to compute rank joins on unranked lists.

Organization. The rest of the chapter is organized as follows. We formally propose

a class of accuracy rules (ARs) to specify data accuracy, and a chase-like procedure

in Section 6.2. We study the fundamental problems of ARs in Section 6.3, and in-

troduce a framework to derive data accuracy in Section 6.4. Algorithm for checking

Church-Rosser property is given in Section 6.5, and practical top-k algorithms under-

lying the framework are developed in Section 6.6. An experimental study is reported

in Section 6.7

6.2 A Model for Relative Accuracy

We next present a model for determining relative accuracy. We first define ARs (Sec-

tion 6.2.1), and then introduce a chase procedure for deducing relative accuracy (Sec-

tion 6.2.2),

6.2.1 Rules for Specifying Relative Accuracy

Relative accuracy. Consider a relation schema R = (A1, . . . ,An), where the domain of

attribute Ai is dom(Ai). We consider an entity instance Ie of R, which is a set of tuples

pertaining to the same real-world entity e. Such an Ie is identified by entity resolution

techniques [EIV07, NH10], and is typically much smaller than a database instance in

practice.

The problem of relative accuracy is to determine, given an attribute Ai of R and

tuples t1, t2 ∈ Ie, whether t2 is more accurate than t1 in attribute Ai, denoted by t1≺Ai t2.

More specifically, for each attribute Ai of Ie, ≺Ai is a strict partial order defined

on the Ai attribute values in Ie. That is, ≺Ai is a binary relation that is irreflexive and

transitive, and thus asymmetric. Initially, ≺Ai is empty for all i ∈ [1,n], and we want to

populate ≺Ai by deducing relative accuracy with accuracy rules. We also use t1 ⪯Ai t2

Chapter 6. Determining the Relative Accuracy of Attributes 183

to denote either t1[Ai]=t2[Ai] or t1≺Ai t2. Note that ⪯Ai is a partial order, referred to as

the accuracy order on attribute Ai.

Ultimately we want to find a tuple te for Ie, referred to as the target tuple for e from

Ie such that for each attribute Ai of R and all tuples t ∈ Ie, t ⪯Ai te. Intuitively, te is a new

tuple composed of the most accurate value of attribute Ai for all i ∈ [1,n]. It is easy to

verify that if te exists, then it is unique. Note that Ie may not have enough information

for us to deduce a complete te. If so, te[Ai] = null for some Ai, and we refer to te as an

incomplete target tuple of Ie.

Accuracy rules (ARs). There are two forms of ARs. The first one is defined on tuples

t1, t2 ∈ Ie to deduce whether t1⪯Ai t2, i.e., their relative accuracy in an attribute Ai:

φ = ∀t1, t2 (R(t1)∧R(t2)∧ω → t1 ⪯Ai t2) (1)

where ω is a conjunction of predicates of the form: (a) t1[Al] op t2[Al], where op is one

of the comparison operators =, ̸=,>,<,≤,≥; or (b) ti[Al] op c for i ∈ [1,2], where c is

a constant or te[Al]; or (c) t1≺Al t2 or t1⪯Al t2. We refer to ω as LHS(φ) and t1⪯Ai t2 as

RHS(φ).
We denote by (t1, t2) |= ω if t1 and t2 satisfy the predicates in ω following the

standard semantics of first-order logic. Intuitively, if (t1, t2) |= ω, then t1 ≺Ai t2 or

t1⪯Ai t2.

The second form of ARs is defined on (te, Im), where te is the target tuple template,

and Im is an available master relation of schema Rm [RW08]. Note that Rm may not

cover all the attributes of R. This form of ARs extends te by extracting accurate values

from master relation Im, as follows:

φ′ = ∀tm (Rm(tm)∧ω → te[Ai] = tm[B]) (2)

Here ω is a conjunction of predicates of the form te[Al] = c or te[Al] = tm[B′], where c

is a constant and B′ is an attribute of Rm. Intuitively, if te matches a master tuple tm in

Im as specified by ω, then te[Ai] is instantiated by taking the value of tm[B]. We refer to

ω as LHS(φ′) and te[Ai] = tm[B] as RHS(φ). We write (te, tm) |= ω if te and tm satisfy ω.

Example 6.2.1: Recall the entity instance stat of Table 6.1, and master relation nba of

Table 6.2. Then their ARs include φ1–φ6 given in Table 6.1. These ARs demonstrate

how we can derive relative accuracy, in terms of (a) constants, built-in predicates and

the semantics of the data such as φ1, (b) data currency, e.g., φ2 and φ3, (c) co-existence

of attributes and known accuracy orders, such as φ4 and φ5, and (d) available master

data such as φ6. Additional ARs for stat include:

Chapter 6. Determining the Relative Accuracy of Attributes 184

φ7: ∀t1, t2 ∈ stat
(
t1[A] = null ∧ t2[A] ̸= null → t1 ⪯A t2

)
φ8: ∀t1, t2 ∈ stat

(
t2[A] = te[A] ∧ te[A] ̸= null → t1 ⪯A t2

)
φ9: ∀t1, t2 ∈ stat

(
t1[A]= t2[A]→ t1⪯A t2

)
φ10: ∀t1, t2 ∈ stat

(
t1 ≺MN t2 → t1 ⪯LN t2

)
φ11: ∀t1, t2 ∈ stat

(
t1 ≺team t2 → t1 ⪯arena t2

)
Here φ7–φ9 are defined on all the attributes A of stat. Rule φ7 says that the null value

has the lowest accuracy; φ8 asserts that if the target attribute te[A] is defined, then it has

the highest accuracy among all A-attribute values in Ie; and φ9 says that for all t1 and

t2, if t1[A] = t2[A], then t1 ⪯A t2. Rules φ7–φ9 are “axioms” that are included in any

set of ARs. ARs φ10 and φ11 deduce accuracy from correlated attributes (e.g., φ10, if

a tuple has a more accurate MN, then so does LN since the two attributes often come

together).

Note that t1 ≺A t2 iff t1 ⪯A t2 and t1[A] ̸= t2[A]. Hence when ⪯A is computed, we

can derive ≺A from ⪯A. 2

Remark. Constant CFDs [BFG+07] developed for detecting data inconsistencies can

be expressed as ARs. As an example, consider the CFD ψ given in Example 6.1.1:

[team = “Chicago Bulls” → arena = “United Center”]. We can create a master relation

of schema Rm with a tuple (team = “Chicago Bulls”, arena = “United Center”), and

express ψ as an AR

∀tm ∈ Rm (tm[team] = te[team]→ te[arena] = tm[arena]),

which asserts that if the team of the target tuple te is Chicago Bulls, then its arena must

be United Center. As we only need to assure the consistency of the target tuple te,

general CFDs defined on two tuples are not needed here.

6.2.2 Inferring Relative Accuracy

We next present an inference system for relative accuracy, in terms of a chase-like

procedure with ARs. The chase process gives an operational semantics for ARs.

We start with some notations. Consider an entity instance Ie, a master relation Im,

and a set Σ of ARs defined on Ie and Im. (1) We use D to denote (Ie,⪯A1, . . . ,⪯An),

i.e., Ie equipped with partial orders ⪯Ai ; we use ⪯D
Ai

to denote the partial order ⪯Ai in

D [BKL11]. (2) We call (D0, t
D0
e) the initial instance of e, where ⪯D0

Ai
is empty, and

tD0
e is the target template with tD0

e [Ai] = null for all i ∈ [1,n]. (3) We refer to S = (D0,

Chapter 6. Determining the Relative Accuracy of Attributes 185

Σ, Im, tD0
e) as a specification of entity e. (4) We call (D, tD

e) an accuracy instance of

S, where tD
e is the target tuple template associated with D, which is instantiated in the

chase process, and may have null in some of its attributes.

In a nutshell, the chase starts with the initial instance (D0, t
D0
e). It deduces rela-

tive accuracy by populating partial orders and instantiating the target tuple template,

yielding a sequence (D0, t
D0
e), (D1, t

D1
e), . . ., (Dm, tDm

e) of accuracy instances. Each

chase step applies an AR φ ∈ Σ and Im to an accuracy instance (D j, t
D j
e), and generates

another instance (D j+1, t
D j+1
e). In other words, (D j+1, t

D j+1
e) is an updated version of

(D j, t
D j
e), such that for some attribute Ai, either the partial order ⪯D j+1

Ai
extends ⪯D j

Ai

with a new pair, or tD j
e [Ai] = null is instantiated by letting tD j+1

e [Ai] take a value from

a master tuple in Im or a value that is already determined most accurate for Ai. The

process proceeds until no changes can be made to partial orders or the target tuple

template. More specifically, these are stated as follows.

(1) A single chase step. We say that (D j+1, t
D j+1
e) is an immediate result of enforcing

an AR φ ∈ Σ on (D j, tD j
e) with Im, denoted by (D j, t

D j
e) 7→φ (D j+1, t

D j+1
e), if (D j, t

D j
e) ̸=

(D j+1, t
D j+1
e) and one of the following conditions holds:

(a) When φ = ∀t1, t2(R(t1)∧R(t2)∧ω → t1 ⪯Ai t2). Then there exist tuples t1, t2 ∈ Ie

such that

◦ (t1, t2) |= ω;

◦ D j+1=(Ie,⪯D j
A1

,· · · ,⪯D j
Ai
∪{(t1, t2)}, · · · ,⪯D j

An
); and

◦ t
D j+1
e =(tD j

e [A1], · · · , λ(tD j
e [Ai], ⪯

D j+1
Ai

) · · · , tD j
e [An]).

Here λ(tD j
e [Ai],⪯

D j
Ai
)= t[Ai] if there exists t ∈ Ie such that for all t ′ ∈ Ie, t ′ ⪯D j+1

Ai
t; and

it is tD j
e [Ai] otherwise.

Intuitively, ⪯D j+1
Ai

extends ⪯D j
Ai

by including t1⪯Ai t2, and t
D j+1
e [Ai] takes the Ai value

with the highest accuracy w.r.t. ⪯D j+1
Ai

if it exists. Note that D j+1 and D j agree on every

attribute and partial order other than tD j
e [Ai] and ⪯D j

Ai
.

(b) When φ = ∀tm (Rm(tm)∧ω → te[Ai] = tm[Ai]). Then there exist tuples t ∈ Ie and

tm ∈ Im such that

◦ (te, tm) |= ω, D j+1 = D j, and

◦ t
D j+1
e = (tD j

e [A1], · · · , tm[Ai], · · · , tD j
e [An]).

Here t
D j+1
e differs from tD j

e [Ai] only in attribute Ai by taking master data tm[Ai], while

D j+1 remains unchanged from D j.

We say that (D j, t
D j
e) 7→φ (D j+1, t

D j+1
e) is valid if (a) there exist no t1 and t2 such

that both t1 ≺
D j+1
Ai

t2 and t2 ≺
D j+1
Ai

t1 (i.e., t1 ⪯
D j+1
Ai

t2, t2 ⪯
D j+1
Ai

t1 but t1[Ai] ̸= t2[Ai]), and

Chapter 6. Determining the Relative Accuracy of Attributes 186

. . . ⪯MN ⪯MN ⪯MN . . .

φ9
⇒

t1⪯t2
t2⪯t1
t1⪯t3
t3⪯t1
t2⪯t3
t3⪯t2

φ7
⇒

t1⪯t2
t2⪯t1
t1⪯t3
t3⪯t1
t2⪯t3
t3⪯t2
t1⪯t4
t2⪯t4
t3⪯t4

D0 D1 D2

tD0
e [MN] tD1

e [MN] tD2
e [MN]

null null “Jeffrey”

Figure 6.2: Single chase steps

(b) tD j
e [Ai] is not changed if tD j

e [Ai] ̸= null. In the chase process we consider valid chase

steps only.

Observe the following: (a) the entity instance Ie and the master data Im remain un-

changed when ARs are enforced; (b) ⪯D j
Ai

and ⪯Di+1
Ai

are partial orders for all attributes

Ai, such that for all t1, t2 ∈ Ie, if t1 ⪯
D j
Ai

t2 and t2 ⪯
D j
Ai

t1 then t1[Ai] = t2[Ai]; and (c) if

tD j
e [Ai] ̸= null, then t

D j+1
e [Ai] = tD j

e [Ai], i.e., all non-null values of tD j
e remain unchanged.

