6,672 research outputs found

    Landauer's Principle in Repeated Interaction Systems

    Full text link
    We study Landauer's Principle for Repeated Interaction Systems (RIS) consisting of a reference quantum system S\mathcal{S} in contact with a structured environment E\mathcal{E} made of a chain of independent quantum probes; S\mathcal{S} interacts with each probe, for a fixed duration, in sequence. We first adapt Landauer's lower bound, which relates the energy variation of the environment E\mathcal{E} to a decrease of entropy of the system S\mathcal{S} during the evolution, to the peculiar discrete time dynamics of RIS. Then we consider RIS with a structured environment E\mathcal{E} displaying small variations of order T1T^{-1} between the successive probes encountered by S\mathcal{S}, after nTn\simeq T interactions, in keeping with adiabatic scaling. We establish a discrete time non-unitary adiabatic theorem to approximate the reduced dynamics of S\mathcal{S} in this regime, in order to tackle the adiabatic limit of Landauer's bound. We find that saturation of Landauer's bound is equivalent to a detailed balance condition on the repeated interaction system, reflecting the non-equilibrium nature of the repeated interaction system dynamics. This is to be contrasted with the generic saturation of Landauer's bound known to hold for continuous time evolution of an open quantum system interacting with a single thermal reservoir in the adiabatic regime.Comment: Linked entropy production to detailed balance relation, improved presentation, and added concluding sectio

    Interaction systems design and the protocol- and middleware-centred paradigms in distributed application development

    Get PDF
    This paper aims at demonstrating the benefits and importance of interaction systems design in the development of distributed applications. We position interaction systems design with respect to two paradigms that have influenced the design of distributed applications: the middleware-centred and the protocol-centred paradigm. We argue that interaction systems that support application-level interactions should be explicitly designed, using the externally observable behaviour of the interaction system as a starting point in interaction systems design. This practice has two main benefits: to promote a systematic design method, in which the correctness of the design of an interaction system can be assessed against its service specification; and, to shield the design of application parts that use the interaction system from choices in the design of the supporting interaction system

    Nearest-Neighbor Interaction Systems in the Tensor-Train Format

    Get PDF
    Low-rank tensor approximation approaches have become an important tool in the scientific computing community. The aim is to enable the simulation and analysis of high-dimensional problems which cannot be solved using conventional methods anymore due to the so-called curse of dimensionality. This requires techniques to handle linear operators defined on extremely large state spaces and to solve the resulting systems of linear equations or eigenvalue problems. In this paper, we present a systematic tensor-train decomposition for nearest-neighbor interaction systems which is applicable to a host of different problems. With the aid of this decomposition, it is possible to reduce the memory consumption as well as the computational costs significantly. Furthermore, it can be shown that in some cases the rank of the tensor decomposition does not depend on the network size. The format is thus feasible even for high-dimensional systems. We will illustrate the results with several guiding examples such as the Ising model, a system of coupled oscillators, and a CO oxidation model

    Overview of some Command Modes for Human-Robot Interaction Systems

    Get PDF
    Interaction and command modes as well as their combination are essential features of modern and futuristic robotic systems interacting with human beings in various dynamical environments. This paper presents a synthetic overview concerning the most command modes used in Human-Robot Interaction Systems (HRIS). It includes the first historical command modes which are namely tele-manipulation, off-line robot programming, and traditional elementary teaching by demonstration. It then introduces the most recent command modes which have been fostered later on by the use of artificial intelligence techniques implemented on more powerful computers. In this context, we will consider specifically the following modes: interactive programming based on the graphical-user-interfaces, voice-based, pointing-on-image-based, gesture-based, and finally brain-based commands.info:eu-repo/semantics/publishedVersio

    Well-posedness and Robust Preconditioners for the Discretized Fluid-Structure Interaction Systems

    Full text link
    In this paper we develop a family of preconditioners for the linear algebraic systems arising from the arbitrary Lagrangian-Eulerian discretization of some fluid-structure interaction models. After the time discretization, we formulate the fluid-structure interaction equations as saddle point problems and prove the uniform well-posedness. Then we discretize the space dimension by finite element methods and prove their uniform well-posedness by two different approaches under appropriate assumptions. The uniform well-posedness makes it possible to design robust preconditioners for the discretized fluid-structure interaction systems. Numerical examples are presented to show the robustness and efficiency of these preconditioners.Comment: 1. Added two preconditioners into the analysis and implementation 2. Rerun all the numerical tests 3. changed title, abstract and corrected lots of typos and inconsistencies 4. added reference

    Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems

    Full text link
    We show global well-posedness and exponential stability of equilibria for a general class of nonlinear dissipative bulk-interface systems. They correspond to thermodynamically consistent gradient structure models of bulk-interface interaction. The setting includes nonlinear slow and fast diffusion in the bulk and nonlinear coupled diffusion on the interface. Additional driving mechanisms can be included and non-smooth geometries and coefficients are admissible, to some extent. An important application are volume-surface reaction-diffusion systems with nonlinear coupled diffusion.Comment: 21 page

    Robustness in Interaction Systems

    Full text link
    We treat the effect of absence/failure of ports or components on properties of component-based systems. We do so in the framework of interaction systems, a formalism for component-based systems that strictly separates the issues of local behavior and interaction, for which ideas to establish properties of systems where developed. We propose to adapt these ideas to analyze how the properties behave under absence or failure of certain components or merely some ports of components. We demonstrate our approach for the properties local and global deadlock-freedom as well as liveness and local progress
    corecore