265 research outputs found

    Infrastructure Wi-Fi for connected autonomous vehicle positioning : a review of the state-of-the-art

    Get PDF
    In order to realize intelligent vehicular transport networks and self driving cars, connected autonomous vehicles (CAVs) are required to be able to estimate their position to the nearest centimeter. Traditional positioning in CAVs is realized by using a global navigation satellite system (GNSS) such as global positioning system (GPS) or by fusing weighted location parameters from a GNSS with an inertial navigation systems (INSs). In urban environments where Wi-Fi coverage is ubiquitous and GNSS signals experience signal blockage, multipath or non line-of-sight (NLOS) propagation, enterprise or carrier-grade Wi-Fi networks can be opportunistically used for localization or “fused” with GNSS to improve the localization accuracy and precision. While GNSS-free localization systems are in the literature, a survey of vehicle localization from the perspective of a Wi-Fi anchor/infrastructure is limited. Consequently, this review seeks to investigate recent technological advances relating to positioning techniques between an ego vehicle and a vehicular network infrastructure. Also discussed in this paper is an analysis of the location accuracy, complexity and applicability of surveyed literature with respect to intelligent transportation system requirements for CAVs. It is envisaged that hybrid vehicular localization systems will enable pervasive localization services for CAVs as they travel through urban canyons, dense foliage or multi-story car parks

    A V2X Integrated Positioning Methodology in Ultra-dense Networks

    Get PDF

    Towards Vehicle-to-everything Autonomous Driving: A Survey on Collaborative Perception

    Full text link
    Vehicle-to-everything (V2X) autonomous driving opens up a promising direction for developing a new generation of intelligent transportation systems. Collaborative perception (CP) as an essential component to achieve V2X can overcome the inherent limitations of individual perception, including occlusion and long-range perception. In this survey, we provide a comprehensive review of CP methods for V2X scenarios, bringing a profound and in-depth understanding to the community. Specifically, we first introduce the architecture and workflow of typical V2X systems, which affords a broader perspective to understand the entire V2X system and the role of CP within it. Then, we thoroughly summarize and analyze existing V2X perception datasets and CP methods. Particularly, we introduce numerous CP methods from various crucial perspectives, including collaboration stages, roadside sensors placement, latency compensation, performance-bandwidth trade-off, attack/defense, pose alignment, etc. Moreover, we conduct extensive experimental analyses to compare and examine current CP methods, revealing some essential and unexplored insights. Specifically, we analyze the performance changes of different methods under different bandwidths, providing a deep insight into the performance-bandwidth trade-off issue. Also, we examine methods under different LiDAR ranges. To study the model robustness, we further investigate the effects of various simulated real-world noises on the performance of different CP methods, covering communication latency, lossy communication, localization errors, and mixed noises. In addition, we look into the sim-to-real generalization ability of existing CP methods. At last, we thoroughly discuss issues and challenges, highlighting promising directions for future efforts. Our codes for experimental analysis will be public at https://github.com/memberRE/Collaborative-Perception.Comment: 19 page

    Collaborative Perception in Autonomous Driving: Methods, Datasets and Challenges

    Full text link
    Collaborative perception is essential to address occlusion and sensor failure issues in autonomous driving. In recent years, theoretical and experimental investigations of novel works for collaborative perception have increased tremendously. So far, however, few reviews have focused on systematical collaboration modules and large-scale collaborative perception datasets. This work reviews recent achievements in this field to bridge this gap and motivate future research. We start with a brief overview of collaboration schemes. After that, we systematically summarize the collaborative perception methods for ideal scenarios and real-world issues. The former focuses on collaboration modules and efficiency, and the latter is devoted to addressing the problems in actual application. Furthermore, we present large-scale public datasets and summarize quantitative results on these benchmarks. Finally, we highlight gaps and overlook challenges between current academic research and real-world applications. The project page is https://github.com/CatOneTwo/Collaborative-Perception-in-Autonomous-DrivingComment: 18 pages, 6 figures. Accepted by IEEE Intelligent Transportation Systems Magazine. URL: https://github.com/CatOneTwo/Collaborative-Perception-in-Autonomous-Drivin

    Autonomous Vehicles: Open-Source Technologies, Considerations, and Development

    Full text link
    Autonomous vehicles are the culmination of advances in many areas such as sensor technologies, artificial intelligence (AI), networking, and more. This paper will introduce the reader to the technologies that build autonomous vehicles. It will focus on open-source tools and libraries for autonomous vehicle development, making it cheaper and easier for developers and researchers to participate in the field. The topics covered are as follows. First, we will discuss the sensors used in autonomous vehicles and summarize their performance in different environments, costs, and unique features. Then we will cover Simultaneous Localization and Mapping (SLAM) and algorithms for each modality. Third, we will review popular open-source driving simulators, a cost-effective way to train machine learning models and test vehicle software performance. We will then highlight embedded operating systems and the security and development considerations when choosing one. After that, we will discuss Vehicle-to-Vehicle (V2V) and Internet-of-Vehicle (IoV) communication, which are areas that fuse networking technologies with autonomous vehicles to extend their functionality. We will then review the five levels of vehicle automation, commercial and open-source Advanced Driving Assistance Systems, and their features. Finally, we will touch on the major manufacturing and software companies involved in the field, their investments, and their partnerships. These topics will give the reader an understanding of the industry, its technologies, active research, and the tools available for developers to build autonomous vehicles.Comment: 13 pages, 7 figure