Example 6.2.2: Consider Ie = stat (Table 6.1), Im = nba (Table 6.2), and Σ consisting

of the ARs given in Example 6.2.1. Let D0 be Ie with empty partial orders, and tD0
e be

the initial target template with tD0
e [A] = null for all attributes A. After enforcing φ9 on

(D0, t
D0
e), it yields (D1, t

D1
e) as the first step in Fig. 6.2, in which ⪯MN is extended on

(t1, t2), (t2, t3) and (t3, t1). Similarly, after enforcing φ7 on (D1, t
D1
e), it yields (D2, t

D2
e)

as the second step in Fig. 6.2, which extends ⪯MN on (t1, t4) and instantiates tD2
e [MN]

= “Jeffrey”. 2

(2) Chase. A chasing sequence of D0 by Σ and Im is a sequence of accuracy instances

(D0, t
D0
e), (D1, t

D1
e), . . . , (Dl, t

Dl
e), . . . , where for each i ≥ 1, there exists some AR φ ∈ Σ

such that (D j, t
D j
e) 7→φ (D j+1, t

D j+1
e) is valid.

A chasing sequence (D0, t
D0
e), . . . , (Dk, t

Dk
e) is said to be terminal if it is finite

and moreover, no more valid step can be enforced on (Dk, t
Dk
e). We refer to tDk

e as a

deduced target tuple of specification S, and (Dk, t
Dk
e) as the terminal instance of the

chasing sequence.

Intuitively, the chase repeatedly applies ARs to deduce relative accuracy and in-

stantiate the target tuple template, until it reaches an instance that cannot be further

changed.

Example 6.2.3: Consider D0, t
D0
e ,Σ and Im given in Example 6.2.2. By enforcing ARs

Chapter 6. Determining the Relative Accuracy of Attributes 187

φ9, φ7, φ5, φ10, φ6, φ1, φ4, φ2, φ3 and φ11 on (D0, t
D0
e) in this order with Im, one can

get a deduced target tuple te[FN, MN, LN, rnds, totalPts, J#, league, team, arena] =

(Michael, Jeffrey, Jordan, 27, 772, 23, NBA, Chicago Bulls, United Center). Note that

te is a complete target tuple from stat, which draws values from different tuples, e.g.,

t2 and t4 of stat and s1 of nba. 2

6.3 Fundamental Problems

Given a specification S = (D0, Σ, Im, tD0
e) of an entity e, we want to know whether

chasing on D0 by Σ and Im terminates? Whether will all chasing sequences of D0 lead

to the same deduced target tuple te? When the target tuple te is incomplete, can we

make it complete while observing the ARs in Σ? Can we find top-k candidate targets

for users to chose? This section studies these issues. As will be seen in Section 6.4, our

framework for deducing relative accuracy and target tuples are based on these results.

(1) Termination of chase. Is every chasing sequence of D0 by Σ and Im an initial sub-

sequence of a terminal chasing sequence? The answer to this question is affirmative.

Proposition 6.3.1: Every chasing sequence of D0 by Σ and Im is finite and leads to a

terminal instance in O(|Ie|2) steps, where |Ie| is the size of the entity instance Ie in D0.

2

Proof sketch: Each chase step expands a partial order or instantiates an attribute

te[Ai] that had a null value. Moreover, ⪯Ai remains to be a partial order and te[Ai] does

not change from one non-null value to another. Hence chasing always terminates.

Further, the size of all the partial orders is bounded by |Ie|2, and the arity of te is no

larger than |Ie|. From these the bound on chase steps follows. 2

(2) The Church-Rosser property. Another question asks whether different terminal

chasing sequences of D0 by Σ and Im lead to the same unique terminal instance, no

matter what rules in Σ are used and in what order they are applied. This is known as

the Church-Rosser property (see, e.g., [AHV95]). If a specification S has the Church-

Rosser property, we say that S is Church-Rosser. Obviously if S is Church-Rosser,

then the uniquely deduced target tuple is deterministic, yielding a unique target that

can be “trusted”.

Unfortunately, not all specifications are Church-Rosser.

Example 6.3.1: Consider the specification S described in Example 6.2.3. One can

Chapter 6. Determining the Relative Accuracy of Attributes 188

verify that S is Church-Rosser. However, let us extend S to S′ by adding an extra rule

φ12: ∀t1, t2 ∈ stat
(
t1[league] = NBA ∧ t2[league] = SL → t1 ⪯league t2

)
. Then S′ is not

Church-Rosser. Indeed, there are two chasing sequences that deduce different target

tuples: one is the sequence given in Example 6.2.3 with te[league] = NBA, and the other

is by enforcing ARs φ7, φ5, φ10 and φ12 in this order, yielding a target tuple t ′e with

t ′e[league] = SL. 2

This tells us that if S is not Church-Rosser, it may lead to multiple conflicting

targets (e.g., te and t ′e on league), which cannot be accurate at the same time. Thus

specifications that are not Church-Rosser should be identified and revised.

To do this, we provide a necessary and sufficient condition for deciding whether a

specification S is Church-Rosser. We say that a terminal chasing sequence (D0, t
D0
e),

. . . , (Dk, t
Dk
e) is stable if for all invalid chase steps that enforce an AR φ on (Dk, t

Dk
e), φ

cannot be enforced on (D j, t
D j
e) as a valid step for all j ∈ [0,k−1]. That is, suppose that

(Dk, t
Dk
e) can be further changed by φ by letting tDk

e [Ai] change from a non-null value

to another, or by allowing both t1 ⪯Dk
Ai

t2 and t2 ⪯Dk
Ai

t1 while t1[Ai] ̸= t2[Ai]. Then the

change cannot be inflicted to any (D j, t
D j
e) as a valid move. Intuitively, if φ could be

enforced as a valid step, it would lead to a terminal sequence different from (Dk, t
Dk
e).

A stable chasing sequence prevents any conflicts in the chase such as those in

Example 6.3.1, and allows us to efficiently determine whether S is Church-Rosser. In

light of this, in the sequel we focus on Church-Rosser specifications only.

Theorem 6.3.2: Given a specification S = (D0,Σ, Im, t
D0
e), (a) S is Church-Rosser if

and only if there exists a terminal chasing sequence of S that is stable; and (b) it is in

O((|Ie|2 + |Im|)|Σ|) time to decide whether S is Church-Rosser. 2

Proof sketch: We prove (1) here, and defer the proof of (2) to Section 6.5, where we

will provide a checking algorithm.

First assume that S is Church-Rosser. Suppose by contradiction that S has no stable

terminal sequence. Then there exist a chasing sequence Q1 and an AR φ such that φ
is an invalid chase step for the terminal instance of Q1 but is valid for an intermediate

instance of Q1. Then one can construct another sequence Q2 leading to a different

terminal instance, by applying φ to the intermediate instance of Q1. This contradicts

the assumption that S is Church-Rosser.

Conversely, assume that S is not Church-Rosser but there exists a stable chasing

sequence Q1, leading to a terminal instance (Dk, t
Dk
e). Since S is not Church-Rosser,

there must exist another chasing sequence Q2 to a different terminal instance. Let

Chapter 6. Determining the Relative Accuracy of Attributes 189

(D′
l, t

D′
l

e) be the first instance in Q2 that contradicts (Dk, t
Dk
e), by applying an AR φ,

which either adds t1 ⪯A t2 to D′
l that is not in Dk, or by instantiating t

D′
l

e [A] with a value

v ̸= tDk
e [A]. Then one can verify that φ is an invalid chase step for (Dk, t

Dk
e) but is valid

for some instance in Q1. Hence Q1 is not stable, a contradiction. 2

(3) Deducing candidate targets. When S is Church-Rosser, its deduced target tuple

te may still be incomplete, i.e., some attributes remain null. For example, if we

drop AR φ11 of Example 6.2.1 from the specification of Example 6.2.3, the reduced

specification is still Church-Rosser, but its deduced target is incomplete since the most

accurate value of arena can no longer be determined, as indicated in Example 6.1.2.

This gives rise to the following question: can we find candidate targets and sug-

gest them for the users to consider? More specifically, a complete tuple t ′e is called a

candidate target of a specification S = (D0, Σ, Im, tD0
e) if

◦ for each attribute Ai, t ′e[Ai] = te[Ai] if te[Ai] ̸= null, and t ′e[Ai] is a value in dom(Ai)

otherwise, where te is the unique deduced target tuple of S;

◦ S′ = (D0,Σ, Im, t ′e) is Church-Rosser and moreover, t ′e is the deduced target tuple

of S′.

That is, a candidate target t ′e keeps the non-null values of te unchanged but instantiates

those null attributes of te. Moreover, when we treat t ′e as the initial target template, the

chase verifies that t ′e “satisfies” the constraints imposed by the ARs of Σ, and is deduced

as the target tuple of S′.

The candidate target problem is to determine, given a specification S of an entity

that is Church-Rosser, whether there exists a candidate target t ′e of S. It is, however,

nontrivial.

Theorem 6.3.3: The candidate target problem is NP-complete. It remains NP-hard for

specifications S = (D0, Σ, Im, tD0
e) in which Σ consists of ARs of form (1) only, and when

candidate targets te of S take values from Ie and Im only. 2

Proof sketch: One can verify that the problem in NP-hard by reduction from the 3SAT

problem, which is NP-complete (cf. [Pap94]). The reduction uses AR of form (1) and

constructs candidate targets using values from Ie and Im only. To show the upper bound,

we first establish a small model property: if there exists a candidate target of S, then

there exists one composed of values from a set V , where V consists of values from Ie,

Im and a bounded number of constants. We then give an NP algorithm that first guesses

a tuple t ′e with values from V , and then checks whether t ′e is the deduced target tuple

from (D0, t ′e) in PTIME by Theorem 6.3.2. 2

Chapter 6. Determining the Relative Accuracy of Attributes 190

The number of candidates t ′e for a Church-Rosser S could be quite large, exponen-

tial or even infinite.

Example 6.3.2: Consider R = (A1, . . . ,An), an entity instance Ie of R with tuples t1 =

(0, . . . ,0) and t2 = (1, . . . ,1), and empty Σ and Im. Then there are 2n candidate targets

with values from {0,1}, i.e., each tuple t ∈ {0,1}n is a candidate target. Worse still,

if some Ai of R has an infinite domain, there are possibly infinitely many candidate

targets. 2

(4) Finding top-k candidate targets. It is infeasible to enumerate all candidate targets.

This suggests that we find top-k candidate targets for S based on a preference model.

We specify the preference model as a pair (k, p(·)), where k is a natural number,

and p(·) is a monotone scoring function such that given a set Te of candidate targets,

p(Te) is a real number. To simplify the discussion we assume that a real number

wAi(v) is associated with each value v in domain dom (Ai) (if dom (Ai) is infinite,

wAi(v) is the same for all v outside of Ie and Im), referred to as the score of v. The score

could be placed by the users as the confidence in v [FG12], found as probabilities

by truth discovery algorithms [BCMP10, GAMS10, WM11, YHY08, ZRGH12] (see

Section 6.7), or automatically derived by counting the occurrences of v in the Ai column

and from co-existence of attributes and available scores. We define the score

p(Te) = ∑
t ′e∈Te

∑
Ai∈attr(R)

wAi(t
′
e[Ai]).

Such preference is often too “soft” to be modeled as ARs or partial orders, and

candidates derived from it may not be as “deterministic” (“certain”) as deduced targets

by the chase. Nonetheless, users often find such candidates helpful, as commonly

practiced in data repairing heuristics [FG12].

For a Church-Rosser S, a preference model (k, p(·)) and a number C, the top-k

candidate problem is to decide whether there exists a set Te of k candidate targets with

p(Te)≥C.

