We show global well-posedness and exponential stability of equilibria for a
general class of nonlinear dissipative bulk-interface systems. They correspond
to thermodynamically consistent gradient structure models of bulk-interface
interaction. The setting includes nonlinear slow and fast diffusion in the bulk
and nonlinear coupled diffusion on the interface. Additional driving mechanisms
can be included and non-smooth geometries and coefficients are admissible, to
some extent. An important application are volume-surface reaction-diffusion
systems with nonlinear coupled diffusion.Comment: 21 page