    Signalling Design in Sensor-Assisted mmWave Communications for Cooperative Driving

    Get PDF
    Millimeter-Wave (mmWave) Vehicle-To-Vehicle (V2V) communications are a key enabler for connected and automated vehicles, as they support the low-latency exchange of control signals and high-resolution imaging data for maneuvering coordination. The employment of mmWave V2V communications calls for Beam Alignment and Tracking (BAT) procedures to ensure that the antenna beams are properly steered during motion. The conventional beam sweeping approach is known to be unsuited for the high vehicular mobility and its large overhead reduces transmission efficiency. A promising solution to reduce BAT signalling foresees the integration of V2V communication systems with on-board vehicle sensors. We focus on a cooperative sensor-assisted architecture for mmWave V2V communications in line of sight, where vehicles exchange the estimate of antenna position and its uncertainty to compute the optimal beam direction and dimension. We analyze and compare different signalling strategies for sharing the information on antenna estimate, evaluating the tradeoff between signalling overhead and performance loss for different position and uncertainty encoding strategies. Main attention is given to differential quantization on both the antenna position and uncertainty. Analyses over realistic urban mobility trajectories suggest that differential approaches introduce a negligible performance loss while significantly reducing the BAT signalling communication overhead

    A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles

    Get PDF
    Nowadays, with the advancement of technology, world is trending toward high mobility and dynamics. In this context, intersection management (IM) as one of the most crucial elements of the transportation sector demands high attention. Today, road entities including infrastructures, vulnerable road users (VRUs) such as motorcycles, moped, scooters, pedestrians, bicycles, and other types of vehicles such as trucks, buses, cars, emergency vehicles, and railway vehicles like trains or trams are able to communicate cooperatively using vehicle-to-everything (V2X) communications and provide traffic safety, efficiency, infotainment and ecological improvements. In this paper, we take into account different types of intersections in terms of signalized, semi-autonomous (hybrid) and autonomous intersections and conduct a comprehensive survey on various intersection management methods for heterogeneous connected vehicles (CVs). We consider heterogeneous classes of vehicles such as road and rail vehicles as well as VRUs including bicycles, scooters and motorcycles. All kinds of intersection goals, modeling, coordination architectures, scheduling policies are thoroughly discussed. Signalized and semi-autonomous intersections are assessed with respect to these parameters. We especially focus on autonomous intersection management (AIM) and categorize this section based on four major goals involving safety, efficiency, infotainment and environment. Each intersection goal provides an in-depth investigation on the corresponding literature from the aforementioned perspectives. Moreover, robustness and resiliency of IM are explored from diverse points of view encompassing sensors, information management and sharing, planning universal scheme, heterogeneous collaboration, vehicle classification, quality measurement, external factors, intersection types, localization faults, communication anomalies and channel optimization, synchronization, vehicle dynamics and model mismatch, model uncertainties, recovery, security and privacy

    Predicting Trajectory Paths For Collision Avoidance Systems

    Get PDF
    This work was motivated by the idea of developing a more encompassing collision avoidance system that supported vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications. Current systems are mostly based on line of sight sensors that are used to prevent a collision, but these systems would prevent even more accidents if they could detect possible collisions before both vehicles were in line of sight. For this research we concentrated mostly on the aspect of improving the prediction of a vehicle\u27s future trajectory, particularly on non-straight paths. Having an accurate prediction of where the vehicle is heading is crucial for the system to reliably determine possible path intersections of more than one vehicle at the same time. We first evaluated the benefits of merging Global Positioning System (GPS) data with the Geographical Information System (GIS) data to correct improbable predicted positions. We then created a new algorithm called the Dead Reckoning with Dynamic Errors (DRWDE) sensor fusion, which can predict future positions at the rate of its fastest sensor, while improving the handling of accumulated error while some of the sensors are offline for a given period of time. The last part of out research consisted in the evaluation of the use of smartphones\u27 built-in sensors to predict a vehicle\u27s trajectory, as a possible intermediate solution for a vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications, until all vehicles have all the necessary sensors and communication infrastructure to fully populate this new system. For the first part of our research, the actual experimental results validated our proposed system, which reduced the position prediction errors during curves to around half of what it would be without the use of GIS data for prediction corrections. The next improvement we worked on was the ability to handle change in noise, depending on unavailable sensor measurements, permitting a flexibility to use any type of sensor and still have the system run at the fastest frequency available. Compared to a more common KF implementation that run at the rate of its slowest sensor (1Hz in our setup), our experimental results showed that our DRWDE (running at 10Hz) yielded more accurate predictions (25-50% improvement) during abrupt changes in the heading of the vehicle. The last part of our research showed that, comparing to results obtained with the vehicle-mounted sensors, some smartphones yield similar prediction errors and can be used to predict a future position
    corecore