Theorem 6.3.4: The top-k candidate problem is NP-complete, and NP-hard under the

same restriction of Theorem 6.3.3. 2

Proof sketch: The lower bound is verified by reduction from the MAX 3SAT problem

(the decision version), which is NP-complete (cf. [Pap94]). The reduction uses ARs

of form (1), and candidate targets with values from Ie and Im only. We show that the

problem is in NP based on a small model property similar to the one given in the proof

of Theorem 6.3.3. 2

Chapter 6. Determining the Relative Accuracy of Attributes 191

(D0, ∑, Im, te
D0) Is Church-Rosser?

complete te derived?

No

Return teYes

Te

Yes

No

users

feedback

Preference

Model (k, p(·))

Compute top-k

candidate targets Te

t’e

Figure 6.3: Framework overview

6.4 A Framework for Deducing Target Tuples

We now present a framework for deducing complete target tuples for entities. As

depicted in Fig. 6.3, given a specification S = (D0, Σ, Im, tD0
e) of an entity e, it populates

partial orders for relative accuracy and instantiates the target tuple template, based on

the chase given in Section 6.2. It automatically deduces as many accurate values for

e as possible, and interacts with the users to revise candidate targets, until a complete

target tuple is found. It works as follows.

(1) Church-Rosser checking. It first inspects whether S is Church-Rosser via automated

reasoning. The Church-Rosser property warrants a unique target tuple, in which the

accurate values can be trusted (Section 6.3). If S is not Church-Rosser, the users are

invited to revise S (see step (4) below), by following the “No” branch. The revised S is

then checked.

(2) Computing target tuple te. When S is confirmed Church-Rosser, the framework

computes the unique deduced target tuple te by means of the chase. It returns te if it is

complete. Otherwise it computes a top-k set of candidate targets.

(3) Computing top-k candidate targets. As remarked in Section 6.3, te may be in-

complete, and it is hard to identify (all) candidate targets (Theorem 6.3.3 and Exam-

ple 6.3.2). To this end, the framework computes a top-k set Te of candidate targets.

It comes up with a preference model (k, p(·)) following the practice of data repairing

heuristics, which the users may opt to adjust. Based on (k, p(·)), it computes Te with k

Chapter 6. Determining the Relative Accuracy of Attributes 192

tuples such that (a) for each t ′e ∈ Te, te is a candidate target of S, and (b) for all sets T ′
e

with k candidate targets, p(Te)≥ p(T ′
e), i.e., tuples in Te have the highest scores. When

there exist at least k candidate targets of S, Te consists of k distinct tuples; otherwise Te

includes all candidate targets of S. The set Te is then suggested to the users.

(4) User feedback. The users are invited to inspect Te. They may opt to choose some

t ′e ∈ Te as the target tuple (recall that for each candidate target t ′e, t ′e[A] = te[A] if te[A] ̸=
null); or revise S by instantiating te[B] with either the value of some t ′e[B] or a value

v ∈ dom(B), for some te[B] = null. The users are also allowed to revise S by editing

ARs in Σ and tuples in Ie (D0). The revised S with the designated initial values is then

checked by step (1).

The process proceeds until a complete te is found.

In the rest of the chapter we will provide algorithms underlying the framework: an

algorithm for checking the Church-Rosser property of S and deducing te in Section 6.5,

and algorithms for computing top-k candidate targets in Section 6.6.

Remark. (1) To find ARs as input of the framework, we need algorithms for

discovering ARs from (possibly dirty) data. ARs of type (2) can be discovered along

the same lines as matching dependencies (see, e.g., [FG12] for a survey). ARs of type

(1) could be found by mining first-order logic rules (e.g., [FL01]). Given a relation r

of schema R, one may also group pairs of its tuples (ti, t j) into classes based on their

attribute values (ti[A], t j[A]) (ti, t j ∈ r, A ∈ attr(R)) to denote accuracy orders, and

discover ARs by analyzing the containment of those classes via a level-wise approach

(e.g., [CM08]). We defer a full treatment of AR discovery to future work.

(2) The framework can handle possibly dirty entity instances. Indeed, constant

CFDs [BFG+07] for detecting data inconsistencies can be expressed as ARs (Sec-

tion 6.2). Thus in the same framework the consistency of target tuples can be assured.

The framework can also incorporate data repairing algorithms, which have been well

studied (see, e.g., [FG12]).

6.5 Checking the Church-Rosser Property

We next present an algorithm that, given a specification S = (D0,Σ, Im, t
D0
e), checks

whether S is Church-Rosser. If so, it computes the unique terminal instance (D, te),

and returns nil otherwise. The algorithm is in O((|Ie|2 + |Im|)|Σ|) time, and thus gives

a constructive proof for Theorem 6.3.2(2).

Chapter 6. Determining the Relative Accuracy of Attributes 193

The algorithm is denoted by IsCR and shown in Fig. 6.4. Following Theo-

rem 6.3.2(1), IsCR checks whether S has a stable terminal chasing sequence, by sim-

ulating the chase. At each step of the chase, it collects all valid steps in a set Q , and

when the chase process proceeds, it checks whether any valid step in Q becomes in-

valid. If so, it concludes that S is not Church-Rosser. Indeed, an invalid step for an

instance remains invalid in the rest of the chasing sequence. Hence if a valid step be-

comes invalid later, it will not lead to any stable terminal chasing sequence. If IsCR

inspects all valid steps and if none of them becomes invalid, it actually identifies a

stable terminal sequence, and thus concludes that S is Church-Rosser. In the process

(D, te) is also constructed.

Algorithm IsCR makes use of (1) a procedure, denoted by Instantiation, as a pre-

processing step to identify all single chase steps, and (2) an indexing structure H for

efficiently locating applicable chase steps, described as follows.

Computing single chase steps. Procedure Instantiation pre-computes possible single

chase steps, collected in a set Γ, by partially evaluating each AR φ ∈ Σ on tuples in the

entity instance Ie of D0 and master relation Im, as follows.

(1) When φ is of form (1) ∀t1, t2(ω → t1 ⪯Ak t2), for each pair (ti, t j) of tuples in

Ie, it computes ϕ = (ω′ → ti ⪯Ak t j), where ω′ is obtained by evaluating ω(ti, t j),

which substitutes (ti, t j) for (t1, t2) in ω. More specifically, for each predicate in ω,

(a) if it is of the form t1[Al] op t2[Al] or ts[As] op c (s ∈ [1,2]), where op is one of

=, ̸=,>,<,≤,≥, then the predicate on (ti, t j) evaluates to true or false. If it is true, the

predicate is not included in ω′. If it is false, ω′ also becomes false. (b) If it is t1≺Al t2
(resp. t1⪯Al t2), the predicate is replaced by ti≺Al t j (resp. ti⪯Al t j) in ω′. We include ϕ
in Γ if ω′ is not false. Intuitively, ϕ indicates a single chase step: if ω′ is satisfied, then

ti ⪯Ak t j could be deduced.

(2) When φ = ∀tm (Rm(tm)∧ω → te[Ai] = tm[B]), i.e., of form (2), for each t ′ ∈ Im, it

computes ϕ = (ω′ → te[Ai] = c), where te is the target template, c is the constant t ′[B],

and ω′ is obtained from ω(tm) by substituting constant t ′[B′] for each tm[B′] in ω. We

include ϕ in Γ, which indicates that if ω′ is satisfied, then te[Ai] can be instantiated with

c.

Note that no ϕ in Γ carries the ∀ quantifier. Moreover, each chase step can be

carried out by enforcing some ϕ in Γ rather than ARs in Σ. We use LHS(ϕ) to denote

ω′.

Example 6.5.1: The following single chase steps can be derived: (a) true→ 16≺rnds27

Chapter 6. Determining the Relative Accuracy of Attributes 194

from t1, t2 of Table 6.1 and φ1 (form (1)) of Table 6.3; (b) 16≺rnds27→45≺J# 23 from

t1, t2 and φ2 (form (1)); and (c) te[FN,LN] = (Michael, Jordan) → te[league, team] =

(NBA, Chicago Bulls) from master tuple s1 of Table 6.2 and φ6 (form (2)) of Table 6.3.

2

Building Indices. Algorithm IsCR uses an indexing structure H to speed up the pro-

cess of finding next applicable chase step. The structure H is defined as follows.

(1) For each ϕ ∈ Γ, H contains a counter nϕ to keep track of the number of predicates

in LHS(ϕ) that are not yet satisfied.

(2) For each predicate δ of the form of either ti ⪯Ak t j or te[Ak] = c, H maintains a set

Φδ = {ϕ | ϕ ∈ Γ∧δ ∈ LHS(ϕ)}, i.e., the set of ϕ’s in Γ that contain δ in LHS(ϕ).

(3) A set Q is maintained by H , which consists of all applicable single chase steps that

were once valid. Initially, Q = {ϕ | ϕ ∈ Γ∧nϕ = 0∧ϕ was a valid step for (D0, t
D0
e)}.

Algorithm. We new present the main driver of IsCR. Given S, it first identifies all

possible single steps and builds the index H , by invoking procedures Instantiation and

InitIndex (not shown), respectively (lines 1-2). It then initializes the accuracy instance

template (D, te) with (D0, t
D0
e) (line 3).

After these, IsCR simulates the chasing of S (lines 3-13). When the set Q in H

of valid steps is nonempty, it picks an applicable step ϕ from Q using a procedure

NextStep (line 5, not shown), which removes ϕ from Q . It then enforces ϕ as follows.

If ϕ is derived from an AR of form (1) (lines 6-8), IsCR adds the derived partial order

to D (line 7), and deduces te[Ak] whenever possible (line 8). If ϕ is derived from an AR

of form (2) (lines 9-10), IsCR sets te[Ak] := c (line 10). If ϕ is invalid for (D, te), we

can conclude that S is not Church-Rosser since there will be no stable terminal chasing

sequences, as argued above, and IsCR returns nil (line 11). Otherwise IsCR updates H

to reflect the changes to D and te (line 12): for each ti ⪯Ak t j derived, nϕ′ is decreased

by 1 for each ϕ′ ∈ Φti⪯Ak t j ; and for each te[Ak] = c derived, it decreases nϕ′ by 1 for

each ϕ′ ∈ Φte[Ak]=c. For any ϕ′ with nϕ′ = 0, ϕ′ is added to Q , i.e., it now becomes a

valid chase step, to be considered later. The process proceeds until no more steps in Q

need to checked (line 13), and it returns (D, te) as the terminal instance (line 14).

Correctness & complexity. The correctness of IsCR follows from Theorem 6.3.2(1)

and the argument above, since it checks all possible chase steps that are valid at some

point of chasing. For the complexity, observe the following. (1) Instantiation is in

O(|Σ|(|Ie|2 + |Im|)) time, which is also the bound on |Γ|. After Instantiation, IsCR no

Chapter 6. Determining the Relative Accuracy of Attributes 195

Input: A specification S = (D0, Σ, Im, tD0
e).

Output: The unique terminal instance (D, te) if S is Church-Rosser,

and nil otherwise.

1. Γ := Instantiation(D0,Σ, Im);

2. H := InitIndex(Γ,D0, tD0
e); /*Q in H maintains single steps*/

3. D := D0; te := tD0
e ;

4. repeat

5. ϕ := NextStep(H);

6. if ϕ = (ω → ti ⪯Ak t j) (i.e., form (1)) then

7. D := the transitive closure of D∪{ti ⪯Ak t j};

8. Update te[Ak];

9. if ϕ = (ω → te[Ai] = c) (i.e., form (2)) then

10. te[Ai] := c;

11. if not IsValid(ϕ,D, te) then return nil;

12. Update H ;

13. until Q in H becomes empty /0;

14. return (D, te)

Figure 6.4: Algorithm IsCR

longer needs to visit Ie. (2) With the indices, NextStep takes O(1) time, and each ϕ
is checked only once. (3) Each step derives new partial orders ⪯Ak and/or instantiates

te[Ak]. Thus, the total number of steps processed (lines 5-12) is bounded by O(|Ie|2).
Therefore, IsCR is in O(|Σ|(|Ie|2 + |Im|)) time. As remarked earlier, Ie is much smaller

than a database instance. As will be seen in Section 6.7, IsCR takes about 10ms.

