34,089 research outputs found

    Multidisciplinary Engineering Systems 2nd and 3rd Year College-Wide Courses

    Get PDF
    Undergraduate engineering education today is ineffective in preparing students for multidisciplinary system integration and optimization - exactly what is needed by companies to become innovative and gain a competitive advantage in this global economy. While there is some movement in engineering education to change that, this change is not easy, as it involves a cultural change from the silo approach to a holistic approach. The ABET-required senior capstone multidisciplinary design course too often becomes a design-build-test exercise with the emphasis on just getting something done. Students rarely break out of their disciplinary comfort zone and thus fail to experience true multidisciplinary system design. What is needed are multidisciplinary systems courses, with a balance between theory and practice, between academic rigor and the best practices of industry, presented in an integrated way in the 2nd and 3rd years that prepares students for true multidisciplinary systems engineering at the senior level and beyond. The two courses presented here represent a significant curriculum improvement in response to this urgent need

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    An integrated approach to the optimum design of actively controlled composite wings

    Get PDF
    The importance of interactions among the various disciplines in airplane wing design has been recognized for quite some time. With the introduction of high gain, high authority control systems and the design of thin, flexible, lightweight composite wings, the integrated treatment of control systems, flight mechanics and dynamic aeroelasticity became a necessity. A research program is underway now aimed at extending structural synthesis concepts and methods to the integrated synthesis of lifting surfaces, spanning the disciplines of structures, aerodynamics and control for both analysis and design. Mathematical modeling techniques are carefully selected to be accurate enough for preliminary design purposes of the complicated, built-up lifting surfaces of real aircraft with their multiple design criteria and tight constraints. The presentation opens with some observations on the multidisciplinary nature of wing design. A brief review of some available state of the art practical wing optimization programs and a brief review of current research effort in the field serve to illuminate the motivation and support the direction taken in our research. The goals of this research effort are presented, followed by a description of the analysis and behavior sensitivity techniques used. The presentation concludes with a status report and some forecast of upcoming progress

    Revisiting topology optimization with buckling constraints

    Full text link
    We review some features of topology optimization with a lower bound on the critical load factor, as computed by linearized buckling analysis. The change of the optimized design, the competition between stiffness and stability requirements and the activation of several buckling modes, depending on the value of such lower bound, are studied. We also discuss some specific issues which are of particular interest for this problem, as the use of non-conforming finite elements for the analysis, the use of inconsistent sensitivities in the optimization and the replacement of the single eigenvalue constraints with an aggregated measure. We discuss the influence of these practices on the optimization result, giving some recommendations.Comment: 15 pages, 12 figures, 2 table

    An initiative in multidisciplinary optimization of rotorcraft

    Get PDF
    Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The optimization formulation is described in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight

    Numerical propulsion system simulation: An interdisciplinary approach

    Get PDF
    The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability

    An initiative in multidisciplinary optimization of rotorcraft

    Get PDF
    Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight

    A "poor man's" approach for high-resolution three-dimensional topology optimization of natural convection problems

    Full text link
    This paper treats topology optimization of natural convection problems. A simplified model is suggested to describe the flow of an incompressible fluid in steady state conditions, similar to Darcy's law for fluid flow in porous media. The equations for the fluid flow are coupled to the thermal convection-diffusion equation through the Boussinesq approximation. The coupled non-linear system of equations is discretized with stabilized finite elements and solved in a parallel framework that allows for the optimization of high resolution three-dimensional problems. A density-based topology optimization approach is used, where a two-material interpolation scheme is applied to both the permeability and conductivity of the distributed material. Due to the simplified model, the proposed methodology allows for a significant reduction of the computational effort required in the optimization. At the same time, it is significantly more accurate than even simpler models that rely on convection boundary conditions based on Newton's law of cooling. The methodology discussed herein is applied to the optimization-based design of three-dimensional heat sinks. The final designs are formally compared with results of previous work obtained from solving the full set of Navier-Stokes equations. The results are compared in terms of performance of the optimized designs and computational cost. The computational time is shown to be decreased to around 5-20% in terms of core-hours, allowing for the possibility of generating an optimized design during the workday on a small computational cluster and overnight on a high-end desktop
    corecore