2,046 research outputs found

    Towards a generic platform for developing CSCL applications using Grid infrastructure

    Get PDF
    The goal of this paper is to explore the possibility of using CSCL component-based software under a Grid infrastructure. The merge of these technologies represents an attractive, but probably quite laborious enterprise if we consider not only the benefits but also the barriers that we have to overcome. This work presents an attempt toward this direction by developing a generic platform of CSCL components and discussing the advantages that we could obtain if we adapted it to the Grid. We then propose a means that could make this adjustment possible due to the high degree of genericity that our library component is endowed with by being based on the generic programming paradigm. Finally, an application of our library is proposed both for validating the adequacy of the platform which it is based on and for indicating the possibilities gained by using it under the Grid.Peer ReviewedPostprint (published version

    Towards a narrative-oriented framework for designing mathematical learning

    Get PDF
    This paper proposes a narrative-oriented approach to the design of educational activities, as well as a CSCL system to support them, in the context of learning mathematics. Both Mathematics and interface design seem unrelated to narrative. Mathematical language, as we know it, is devoid of time and person. Computer interfaces are static and non-linear. Yet, as Bruner (1986; 1990) and others show, narrative is a powerful cognitive and epistemological tool. The questions we wish to explore are - - If, and how, can mathematical meaning be expressed in narrative forms - without compromising rigour? - What are the narrative aspects of user interface? How can interface design be guided by notions of narrative? - How can we harness the power of narrative in teaching mathematics, in a CSCL environment? We begin by giving a brief account of the use of narrative in educational theory. We will describe the environment and tools used by the WebLabs project, and report on one of our experiments. We will then describe our narrative-oriented framework, by using it to analyze both the environment and the experiment described

    A collective intelligence approach for building student's trustworthiness profile in online learning

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Information and communication technologies have been widely adopted in most of educational institutions to support e-Learning through different learning methodologies such as computer supported collaborative learning, which has become one of the most influencing learning paradigms. In this context, e-Learning stakeholders, are increasingly demanding new requirements, among them, information security is considered as a critical factor involved in on-line collaborative processes. Information security determines the accurate development of learning activities, especially when a group of students carries out on-line assessment, which conducts to grades or certificates, in these cases, IS is an essential issue that has to be considered. To date, even most advances security technological solutions have drawbacks that impede the development of overall security e-Learning frameworks. For this reason, this paper suggests enhancing technological security models with functional approaches, namely, we propose a functional security model based on trustworthiness and collective intelligence. Both of these topics are closely related to on-line collaborative learning and on-line assessment models. Therefore, the main goal of this paper is to discover how security can be enhanced with trustworthiness in an on-line collaborative learning scenario through the study of the collective intelligence processes that occur on on-line assessment activities. To this end, a peer-to-peer public student's profile model, based on trustworthiness is proposed, and the main collective intelligence processes involved in the collaborative on-line assessments activities, are presented.Peer ReviewedPostprint (author's final draft

    Towards a theory of augmented place

    Get PDF
    This short paper is aimed at inspiring dialogue and debate around the theoretical perspectives underpinning research into learning in technology-enhanced augmented places, and the engagement by such learners with blended environments/spaces. The author argues that current theories do not fully model or explain our interactions with technology-enhanced physical environments and that a new theory that combines aspects of these may be required in order to fully understand the way in which we move, interact and learn within such surroundings

    'First Portal in a Storm': A Virtual Space for Transition Students

    Get PDF
    The lives of millennial students are epitomised by ubiquitous information, merged technologies, blurred social-study-work boundaries, multitasking and hyperlinked online interactions (Oblinger & Oblinger, 2005). These characteristics have implications for the design of online spaces that aim to provide virtual access to course materials, administrative processes and support information, all of which is required by students to steer a course through the storm of their transition university experience. Previously we summarised the challenges facing first year students (Kift & Nelson, 2005) and investigated their current online engagement patterns, which revealed three issues for consideration when designing virtual spaces (Nelson, Kift & Harper, 2005). In this paper we continue our examination of students’ interactions with online spaces by considering the perceptions and use of technology by millennial students as well as projections for managing the virtual learning environments of the future. The findings from this analysis are informed by our previous work to conceptualise and describe the architecture of a transition portal
    corecore