6.6 Computing Top-k Candidate Targets

We next provide algorithms that, given a Church-Rosser specification S =

(D0,Σ, Im, t
D0
e) and a preference model (k, p(·)), compute a set Te of top-k candidate

targets. Here Te consists of k distinct candidate targets of S with the maximum score

p(Te) if there exist at least k such tuples of S; and otherwise Te includes all candidate

targets of S.

Chapter 6. Determining the Relative Accuracy of Attributes 196

Theorem 6.3.4 tells us that the top-k candidate problem is NP-complete. Worse

still, it is impossible to find a PTIME algorithm for it with a bounded approximation-

ratio.

Theorem 6.6.1: The top-k candidate targets problem (optimization version) is NPO-

complete. 2

Here NPO is the class of all NP optimization problems. An NPO-complete prob-

lem is NP-hard to optimize, and is among the hardest optimization problems.

Proof sketch: The problem is in NPO since its decision version is in NP (The-

orem 6.3.4). We show that it is NPO-hard by L-reduction from the MAXIMUM

WEIGHTED 3SAT problem, which is known to be NPO-complete (cf. [Aus99]). 2

Despite the hardness, we provide three algorithms to find top-k candidate targets,

all with the early termination property, i.e., they stop as soon as top-k candidate tar-

gets are found. The first two are exact algorithms. (1) The first one, RankJoinCT,

extends prior algorithms [IAE04, SP08] for computing top-k joins of ranked lists (Sec-

tion 6.6.1). (2) The second one, TopKCT, is developed for a more general setting when

the ranked lists are not given (Section 6.6.2). We show that TopKCT incurs lower cost

than RankJoinCT, and is instance optimal w.r.t. the number of visits to the data needed.

(3) The third one, TopKCTh, is a PTIME heuristic version of TopKCT (Section 6.6.3).

We also identify special cases when the top-k candidate targets problem is in PTIME.

6.6.1 RankJoinCT: An Algorithm based on Rank Join

Given a set of ranked lists and a monotone scoring function, the top-k rank join problem

is to compute the top k join results of the lists with the highest scores. Our problem

can be modeled as an extension of the top-k rank join problem as follows. Consider

a Church-Rosser specification S, of which te is the unique deduced target tuple. Let

Z be the set of attributes A such that te[Ai] = null. Assume w.l.o.g. that Z consists of

m attributes A1, · · · ,Am. Then a set Te of top-k candidate targets is a set of top-k join

results of values in each domain of Z such that it satisfies an additional condition: for

each t ∈ Te, the revised specification S′ = (D0,Σ, Im, t ′e) must also be Church-Rosser,

where t ′e[Z] = t[Z] and t ′e[B] = te[B] for all B ∈ R\Z.

In light of this, we develop algorithm RankJoinCT by extending top-k rank join al-

gorithms [IAE04, SP08]. The algorithm assumes that the domain values of Z attributes

are ranked based on their scores (see wAi(·) in Section 6.3). It takes as input S, (k, p(·)),

Chapter 6. Determining the Relative Accuracy of Attributes 197

te and moreover, m lists L1, · · · ,Lm, such that Li is the ranked list of values in the active

domain of Ai for all i ∈ [1,m]. It returns a top-k list Te of candidate targets as required.

Note that Li is finite: the active domain of Ai is dom(Ai) if it is finite; otherwise it

includes all Ai values from Ie or Im and at most one more distinct value from dom(Ai),

which suffices to denote values outside of Ie or Im and is referred to as a default value

(see Section 6.3). We omit the details of RankJoinCT for the lack of space, but give an

example below to illustrate how it works.

Example 6.6.1: Consider the specification S of Example 6.2.3 and a preference

model (k = 2, p(·)), where p(·) counts value occurrences. Suppose that we drop team

from φ6 of Table 6.3. Then the deduced target te is incomplete since te[team] and

te[arena] become null. To find top 2 candidate targets for S, RankJoinCT takes as

input the modified S, (2, p(·)) and two ranked list Lteam = [Chicago Bulls; Chicago;

Birmingham Barons; ⊥team] and Larena = [United Center; Chicago Stadium; Regions

Park; ⊥arena], where ⊥team and ⊥arena are default values. It maintains upper bounds

uteam and uarena, asserting that for all tuples with values in Lteam (resp. Larena), their

scores are no higher than uteam (resp. uarena).

RankJoinCT iteratively retrieves candidate targets from the two lists. Initially, it

picks Chicago Bulls for team and United Center for arena, and forms a candidate target

t1 with t1[team,arena] = (Chicago Bulls, United Center) (p(t1) = 4). It then updates

both uteam and uarea to 1 + 2 = 3. After that, it picks the next top unseen value v from

Larena, i.e., either Chicago Stadium or Regions Park, and chooses a candidate target

from the join results of {v} with other fixed values in t1, which is t2 with t2[team,arena]

= (Chicago Bulls, Chicago Stadium (or Regions Park)) (p(t2) = 2 + 1 = 3). Now p(t1)

and p(t2) are no less than uFN and uarena.

Further, for each t ∈ {t1, t2}, RankJoinCT has to check the condition additional

to [IAE04, SP08], i.e., whether t is a candidate target. This is done by procedure

check, which is essentially IsCR of Fig. 6.4 by taking t as the initial target. As t1 and t2
pass check, they are returned as top-2 candidates. 2

Following [IAE04], one can readily verify:

Proposition 6.6.2: RankJoinCT finds top-k candidate targets with the early termina-

tion property, i.e., it does not need to check all tuples in the product of ranked lists.

2

However, RankJoinCT is not ideal. (1) In practice, domain values are often not

given in ranked lists, and sorting the domains is costly. (2) RankJoinCT invokes pro-

Chapter 6. Determining the Relative Accuracy of Attributes 198

Input: S, (k, p(·)) and te as for RankJoinCT, and heaps H1,. . . ,Hm.

Output: A list Te of top-k candidate targets of S.

1. Te := nil;

2. for each i ∈ [1,m] do Bi := [Hi.pop()];

3. o.t[Z] := (B1[0], · · · ,Bm[0]); o.t[R\Z] := te[R\Z];

4. for each i ∈ [1,m] do o.pi := 0 ;

5. o.w := p({o.t});
6. T := {o.t}; Q := BrodalQueue({o});

7. while ∥Te∥< k and ∥Q∥> 0 do

8. o := Q.pop();

9. if check(o.t,S) then Te.append(o.t); /* add o.t to Te*/

10. for each i ∈ [1,m] do

11. if len(Bi) ≤ o.pi +1 then Bi.append(Hi.pop());

12. o′ := o;

13. o′.pi := o′.pi +1; o′.t[Ai] := Bi[o′.pi];

14. o′.w := o.w−wAi(o.t[Ai])+wAi(o
′.t[Ai]);

15. if o′.t ̸∈ T then Q.push(o′); T := T ∪{o′.t};

16. return Te;

Figure 6.5: Algorithm TopKCT

cedure check for each tuple in the join result (Example 6.6.1); this yields exponentially

many calls, each taking O(|Σ|(|Ie|2 + |Im|)) time.

6.6.2 TopKCT: A Brodal Queue Based Algorithm

To remedy the problems of RankJoinCT, we next present TopKCT. In contrast to

RankJoinCT, TopKCT does not require ranked lists as input, and invokes check much

less.

TopKCT maintains several structures: (1) a heap Hi for each Ai ∈ Z, to store the

values in the active domain of Ai; it is able to pop up the top value in Hi in O(log |Hi|)
time, and can be pre-constructed in linear time; (2) a Brodal queue Q, to keep track of

tuples to be checked; Q is a worst-case efficient priority queue [Bro96]; it takes O(1)

Chapter 6. Determining the Relative Accuracy of Attributes 199

time to insert a tuple and O(log |Q|) time to pop up the top tuple; and (3) a hash set T

to record tuples that were once pushed to Q.

TopKCT is shown in Fig. 6.5. Its input includes S, (k, p(·)), te as for RankJoinCT;

but instead of ranked lists, it takes m heaps H1, · · · ,Hm as input. It computes a top-k list

Te like RankJoinCT. The key idea behind TopKCT is that when Te is nonempty, if t is

the next best tuple, then there must exist a tuple t ′ ∈ Te such that t and t ′ differ in only

one attribute. Hence it capitalizes on the heaps to pop up a tuple that is guaranteed to be

the next best, one at time, rather than to compute costly ranked joins. The tuple is then

validated by check, and is added to Te if it is a candidate target. The process proceeds

until either Te is found or the search space is exhausted, with the early termination

property.

More specifically, TopKCT first lets Te be empty (line 1). It then pops the top values

out of the m heaps H1, · · · ,Hm to m vectors B1, · · · ,Bm, respectively (line 2), where Bi is

a buffer of the values from Hi for i∈ [1,m]. Note that tZ =(B1[0], · · · ,Bm[0]) is the tuple

with the highest score. An object o is then formed (lines 3-5), with 2+m members:

(1) o.t is a tuple t0, where t0[Z] = tZ and t0[R \ Z] = te[R \ Z]; (2) for i ∈ [1,m], o.pi

is an integer, initially 0; it is an index of Bi, indicating that o.t[Ai] takes value from

Bi[o.pi]; and (3) o.w is a real number, which is the score of o.t. The Brodal queue Q is

initialized with {o} only, and it lets the hash set T := {o.t} (line 6). Note that when Q

has multiple objects, it always pops up o′ with the highest o′.w.

After these, TopKCT populates Te by iterating the following until Te has k tuples

or Q becomes empty (lines 7-15, where ∥ · ∥ denotes cardinality). In each iteration, an

object o is popped out from Q (line 8). If o.t is verified a candidate target via check, o.t

is added to Te (line 9). TopKCT then expands Q with tuples that differ from previous

ones in only one attribute (lines 10-15). To do so, it first expands Bi by adding the top

value from Hi to the end of Bi if o.pi already points to the last value of vector Bi, i.e.,

all the values in Bi have been inspected (line 11). It then generates a new o′ by letting

o.t[Ai] := Bi[o.pi + 1], i.e., the value with the highest score next to o (lines 12-14; to

simplify the discussion, we assume a weight wAi for each value when computing o′.w,

as in Section 6.3; but this can be lifted). If o′ has not been pushed to Q before, i.e.,

o′ ̸∈ T , o′ is added to Q and T (line 15).

Example 6.6.2: Consider the same S and (2, p(·)) as in Example 6.6.1. Instead of

ranked lists, TopKCT takes as input two heaps Hteam = {Chicago Bulls; Chicago;

Birmingham Barons; ⊥team} and Harena = {United Center; Chicago Stadium; Regions

Park; ⊥arena}. It first pops the top values from Hteam and Harena, which are Chicago

Chapter 6. Determining the Relative Accuracy of Attributes 200

Bulls and United Center, to form t0 with p(t0) = 2+2 = 4. It puts t0 in a Brodal Queue

Q. In the first iteration, TopKCT pops the top tuple out of Q (i.e., t0), and adds it to Te

since t0 is a valid candidate target. It then pushes t1 and t2 to Q, where t1[team,arena]

= (Chicago, United Center) and t2[team,arena] = (Chicago Bulls, Chicago Stadium).

Then, t1 (or t2) is added to Te as it is valid and is among the first popped from Q. Finally

TopKCT returns Te = [t0, t1]. 2

Analysis. Algorithm TopKCT generates the next best candidate tuple by changing one

attribute of some tuple already in Te. As argued earlier, this strategy suffices to find

top-k tuples. Better still, TopKCT has the following properties.

Proposition 6.6.3: TopKCT has the early termination property, i.e., it stops as soon as

Te is found. In addition, it is instance optimal w.r.t. the number of visits of each heap

(pop’s) among all exact algorithms that use heaps to find top-k candidate targets, with

optimality ratio 1. 2

An algorithm A is said to be instance optimal if there exist constants c1 and c2 such

that cost(A, I)≤ c1 ·cost(A′, I)+c2 for all instances I and all algorithms A′ in the same

setting as A, where cost(A, I) is a cost metric of A on I [FLN03]. The constant c1 is

called the optimality ratio. Here cost(A, I) is the number of pop’s performed on each

heap by A on I.

