936 research outputs found

    Performance evaluation of non-prefiltering vs. time reversal prefiltering in distributed and uncoordinated IR-UWB ad-hoc networks

    Get PDF
    Time Reversal (TR) is a prefiltering scheme mostly analyzed in the context of centralized and synchronous IR-UWB networks, in order to leverage the trade-off between communication performance and device complexity, in particular in presence of multiuser interference. Several strong assumptions have been typically adopted in the analysis of TR, such as the absence of Inter-Symbol / Inter-Frame Interference (ISI/IFI) and multipath dispersion due to complex signal propagation. This work has the main goal of comparing the performance of TR-based systems with traditional non-prefiltered schemes, in the novel context of a distributed and uncoordinated IR-UWB network, under more realistic assumptions including the presence of ISI/IFI and multipath dispersion. Results show that, lack of power control and imperfect channel knowledge affect the performance of both non-prefiltered and TR systems; in these conditions, TR prefiltering still guarantees a performance improvement in sparse/low-loaded and overloaded network scenarios, while the opposite is true for less extreme scenarios, calling for the developement of an adaptive scheme that enables/disables TR prefiltering depending on network conditions

    Interference Mitigation for coded MB-OFDM UWB

    Get PDF
    Frequency Division Multiplexing (MB-OFDM) standard for high rate Ultra Wideband (UWB) wireless communication in the 3.1– 10.6 GHz band. The performance of MB-OFDM is impacted by interference from IEEE 802.16 WiMAX systems operating in the licensed 3.5 GHz band. Motivated by recent work showing the approximately Gaussian nature of the WiMAX interference to MB-OFDM, we propose a simple two-stage interference mitigation technique for coded MB-OFDM transmissions according to the ECMA-368 standard, consisting of interference spectrum estimation during silent periods followed by appropriate bit metric weighting during Viterbi decoding. We compare parametric and non-parametric spectrum estimation techniques for coded MB-OFDM transmissions and WiMAX interference for various scenarios of interest. The proposed two-stage interference mitigation technique is shown to be highly effective at mitigating the impact of WiMAX interference

    A Quantitative Assessment of the Compatibility of Ultra Wideband with Broadband Wireless Access and Radar Services

    Get PDF
    In July 2008, following a request made by the Radio Spectrum Policy Unit in DG INFSO (Unit B4), a pilot phase of twelve months was agreed with Member States representatives in the Radio Spectrum Committee. During this time the Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to provide testing facilities to support the development of Community spectrum legal measures under the Radio Spectrum Decision (676/2002/EC). In the frame of this pilot phase, IPSC-JRC has successfully completed the implementation and extensive testing of both a state-of-the-art laboratory test-bed and a simulation tool, which have been specifically designed for two different coexistence studies. Firstly, the coexistence between broadband wireless access (BWA) and ultra wideband (UWB) services in the 3.5 GHz frequency band; and secondly, the coexistence between radiolocation (i.e. radar) and UWB services in the 3.1-3.4 GHz frequency band. The selection of these two coexistence scenarios is not casual and has been made based on the fact that they have been considered highly relevant in the CEPT-ECC studies on UWB mandated by the European Commission.JRC.G.6-Security technology assessmen

    Enhancing MB-OFDM throughput with dual circular 32-QAM

    Get PDF
    Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the users experience of these products. To enable the transport of high-rate USB, ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. This paper presents an alternative high data rate modulation scheme that fits within the configuration of the current standard increasing system throughput by achieving 600 Mb/s (reliable to 3.1 meters) thus maintaining the high rate USB throughput even with a moderate level of dropped packets. The modulation system is termed Dual Circular 32-QAM (DC 32-QAM). The system performance for DC 32-QAM modulation is presented and compared with 16-QAM and DCM1

    Interference Mitigation for Energy Detection in a Multiband Impulse Radio UWB System

    Get PDF
    On-Off-Keying with energy detection is a promising candidate when aiming at simple receiver concepts, due to the fact that simple energy detection reduces receiver complexity. On the other hand, data rates are low and interference mitigation by correlation is no longer possible. This paper proposes and analyzes a method for mitigating asynchronous interferers in energy detection receivers by adapting the maximum likelihood decision rule. It is shown that detection in the presence of interferers is improved and detection in absence of interferers is not declined

    Performance Evaluation of 802.15.4 UWB PHY for High Speed Data Rate under IEEE Channel Mode

    Get PDF
    In modern day society the increase of data generation and transfer has been an issue that researchers are working on. This generated and shared data might have a different purpose but one thing is certain, the reception. This communication can cover continents, countries, cities or even just a few meters. For the purpose of the later, personal area networks (PAN) have been created with a main focus to lower the energy consumption. The protocol that is created under IEEE is 802.15.4 and it has multiple applications in the context of next generation sensor networks. This thesis investigates the performance IEEE 802.15.4 UWB PHY for high data rates over IEEE multipath fading channels and introduces receivers aiming to diversity and to mitigate the intersymbol interference (ISI) that might appear. We simulate the protocols highest mandatory data rate over slow, block faded, realistic IEEE channel models such as, residential, office, outdoor and industrial. The simulation includes Reed Solomon (RS) channel coding, optimal successive erasure decoding (SED), and coherent RAKE receivers. We verify that the selective RAKE (sRAKE) perform better than the nonselective RAKE (n-sRAKE) in all environments and also the increase of fingers is mandatory in order to improve performance. In cases with low number of fingers the ISI mitigation techniques like Maximum-Likehood Sequence Estimator (MLSE) & RAKE combination or Maximum Ration Combining (MRC) ISI cancellation receivers, can provide some gain in large delay spread environments. In cases with high number of ingers the MRC received employs its full diversity since the received power is arger than before. Overall the apply of optimal errors and erasures decoding can urther improve the system performance by adding a small gain, lowering existing it Error Probability (BEP) even more.A huge percentage of data has been generated in the last two years and it will grow more, as every one of us is constantly producing and releasing data. The latest years has been an extensive research on capacity maximization, bit rate increment and power optimization. That research lead to the development of various protocols for cellular and personal area networks (PAN), where they each utilizes the frequency spectrum differently. Even if cellular networks have the ability to cover large area, development of multiple personal area networks can be developed for the purpose to offload data from the cellular network. Keeping in mind the research needs, 802.15.4 UWH PHY is a solid candidate when it comes to data transfer in a small area. This protocol offers various mandatory transmission modes that can be selected depending the channel parameters and various data rate needs. Time hopping and spreading sequence offers the existence of multiuser environment where multiple transceivers can co-exist. Overall the complexity, cost and energy consumption for transmission and reception can be kept low, matching the research needs. The main issues regarding 802.15.4 UWH PHY and high speed data rates is first, the energy dispersion of the transmitted symbol to multiple bins and second, the appearance of Inter Symbol Interference (ISI) in high delay profile environments. The solution in the former problem is the necessary implementation of a RAKE receiver. Regarding the latter, literature offers multiple ways to mitigate the ISI but the aim should be to keep the lowest complexity possible regarding the implementation. In this thesis we evaluate the performance of 802.15.4 UWB PHY for high speed data rates under IEEE channel models. Various receivers has been build for the purpose of this thesis, Maximum Ratio Combining (MRC), MRC with Inter Symbol Interference and MLSE & RAKE combination receiver. The MRC is a simple RAKE receiver with maximum diversity, MRC with ISI cancellation is based on the MRC receiver with the ability to mitigate ISI, and MLSE & RAKE combination is an optimum ISI mitigation receiver without the diversity of the MRC
    • …
    corecore