Proof sketch: TopKCT terminates as soon as ∥Te∥ reaches k, without further inspect-

ing other tuples. To see that it is instance optimal, assume by contradiction that there

exists an exact algorithm A that needs two less pop operations. Then we show that

there exist two specifications S and S′ such that their heaps are the same except in one,

they lead to different top-k sets, but A cannot distinguish the two. 2

Complexity. TopKCT incurs less cost than RankJoinCT. To see this, let n be the

maximum size of Hi for i ∈ [1,m], and the kth tuple in Te correspond to the Kth tuple

in the product of domain values. Then (1) pop of a heap takes at most O(log n) time,

and there are at most K+m such operations; (2) there are at most K pop operations on

the queue Q, and each takes O(log Km) time; (3) there are at most Km push operations

on Q, and each takes O(1) time; and (4) check is invoked K times. Denote the cost of

invoking check by c. Putting these together, TopKCT is in O((K +m)log n + K(m +

log K + log m + c)) time, in contrast to exponential in K by RankJoinCT.

In light of the inherent intractability, however, K may be an exponential of n in

the worst case, e.g., when S does not have k candidate targets; in this case, TopKCT

Chapter 6. Determining the Relative Accuracy of Attributes 201

would inevitably exhaust the entire search space. Nevertheless, one can easily verify

the following tractable special cases.

Proposition 6.6.4: TopKCT is in PTIME when (1) ARs are of form (2) only, or (2) the

schema R of Ie is fixed. 2

For instance, in case (1) one can easily see that K = k; hence from the analysis

above it follows that RJCT is in PTIME, whereas TopKCT still takes exponential

time.

As will be experimentally verified shortly, TopKCT actually scales well with real-

life data. In addition, by modifying the check step for checking Church-Rosser,

TopKCT can also be used to compute top-k rank joins of unranked lists.

6.6.3 TopKCTh: A Heuristic Algorithm

Finally we outline TopKCTh, a PTIME heuristic algorithm when all the attributes of

R have an infinite domain.

TopKCTh first finds a set of k tuples by simply invoking TopKCT without the check

step (i.e., line 9 in TopKCT). For each t returned by TopKCT, it greedily revises t with

values from Ie and Im until the revised t is verified a candidate target by check(t,S). It

returns the revised tuples as Te.

TopKCTh is in O((k+m) logn+k(m+ logk+ logm)+kmc) time, by the complex-

ity of TopKCT (k = K here), since revising k tuples takes O(kmc) time. It is heuristic

in nature: while tuples in Te are guaranteed to be candidate targets of S, they do not

necessarily have the highest scores, a tradeoff between the cost and the quality of the

solutions.

6.7 Experimental Study

Using both real-life data and synthetic data, we conducted five sets of experiments to

evaluate: (1) the effectiveness of algorithm IsCR for deducing target tuples; (2) the

effectiveness of RankJoinCT, TopKCT and TopKCTh for computing top-k candidate

targets; (3) rounds of user interactions; (4) the efficiency of RankJoinCT, TopKCT and

TopKCTh; and (5) the effectiveness of TopKCT when being used for truth discovery,

compared with the algorithms of [DBES09b, FGTY13].

Experimental setting. Three real-life datasets (Med, CFP and Rest) and synthetic

datasets (Syn) were used.

Chapter 6. Determining the Relative Accuracy of Attributes 202

 0

 20

 40

 60

 80

 100

MED CFP
%

 o
f

en
tit

ie
s

MED
CFP

(a) IsCR:deduced complete te

 50

 60

 70

 80

 90

 100

5 10 15 20 25

%
 o

f
en

tit
ie

s

TopKCT ARs of form (1) only
TopKCT ARs of form (2) only

TopKCT ARs of form (1) and (2)
TopKCTh ARs of form (1) and (2)

(b) Med: varying k

 50

 60

 70

 80

 90

 100

0 600 1200 1800 2400

%
 o

f
en

tit
ie

s

TopKCT
TopKCTh

(c) Med: varying ∥Im∥

 0

 20

 40

 60

 80

 100

MED CFP

%
 o

f
at

tr
ib

ut
es

ARs of form (1) only
ARs of form (2) only

ARs of form (1) and (2)

(d) IsCR:deduced attributes

 50

 60

 70

 80

 90

 100

5 10 15 20 25

%
 o

f
en

tit
ie

s

TopKCT ARs of form (1) only
TopKCT ARs of form (2) only

TopKCT ARs of form (1) and (2)
TopKCTh ARs of form (1) and (2)

(e) CFP: varying k

 50

 60

 70

 80

 90

 100

0 14 28 42 56

%
 o

f
en

tit
ie

s

TopKCT
TopKCTh

(f) CFP: varying ∥Im∥

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

300 600 900 1200 1500

el
ap

se
d

tim
e

(m
se

c)

RankJoinCT
TopKCT

TopKCTh

(g) Syn: varying ∥Ie∥

 0

 100

 200

 300

 400

 500

20 40 60 80 100

el
ap

se
d

tim
e

(m
se

c)

RankJoinCT
TopKCT

TopKCTh

(h) Syn: varying ∥Σ∥

 0

 100

 200

 300

 400

 500

100 200 300 400 500

el
ap

se
d

tim
e

(m
se

c)

RankJoinCT
TopKCT

TopKCTh

(i) Syn: varying ∥Im∥

 70

 75

 80

 85

 90

 95

 100

1 2 3

%
 o

f
en

tit
ie

s

TopKCT

(j) Med: varying h

 70

 75

 80

 85

 90

 95

 100

1 2 3 4

%
 o

f
en

tit
ie

s

TopKCT

(k) CFP: varying h

 0

 200

 400

 600

 800

 1000

 1200

5 10 15 20 25

el
ap

se
d

tim
e

(m
se

c)

RankJoinCT
TopKCT

TopKCTh

(l) Syn varying k

 0

 100

 200

 300

 400

 500

[1, 18] [19, 36] [37, 54] [55, 72] [73, 90]

el
ap

se
d

tim
e

(m
se

c)

RankJoinCT
TopKCT

TopKCTh

(m) Med: varying ∥Ie∥

 0

 100

 200

 300

 400

 500

0 600 1200 1800 2400

el
ap

se
d

tim
e

(m
se

c)

RankJoinCT
TopKCT

TopKCTh

(n) Med: varying ∥Im∥

Figure 6.6: Experimental results

(1) Med was provided by a medicine distribution company (name withheld). It con-

tained sale records of medicines from various stores, specified by a relation schema of

Chapter 6. Determining the Relative Accuracy of Attributes 203

30 attributes such as name, regNo, manufacturer, whose values were not very accurate.

Med consisted of 10K tuples for 2.7K entities, where each entity instance ranged from

1 to 83 tuples (4 in average). A set of reference data of 2.4K tuples with 5 attributes

was also provided by the company, and we treated it as master data. We manually

designed 105 ARs for Med, in which 90 were of form (1) and 15 of form (2).

(2) CFP was extracted from call for papers/participation found by Google (e.g., Wi-

kiCFP∗, Dbworld†). Its attributes included venue, program, and deadline, with values

varied in different versions of calls for the same conference. CFP consisted of 100

conferences (entities), with 503 tuples and 22 attributes. The entity instances ranged

from 1 to 15 tuples (5 in average). We manually cleaned 55 entries from WikiCFP and

treated them as master data, with 17 attributes. We found 43 ARs, with 28 of form (1)

and 15 of form (2).

(3) Rest data. Rest was the restaurant data used by [DBES09b] from http://

lunadong.com/fusionDataSets.htm . It consisted of 8 snapshots of 5149 restau-

rants in Manhattan, with 246K tuples, crawled from 12 Web sources in one-week in-

tervals. Only the true value of a Boolean attribute closed? was to be determined. We

found 131 ARs for Rest, all of form (1).

(4) Syn data. We generated a master relation Im and entity instances Ie of 20 attributes

by extending relations stat (Table 6.1) and nba (Table 6.2), respectively. The values in

Ie and Im were randomly drawn from the same domains. For its preference model, we

assigned random scores to the values in the domains. We also randomly generated a

set Σ of 100 ARs, in which 75% were of form (1) and 25% of form (2).

Remark. (1) The specifications for Med, CFP and Rest are Church-Rosser. (2) For

preference we counted value occurrences (Section 6.3). (3) We used k = 15 by default

in Experiments 1, 2 and 3, and k = 1 in Exp-5 (for truth discovery). (4) The ARs for

each of the datasets have similar structures and often share the same LHS. For each

attribute there are typically 3-4 ARs, and the large number of ARs comes from the

number of attributes. One can also use profiling methods to automatically discover

ARs [CM08, FL01] (see Section 6.4).

Implementation. We implemented the following, all in Python: (1) our algorithms

IsCR, RankJoinCT, TopKCT and TopKCTh; (2) a naive algorithm voting based on the

preference model that only counts value occurrences, without using ARs; (3) the truth

∗http://www.wikicfp.com/cfp/
†http://research.cs.wisc.edu/dbworld/browse.html

Chapter 6. Determining the Relative Accuracy of Attributes 204

discovery algorithm DeduceOrder of [FGTY13] using currency constraints and con-

stant CFDs (see Section 6.1); and (4) a probabilistic-based truth discovery algorithm

copyCEF that utilizes a Bayesian model based on quality measures and copy relation-

ships on data sources [DBES09b].

All experiments were conducted on a 64bit Linux Amazon EC2 High-CPU Extra

Large Instance with 7 GB of memory, 20 EC2 Compute Units, and 1690 GB of storage.

Each experiment was repeated 5 times, and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness of IsCR. Using real-life data Med and CFP, we evaluated the

quality of target tuples deduced by IsCR: (a) the percentage of target tuples that were

complete; and (b) the percentage of non-null attribute values.

Complete target tuples. Figure 6.6(a) shows that for 66% of the entities of Med and

72% of CFP, complete target tuples were automatically deduced by IsCR. That is, by

leveraging ARs and master data, complete target tuples could be deduced for over 2/3

of the entities without user interaction.

Non-null values. Figure 6.6(d) reports the average percentage of the attributes in Med

and CFP for which the most accurate values were deduced. It shows that IsCR found

the most accurate values for 42%, 20%, and 73% (resp. 55%, 27%, and 83%) of the

attributes in Med (resp. CFP), when ARs of form (1) only, (2) only, and both forms

were used, respectively. This tells us the following: (a) IsCR is able to deduce accurate

values for a large percentage of attributes, and (b) ARs of forms (1) and (2) interact with

each other; indeed, when ARs of both forms were used, the number of accurate values

deduced was larger than the sum of its counterparts when ARs of form (1) and (2) were

used alone. Moreover, when ARs of form (1) or (2) were used only, no complete targets

were deduced for Med and CFP (not shown).

Exp-2: Computing top-k candidates. We evaluated the effectiveness of TopKCT

(RankJoinCT) and TopKCTh using Med and CFP. We manually identified the target

tuple for each entity, and tested the percentage of entity instances for which the target

tuple was among the top-k candidates found by our algorithms. We report the im-

pact of the choice k, the forms of ARs and the size |Im| of master data on this. Since

RankJoinCT and TopKCT are both exact algorithms, the two behaved the same in this

set of experiments.

Impact of k. We report the results in Fig. 6.6(b) (resp. 6.6(e)) when k was varied from

Chapter 6. Determining the Relative Accuracy of Attributes 205

5 to 25 for Med (resp. CFP). As shown there, (a) the larger k is, the more target tuples

are covered by the top-k candidates, as expected. (b) To find the target tuples, k does

not have to be large. Indeed, when k = 15, the targets were found by TopKCT for

at least 85% of the entities for both Med and CFP; when k = 25, 92% (resp. 94%)

were found by TopKCT and 91% (resp. 87%) by TopKCTh for Med (resp. CFP). (c)

TopKCT did slightly better than TopKCTh in the quality of candidates found, while

TopKCTh is more efficient than TopKCT (see Exp-4).

Impact of ARs. Figures 6.6(b) and 6.6(e) also report the results when Σ consisted of

ARs of form (1) only, (2) only, or both. When both forms were used, TopKCT did

better than when form (1) or (2) was used alone. In contrast to Exp-1, in the latter

cases TopKCT could still find many target tuples: for both Med and CFP, it found the

targets for 90% of entities when ARs of form (1) or (2) were used only, when k = 25.

Impact of ∥Im∥. We evaluated the impact of the size of Im by varying the number of

tuples in Im from 0 to 2400 for Med (resp. 0 to 40 for CFP). As shown in Fig. 6.6(c) for

Med (resp. Fig. 6.6(f) for CFP), (a) the larger ∥Im∥ is, the better TopKCT and TopKCTh

perform, i.e., master data helps improve the quality of top-k candidate targets found by

our algorithms; and moreover, (b) even when master data is unavailable (i.e., |Im|= 0),

TopKCT and TopKCTh still work. Indeed, they were still able to find the target tuples

for 63% of Med entities and 64% for CFP, when k = 15.

We also tested voting in these settings, and found that voting performed much

worse than TopKCT and TopKCTh. It found no more than 50% of target tuples in all

the cases.

Exp-3: User interactions. Using Med and CFP, we simulated user interactions as

follows. When the deduced target te was incomplete, a single attribute B with te[B] =

null was randomly picked and assigned its accurate value; IsCR and TopKCT were then

invoked on the revised te. The process repeated until the top-k candidates returned by

TopKCT included the target tuple (manually identified, see Exp-2).

The results are reported in Figures 6.6(j) and 6.6(k) for Med and CFP, respectively,

in which the x-axis indicates the number h of interaction rounds, and the y-axis

shows the percentage of the target tuples found. The results show that few rounds of

interactions are needed to deduce the targets for all the entities: at most 3 for Med,

and 4 for CFP.

Exp-4: Efficiency. Using Syn and Med, we evaluated the efficiency of IsCR,

RankJoinCT, TopKCT and TopKCTh. To test the impact of Ie, Σ, Im and k, we set

Chapter 6. Determining the Relative Accuracy of Attributes 206

(∥Ie∥, ∥Im∥, ∥Σ∥, k) = (900, 300, 60, 15) for Syn, and varied one of the four: ∥Ie∥ from

300 to 1500, ∥Σ∥ from 20 to 100, ∥Im∥ from 100 to 500, and k from 5 to 25, while

keeping the other three parameters unchanged. For Med we varied ∥Ie∥ from [1, 18]

to [73, 90] and ∥Im∥ from 0 to 2400, while keeping k = 15 and ∥Σ∥= 105. We found

that IsCR took at most 10ms in all these cases and hence, do not report it here.

As shown in Figures 6.6(g) and 6.6(m), on Med and Syn, (a) all three top-k algo-

rithms are efficient (in less than 2s); (b) TopKCT and TopKCTh scale well with ∥Ie∥;

and (c) TopKCT outperforms RankJoinCT, and TopKCTh does better than TopKCT,

verifying the analysis of Section 6.6. They behaved consistently when one of ∥Σ∥,

∥Im∥ and k was varied, as shown in Figures 6.6(h), 6.6(i) and 6.6(n), and 6.6(l), re-

spectively. For Syn with ∥Ie∥ = 1500, ∥Im∥ = 300 and ∥Σ∥ = 50, TopKCTh, TopKCT

and RankJoinCT took 159ms, 271ms and 1983ms, respectively. For Med with ∥Ie∥ in

[73,90] and ∥Im∥ = 2400 they took 51ms, 90ms and 455ms, respectively.

Exp-5: Truth Discovery. Besides determining relative accuracy, we also evalu-

ated the effectiveness of our algorithm TopKCT in truth discovery, against algorithms

voting, DeduceOrder [FGTY13] and copyCEF [DBES09b] on Med, CFP and Rest.

Here we used k = 1, to find a single target tuple as the true value, in favor of voting,

DeduceOrder and copyCEF.

The algorithms were evaluated as follows. (1) We tested voting on Med, CFP and

Rest. The results on Med are similar to those on CFP; thus only the results on CFP and

Rest are reported here. (2) DeduceOrder was tested on CFP and Rest. For its rules,

we extracted all ARs relevant to data currency as currency constraints, and all constant

CFDs that can be expressed as ARs (see Section 6.2), for each dataset. No such rules

were found for Med, and hence only results on CFP and Rest are reported here. (3)

We evaluated copyCEF on Rest only, because its required information on data sources

is unavailable for Med and CFP. Indeed, Med was from a single source, and CFP was

crawled from blog posts or Web pages for which the source accuracy could not be

determined.

On CFP. On CFP, we tested how many true values (targets) were correctly derived

for its entities by the algorithms. We found that voting, DeduceOrder and TopKCT

deduced 37%, 0% and 70%, respectively. TopKCT performed almost twice better than

voting. While DeduceOrder was not able to find the complete true values for any

entity of CFP, it correctly derived 31% of attribute values, which are, however, still

much lower than the 83% deduced by IsCR (Fig. 6.6(d)).

Chapter 6. Determining the Relative Accuracy of Attributes 207

On Rest. On Rest, we evaluated the effectiveness of voting, DeduceOrder, copyCEF

and TopKCT. Rest has only one attribute closed? to be determined. Hence we adopted

the recall (r), precision (p) and F-measure (F1) used in [DBES09b]: r = |G∩R|
|G| ,

p = |G∩R|
|R| and F1 = 2pr

p+r , where R is the set of restaurants that were concluded to be

closed by an algorithm, and G is the set of restaurants that were indeed closed.

As remarked earlier, our method is complementary to the probabilistic-based truth

discovery approaches. Moreover, probabilities derived by these approaches can be

incorporated into our model. Indeed, when the probabilities of attribute values returned

by copyCEF are set as weights in our preference model, copyCEF can be treated as

TopKCT with an empty set of ARs. When the weights in the preference model for

TopKCT are set by value occurrences, voting is a special case of TopKCT with an

empty set of ARs.

As reported in Table 6.4, DeduceOrder achieved 100% precision, but was bad on

recall (0.15) and F-measure (0.26). While the F-measure of voting was reasonable

(0.74), its precision was not very good (0.62). Algorithm copyCEF performed well

with balanced precision (0.76) and recall (0.85), and did better in F-measure (0.8)

than voting and DeduceOrder. Better still, ARs help here: with a small number of

ARs, TopKCT that took value occurrences (like voting) as its preference outperformed

copyCEF and voting on F-measure (0.83), and TopKCT that took the possibilities de-

rived by copyCEF further improved copyCEF on precision (0.81) and recall (0.88),

even without user interaction.

Observe the following. (1) DeduceOrder did not do well because there was not

much currency and consistency information in CFP and Rest that could be utilized

by DeduceOrder. Further, the assumption of [FGTY13] that the data has to be once

correct was too strong for CFP and Rest. These further highlight the need for the

study of relative accuracy with ARs. (2) Even without ARs, TopKCT can incorporate

the source accuracy (copyCEF) and preference (voting), and performs well in truth

discovery. (3) In contrast to Rest, many real-life datasets have a number of attributes

that are logically correlated. TopKCT works better on such data than on Rest.

Summary. We find the following. (1) IsCR is effective: it is able to correctly and

automatically deduce complete target tuples for at least 66% of the entities, and the

most accurate values for 73% of the attributes in the real-life data. (2) ARs of form (1)

and form (2) interact with each other and are effective in determining relative accuracy.

(3) Our top-k algorithms RankJoinCT and TopKCT (resp. TopKCTh) are capable of

finding the target tuples for 93% (resp. 88%) of entities without user interaction, even

Chapter 6. Determining the Relative Accuracy of Attributes 208

Method Prec Rec F-msr

DeduceOrder 1.0 0.15 0.26

voting 0.62 0.92 0.74

copyCEF 0.76 0.85 0.8

TopKCT (preference derived by voting) 0.73 0.95 0.82

TopKCT (preference derived by copyCEF) 0.81 0.88 0.85

Table 6.4: Truth Discovery on Rest

when k is small. (4) Few rounds of user interactions are needed for our framework

to deduce complete target tuples (3 for Med and 4 for CFP). (5) Our algorithms are

efficient: IsCR takes less than 10ms, and TopKCTh and TopKCT take 159ms and

271ms respectively, on entity instances consisting of 1500 tuples, Im of 300 tuples and

Σ of 50 ARs. (6) Our method is complementary to truth discovery algorithms, and can

incorporate derived probabilities into our preference model. With a small number of

ARs, TopKCT improves voting, DeduceOrder and copyCEF in truth discovery, with or

without user interactions.

Chapter 7

Conclusion and Future Work

In this chapter we summarize the results of this thesis and propose future work.

7.1 Summary

Data quality is the key problem of data management. And there are five central is-

sues of data quality, namely, data consistency, data deduplication, data currency, data

accuracy and information completeness. In this thesis we have presented a series of

frameworks and models, and developed algorithms for the first four issues and the

interactions between these issues.

Incremental detection of inconsistencies in distributed data. We have studied in-

cremental CFD violation detection for distributed data, from complexity to algorithms.

We have shown that the problem is NP-complete but is bounded. We have also devel-

oped optimal incremental violation detection algorithms for data partitioned vertically

or horizontally, as well as optimization methods. Our experimental results have veri-

fied that these yield a promising solution for catching errors in distributed data.

Certain fixes. We have the studied the problem of data monitoring, a special case of

data repairing, which is to repair data at the time of data entry. We have developed a

framework to compute certain fixes at the point of data entry, by interacting with users,

along with its underlying algorithm and optimization techniques. Our experimental re-

sults with real-life data have verified the effectiveness, efficiency and scalability of our

method. These produce a sound method for data monitoring, based on the algorithms

we developed,

Interaction between record matching and data repairing. We have taken a first step

209

Chapter 7. Conclusion and Future Work 210

toward unifying record matching and data repairing, an important issue that, by and

large, has been overlooked. We have proposed a uniform framework for interleaving

matching and repairing operations, based on cleaning rules derived from CFDs and

MDs. We have established the complexity bounds of several fundamental problems for

data cleaning with both matching and repairing. We have also proposed deterministic

fixes and reliable fixes, and effective methods to find these fixes based on confidence

and entropy. Our experimental results have verified that our techniques substantially

improve the quality of fixes generated by repairing and matching taken separately.

Inferring data currency and consistency for Conflict Resolution. We have proposed

a model for resolving conflicts in entity instances, based on both data currency and

data consistency. We have also identified several problems fundamental to conflict

resolution, and established their complexity. Despite the inherent complexity of these

problems, we have introduced a framework for conflict resolution, along with practical

algorithms supporting the framework. Our experimental study has verified that our

methods are effective and efficient using real-life and synthetic data. We contend that

these yield a promising approach to resolving conflicts in practice.

Data accuracy. We have proposed a model for determining the relative accuracy of

entities in the absence of their true values. We have identified fundamental problems

relating to accuracy, and established their complexity. Based on these results, we have

introduced a framework for deducing relative accuracy, and provided its underlying

algorithms. Our experimental results have verified the effectiveness and efficiency of

our methods.

7.2 Future Work

There is naturally much more to be done. We list future research directions, and iden-

tify problems to be studied.

Data consistency. For the detection of inconsistencies, we are exploring a new frame-

work to unify multiple integrity constraints. For the detection in distrusted data, first,

we are currently experimenting with real-life datasets from different applications, to

find out when incremental detection is most effective. Second, we also intend to ex-

tend our algorithms to data that is partitioned both vertically and horizontally. Third,

we plan to develop MapReduce algorithms for incremental violation detection. Fourth,

we are to extend our approach to support constraints defined in terms of similarity pred-

Chapter 7. Conclusion and Future Work 211

icates (e.g., matching dependencies for record matching) beyond equality comparison,

for which hash-based indices may not work and more robust indexing techniques need

to be explored.

For the data repairing, our work on certain fixes is just a first step towards repairing

data with correctness guarantees. One subject for future work is to efficiently find cer-

tain fixes for data in a database, i.e., certain fixes in general data repairing rather than

monitoring. Another topic is to develop data repairing and monitoring methods with

correctness guarantees in the absence of high-quality master data. Finally, effective al-

gorithms have to be in place for discovering editing rules from sample inputs and mas-

ter data, along the same lines as discovering other data quality rules [CM08, GKK+08].

Our work on data repairing with interaction with record matching is preliminary. We

are also studying the cleaning of multiple relations of which the consistency is speci-

fied by constraints across relations, e.g., (conditional) inclusion dependencies. A final

subject is to repair data by using currency constraints and partial temporal orders. This

is more challenging than conflict resolution, since a database to be repaired is typically

much larger than entity instances.

Data deduplication. For record matching, we are exploring ways to extend matching

dependencies by giving them more expressive power, and integrate the new dependen-

cies into our framework of interaction between record matching and data repairing.

For conflict resolution by inferring data currency and consistency, we are now ex-

ploring efficient algorithms with better performance guarantees for generating sug-

gestions, and testing them with data in various domains. Another topic concerns the

discovery of data quality rules. Previous work on discovery of such rules [CM08]

shows that a large number of high-quality rules can be identified from possibly dirty

data. Finally, a challenging topic is to extend our framework by allowing users to edit

constraints, and by soliciting other information (such as semantic dependencies spec-

ifying how attributes are correlated) as users’ feedback when the users do not have

sufficient currency knowledge about their data.

The problem of the converse (duplication) of data deduplication problem is worth

to be studied. It is common to find that a single record represents two or more external

entities in real life. Sometimes splitting the record into multiple records is needed.

We are experimenting a new class of integrity constraints and methods to solve this

problem.

Data currency. The currency constraints and the framework proposed in Chapter 5

Chapter 7. Conclusion and Future Work 212

can be applied to infer data currencies. We are exploring ways to simplify the seman-

tics of currency constraints in order to reduce the complexities of algorithms. We are

also experimenting with the interaction between data currency and record matching,

when tuples/values are from multiple relations with different times.

The principle of parsimony∗ to resolve temporal order is proved to be effective for

finding temporal orders in evolution. We are experimenting a new approach based on

parsimony, and to see if it could further reduce users’ effort when deducing true values.

Data accuracy. The study of data accuracy is still in its infancy. We are currently ex-

perimenting with large datasets from other domains to evaluate the techniques. We are

also studying how to improve the accuracy of data in a database, which is often much

larger than entity instances. Furthermore, discovery of ARs deserves a full treatment.

∗http://evolution.berkeley.edu/evolibrary/article/phylogenetics 08

Bibliography

[ABC03] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent

query answers in inconsistent databases. TPLP, 3(4-5), 2003.

[ADNR07] Shipra Agrawal, Supratim Deb, K. V. M. Naidu, and Rajeev Rastogi.

Efficient detection of distributed constraint violations. In ICDE, 2007.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[AKVW93] Alexander Aiken, Dexter Kozen, Moshe Y. Vardi, and Edward L. Wim-

mers. The complexity of set constraints. In CSL, 1993.

[ARS09] Arvind Arasu, Christopher Re, and Dan Suciu. Large-scale deduplica-

tion with constraints using Dedupalog. In ICDE, 2009.

[Aus99] G. Ausiello. Complexity and approximation: Combinatorial optimiza-

tion problems and their approximability properties. Springer, 1999.

[BC81] Philip A. Bernstein and Dah-Ming W. Chiu. Using semi-joins to solve

relational queries. J. ACM, 28(1), 1981.

[BCMP10] L. Blanco, V. Crescenzi, P. Merialdo, and P. Papotti. Probabilistic mod-

els to reconcile complex data from inaccurate data sources. In AISE,

2010.

[BDMW98] James Bailey, Guozhu Dong, Mukesh Mohania, and Xiaoyang Sean

Wang. Incremental view maintenance by base relation tagging in dis-

tributed databases. Distributed and Parallel Databases, 6(3), 1998.

[Ber11] Leopoldo Bertossi. Database Repairing and Consistent Query Answer-

ing. Morgan & Claypool Publishers, 2011.

213

Bibliography 214

[BESD+09] Laure Berti-Equille, Anish Das Sarma, Xin Dong, A Marian, and Di-

vesh Srivastava. Sailing the information ocean with awareness of cur-

rents: Discovery and application of source dependence. In CIDR, 2009.

[BFFR05] P Bohannon, W Fan, M Flaster, and R Rastogi. A cost-based model

and effective heuristic for repairing constraints by value modification.

In SIGMOD, 2005.

[BFG+07] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios

Kementsietsidis. Conditional functional dependencies for data cleaning.

In ICDE, 2007.

[BFGM08] Loreto Bravo, Wenfei Fan, Floris Geerts, and Shuai Ma. Increasing

the expressivity of conditional functional dependencies without extra

complexity. In ICDE, 2008.

[BFM07] Loreto Bravo, Wenfei Fan, and Shuai Ma. Extending dependencies with

conditions. In VLDB, 2007.

[BGMM+09] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su,

Steven Euijong Whang, and Jennifer Widom. Swoosh: a generic ap-

proach to entity resolution. VLDB J., 18(1):255–276, 2009.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, edi-

tors. Handbook of Satisfiability, volume 185 of Frontiers in Artificial

Intelligence and Applications. IOS Press, 2009.

[BKL11] L. Bertossi, S. Kolahi, and L.V.S. Lakshmanan. Data cleaning and

query answering with matching dependencies and matching functions.

In ICDT, 2011.

[BmLT86] José A. Blakeley, Per Å. Larson, and Frank Wm. Tompa. Efficiently

updating materialized views. In SIGMOD, 1986.

[BN08] Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv.,

41(1), 2008.

[Bro96] Gerth Stølting Brodal. Worst-case efficient priority queues. In Éva

Tardos, editor, SODA, pages 52–58. ACM/SIAM, 1996.

Bibliography 215

[BS06] C. Batini and M. Scannapieco. Data Quality: Concepts, Methodologies

and Techniques. Springer, 2006.

[BSIBD09] George Beskales, Mohamed A. Soliman, Ihab F. Ilyas, and Shai Ben-

David. Modeling and querying possible repairs in duplicate detection.

In VLDB, 2009.

[CCC+10] Kuang Chen, Harr Chen, Neil Conway, Joseph M. Hellerstein, and

Tapan S. Parikh. Usher: Improving data quality with dynamic forms.

In ICDE, 2010.

[CFG+07] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. Im-

proving data quality: Consistency and accuracy. In VLDB, 2007.

[CFM09] Wenguang Chen, Wenfei Fan, and Shuai Ma. Analyses and validation

of conditional dependencies with built-in predicates. In DEXA, 2009.

[CFP84] M. A. Casanova, R. Fagin, and C. H. Papadimitriou. Inclusion de-

pendencies and their interaction with functional dependencies. JCSS,

28(1):29–59, 1984.

[CFY13] Yang Cao, Wenfei Fan, and Wenyuan Yu. Determining the relative ac-

curacy of attributes. In SIGMOD Conference, pages 565–576, 2013.

[CGGM03] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Mot-

wani. Robust and efficient fuzzy match for online data cleaning. In

SIGMOD, 2003.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-

ford Stein. Introduction to Algorithms. The MIT Press, 2001.

[CM05] J. Chomicki and J. Marcinkowski. Minimal-change integrity main-

tenance using tuple deletions. Information and Computation, 197(1-

2):90–121, 2005.

[CM08] Fei Chiang and Renee Miller. Discovering data quality rules. In VLDB,

2008.

[Cod72] E. F. Codd. Relational completeness of data base sublanguages. In Data

Base Systems: Courant Computer Science Symposia Series 6, pages

65–98. Prentice-Hall, 1972.

Bibliography 216

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.

Wiley-Interscience, 1991.

[CT05] Jan Chomicki and David Toman. Time in database systems. In Hand-

book of Temporal Reasoning in Artificial Intelligence. Elsevier, 2005.

[Day83] Umeshwar Dayal. Processing queries over generalization hierarchies in

a multidatabase system. In VLDB, 1983.

[DBEHS10] Xin Luna Dong, Laure Berti-Equille, Yifan Hu, and Divesh Srivastava.

Global detection of complex copying relationships between sources. In

VLDB, 2010.

[DBES09a] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Integrating

conflicting data: The role of source dependence. In VLDB, 2009.

[DBES09b] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Truth dis-

covery and copying detection in a dynamic world. In VLDB, 2009.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data pro-

cessing on large clusters. In OSDI, 2004.

[DHM05] Xin Dong, Alon Y. Halevy, and Jayant Madhavan. Reference reconcili-

ation in complex information spaces. In SIGMOD Conference, 2005.

[DN09] Xin Luna Dong and Felix Naumann. Data fusion - resolving data con-

flicts for integration. In VLDB, 2009.

[DT07] David DeHaan and Frank Wm. Tompa. Optimal top-down join enumer-

ation. In SIGMOD, 2007.

[dVKCC09] Timothy de Vries, Hui Ke, Sanjay Chawla, and Peter Christen. Robust

record linkage blocking using suffix arrays. In CIKM, 2009.

[Eck02] Wayne W. Eckerson. Data Quality and the Bottom Line: Achieving

Business Success through a Commitment to High Quality Data. In The

Data Warehousing Institute, 2002.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S.

Verykios. Duplicate record detection: A survey. TKDE, 19(1):1–16,

2007.

Bibliography 217

[Eng00] Larry English. Plain English on data quality: Information quality man-

agement: The next frontier. DM Review Magazine, April 2000.

[Epp06] M.J. Eppler. Managing information quality: Increasing the value of

information in knowledge-intensive products and processes. Springer,

2006.

[Fan08] Wenfei Fan. Dependencies revisited for improving data quality. In

PODS, 2008.

[Fei05] Uriel Feige. Approximating maximum clique by removing subgraphs.

SIAM J. Discret. Math., 18, February 2005.

[FG10] W. Fan and F. Geerts. Relative information completeness. TODS, 35(4),

2010.

[FG12] Wenfei Fan and Floris Geerts. Foundations of Data Quality Manage-

ment. Morgan & Claypool Publishers, 2012.

[FGJ+11] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. Dy-

namic constraints for record matching. VLDB. J, 20(4):495–520, 2011.

[FGJK08] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis.

Conditional functional dependencies for capturing data inconsistencies.

TODS, 33(1), 2008.

[FGKT10] Philip Werner Frey, Romulo Goncalves, Martin L. Kersten, and Jens

Teubner. A spinning join that does not get dizzy. In ICDCS, 2010.

[FGLX11] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering

conditional functional dependencies. TKDE, 23(5):683–698, 2011.

[FGMM10] Wenfei Fan, Floris Geerts, Shuai Ma, and Heiko Müller. Detecting

inconsistencies in distributed data. In ICDE, 2010.

[FGTY13] Wenfei Fan, Floris Geerts, Nan Tang, and Wenyuan Yu. Inferring data

currency and consistency for conflict resolution. In ICDE, 2013.

[FGW11] Wenfei Fan, Floris Geerts, and Jef Wijsen. Determining the currency of

data. In PODS, 2011.

Bibliography 218

[FH76] I. Fellegi and D. Holt. A systematic approach to automatic edit and

imputation. J. American Statistical Association, 71(353):17–35, 1976.

[FJLM09] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning about

record matching rules. In VLDB, 2009.

[FL01] Peter A. Flach and Nicolas Lachiche. Confirmation-guided discovery

of first-order rules with Tertius. Machine Learning, 44(3):61–95, 2001.

[FLM09] C.W. Fisher, E.J.M. Lauria, and C.C. Matheus. An accuracy metric:

Percentages, randomness, and probabilities. JDIQ, 1(3), 2009.

[FLM+10] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. To-

wards certain fixes with editing rules and master data. In VLDB, 2010.

[FLM+11a] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record

matching and data repairing. In SIGMOD, 2011.

[FLM+11b] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. Cer-

fix: A system for cleaning data with certain fixes. PVLDB, 4(12):1375–

1378, 2011.

[FLM+12] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. To-

wards certain fixes with editing rules and master data. The VLDB Jour-

nal, 21(2):213–238, April 2012.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware. JCSS, 66(4):614–656, 2003.

[FLR94] C. Fox, A. Levitin, and T. Redman. The notion of data and its quality

dimensions. IPM, 30(1), 1994.

[FLTY12] Wenfei Fan, Jianzhong Li, Nan Tang, and Wenyuan Yu. Incremental

detection of inconsistencies in distributed data. In ICDE, 2012.

[FLTY14] Wenfei Fan, Jianzhong Li, Nan Tang, and Wenyuan Yu. Incremental

detection of inconsistencies in distributed data. TKDE, 2014.

[FPS+10] Tanveer A. Faruquie, K. Hima Prasad, L. Venkata Subramaniam,

Mukesh K. Mohania, Girish Venkatachaliah, Shrinivas Kulkarni, and

Pramit Basu. Data cleansing as a transient service. In ICDE, 2010.

Bibliography 219

[GAMS10] A. Galland, S. Abiteboul, A. Marian, and P. Senellart. Corroborating

information from disagreeing views. In WSDM, 2010.

[GDSZ10] Songtao Guo, Xin Dong, Divesh Srivastava, and Remi Zajac. Record

linkage with uniqueness constraints and erroneous values. PVLDB,

3(1), 2010.

[Gel10] I.A. Gelman. Setting priorities for data accuracy improvements in satis-

ficing decision-making scenarios: A guiding theory. DSS, 48(4), 2010.

[Gil88] P Giles. A model for generalized edit and imputation of survey data.

The Canadian J. of Statistics, 16:57–73, 1988.

[GJ79] Michael Garey and David Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman and Com-

pany, 1979.

[GKK+08] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei

Yu. On generating near-optimal tableaux for conditional functional de-

pendencies. In VLDB, 2008.

[GM99] Ashish Gupta and Iderpal Singh Mumick. Materialized views: tech-

niques, implementations, and applications. MIT Press, 1999.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Main-

taining views incrementally. In SIGMOD, 1993.

[GSTZ03] Sergio Greco, Cristina Sirangelo, Irina Trubitsyna, and Ester Zumpano.

Preferred repairs for inconsistent databases. In IDEAS, 2003.

[GT04] Enrico Giunchiglia and Armando Tacchella, editors. Theory and Appli-

cations of Satisfiability Testing, SAT, 2004.

[GW93] Ashish Gupta and Jennifer Widom. Local verification of global integrity

constraints in distributed databases. In SIGMOD, 1993.

[Ham50] Richard W. Hamming. Error detecting and error correcting codes. Bell

System Technical Journal, 29(2):147–160, 1950.

[HS98] M. A. Hernandez and S. Stolfo. Real-World Data is Dirty: Data Cleans-

ing and the Merge/Purge Problem. Data Mining and Knowledge Dis-

covery, 2(1):9–37, 1998.

Bibliography 220

[HSW09a] Thomas N. Herzog, Fritz J. Scheuren, and William E. Winkler. Data

Quality and Record Linkage Techniques. Springer, 2009.

[HSW09b] Thomas N. Herzog, Fritz J. Scheuren, and William E. Winkler. Data

Quality and Record Linkage Techniques. Springer, 2009.

[Huy97] Nam Huyn. Maintaining global integrity constraints in distributed

databases. Constraints, 2(3/4), 1997.

[IAE04] I.F. Ilyas, W.G. Aref, and A.K. Elmagarmid. Supporting top-k join

queries in relational databases. VLDB. J, 13(3), 2004.

[IBM12] IBM. What is big data, 2012. http://www-01.ibm.com/software/

data/bigdata/ .

[IBS08] I.F. Ilyas, G. Beskales, and M.A. Soliman. A survey of top-k query pro-

cessing techniques in relational database systems. CSUR, 40(4), 2008.

[Kal08] R. Kallman et al. H-store: a high-performance, distributed main mem-

ory transaction processing system. PVLDB, 2008.

[KF88] George J. Klir and Tina A Folger. Fuzzy sets, uncertainty, and informa-

tion. Englewood Cliffs, N.J: Prentice Hall, 1988.

[KL09] Solmaz Kolahi and Laks Lakshmanan. On approximating optimum re-

pairs for functional dependency violations. In ICDT, 2009.

[KNCV08] Anastasios Kementsietsidis, Frank Neven, Dieter Craen, and Stijn Van-

summeren. Scalable multi-query optimization for exploratory queries

over federated scientific databases. In VLDB, 2008.

[Knu09] Donald E. Knuth. The Art of Computer Programming Volume 4,

Fascicle 1: Bitwise tricks & techniques; Binary Decision Diagrams.

Addison-Wesley Professional, 2009.

[Kos00] D. Kossman. The State of the Art in Distributed Query Processing.

ACM Comput. Surv., 32(4), 2000.

[LDK09] Jian Li, Amol Deshpande, and Samir Khuller. Minimizing communica-

tion cost in distributed multi-query processing. In ICDE, 2009.

Bibliography 221

[LDMS11] Pei Li, Xin Dong, Andrea Mauricio, and Divesh Srivastava. Linking

temporal records. PVLDB, 2011.

[Los09] David Loshin. Master Data Management. Knowledge Integrity, Inc.,

2009.

[MA06] Amihai Motro and Philipp Anokhin. Fusionplex: resolution of data

inconsistencies in the integration of heterogeneous information sources.

Inf. Fusion, 7(2), 2006.

[Ma11] Shuai Ma. Extending dependencies for improving data quality. PhD

thesis, University of Edinburgh, August 2011.

[MJYE05] Donald W. Miller Jr., John D. Yeast, and Robin L. Evans. Missing

prenatal records at a birth center: A communication problem quantified.

In AMIA Annu Symp Proc., pages 535–539, 2005.

[ML86] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and

performance evaluation for distributed queries. In VLDB, 1986.

[MN08] Guido Moerkotte and Thomas Neumann. Dynamic programming

strikes back. In SIGMOD, 2008.

[MNP10] Chris Mayfield, Jennifer Neville, and Sunil Prabhakar. ERACER: a

database approach for statistical inference and data cleaning. In SIG-

MOD, 2010.

[NBBW06] Felix Naumann, Alexander Bilke, Jens Bleiholder, and Melanie Weis.

Data fusion in three steps: Resolving schema, tuple, and value incon-

sistencies. IEEE Data Eng. Bull., 29(2), 2006.

[NH10] Felix Naumann and Melanie Herschel. An Introduction to Duplicate

Detection. Morgan & Claypool Publishers, 2010.

[NJE+09] P. Narman, P. Johnson, M. Ekstedt, M. Chenine, and J. Konig. Enter-

prise architecture analysis for data accuracy assessments. In EDOC,

2009.

[NPM+10] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kol-

lios, and Nick Koudas. MRShare: Sharing across multiple queries in

MapReduce. PVLDB, 2010.

Bibliography 222

[OV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed

Database Systems, Second Edition. Prentice-Hall, 1999.

[Pap94] Christos H Papadimitriou. Computational Complexity. Addison Wes-

ley, 1994.

[PCZ12] D.R.K.P.T.D.D.C.J.G. Paul C. Zikopoulos. Harness the Power of Big

Data: The IBM Big Data Platform. McGraw-Hill Prof Med/Tech, 2012.

[Red98] Thomas Redman. The impact of poor data quality on the typical enter-

prise. Commun. ACM, 2:79–82, 1998.

[RG95] By Rob and Rob Goldring. Update replication: What every designer

should know. In InfoDB, Vol.9, No.2, pages 17–24, 1995.

[RH01] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s wheel: An

interactive data cleaning system. In VLDB, pages 381–390, 2001.

[RN11] Simon Razniewski and Werner Nutt. Completeness of queries over in-

complete databases. PVLDB, 4(11):749–760, 2011.

[Rou91] Nick Roussopoulos. An incremental access method for viewcache:

Concept, algorithms, and cost analysis. TODS, 16(3), 1991.

[RR93] G. Ramalingam and Thomas W. Reps. A categorized bibliography on

incremental computation. In POPL, 1993.

[RR96] G. Ramalingam and Thomas W. Reps. On the computational complex-

ity of dynamic graph problems. Theor. Comput. Sci., 158(1&2), 1996.

[RW08] J. Radcliffe and A. White. Key issues for master data management.

Technical report, Gartner, 2008.

[SC09] Shaoxu Song and Lei Chen. Discovering matching dependencies. In

CIKM, 2009.

[SK04] Bart Selman and Henry Kautz. Walksat home page, 2004.

http://www.cs.washington.edu/homes/kautz/walksat/.

[SMO07] G Sauter, B Mathews, and E Ostic. Information service patterns, part 3:

Data cleansing pattern. IBM, 2007.

Bibliography 223

[SP08] K. Schnaitter and N. Polyzotis. Evaluating rank joins with optimal cost.

In PODS, 2008.

[SPPN12] Ognjen Savković, Mirza Paramita, Sergey Paramonov, and Werner

Nutt. Magik: managing completeness of data. In Proceedings of

the 21st ACM international conference on Information and knowledge

management, CIKM ’12, pages 2725–2727, New York, NY, USA,

2012. ACM.

[ST98] Christopher C. Shilakes and Julie Tylman. Enterprise information por-

tals. Technical report, Merrill Lynch, Inc., New York, NY, November

1998.

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theore. Com-

put. Sci, 3(1), 1976.

[Sto05] Michael Stonebraker et al. C-store: A column-oriented DBMS. In

VLDB, 2005.

[SV10] Divesh Srivastava and Suresh Venkatasubramanian. Information theory

for data management. In SIGMOD, 2010.

[WBGM09] Steven Euijong Whang, Omar Benjelloun, and Hector Garcia-Molina.

Generic entity resolution with negative rules. VLDB J., 18(6), 2009.

[WBTD08] Xiaodan Wang, Randal C. Burns, Andreas Terzis, and Amol Desh-

pande. Network-aware join processing in global-scale database fed-

erations. In ICDE, 2008.

[WC96] Jennifer Widom and Stefano Ceri. Active database systems: triggers

and rules for advanced database processing. Morgan Kaufmann, 1996.

[Wid05] J. Widom. Trio: A system for integrated management of data, accuracy,

and lineage. In CIDR, 2005.

[Wij05] Jef Wijsen. Database repairing using updates. TODS, 30(3):722–768,

2005.

[Wik12] Wikipedia. Md5, 2012. http://en.wikipedia.org/wiki/MD5 .

Bibliography 224

[WM11] M. Wu and A. Marian. A framework for corroborating answers from

multiple web sources. IS, 36(2), 2011.

[WN05] Melanie Weis and Felix Naumann. Dogmatix tracks down duplicates in

XML. In SIGMOD, 2005.

[WP05] Ingo Wegener and R. Pruim. Complexity Theory: Exploring the Limits

of Efficient Algorithms. Springer, 2005.

[YEN+11] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad

Ouzzani, and Ihab F. Ilyas. Guided data repair. PVLDB, 4(1), 2011.

[YENO10] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, and

Mourad Ouzzani. GDR: a system for guided data repair. In SIGMOD,

2010.

[YHY08] X. Yin, J. Han, and P.S. Yu. Truth discovery with multiple conflicting

information providers on the Web. TKDE, 20(6), 2008.

[ZDI10] Haopeng Zhang, Yanlei Diao, and Neil Immerman. Recognizing pat-

terns in streams with imprecise timestamps. In VLDB, 2010.

[ZL78] Jacob Ziv and Abraham Lempel. Compression of individual sequences

via variable-rate coding. IEEE TIT, 24(5), 1978.

[ZRGH12] Bo Zhao, Benjamin I. P. Rubinstein, Jim Gemmell, and Jiawei Han. A

bayesian approach to discovering truth from conflicting sources for data

integration. PVLDB, 5(6):550–561, 2012.

	PhD coversheet April 2012
	thesis

