2,514 research outputs found

    Resilience options for provisioning anycast cloud services with virtual optical networks

    Get PDF
    Optical networks are crucial to support increasingly demanding cloud services. Delivering the requested quality of services (in particular latency) is key to successfully provisioning end-to-end services in clouds. Therefore, as for traditional optical network services, it is of utter importance to guarantee that clouds are resilient to any failure of either network infrastructure (links and/or nodes) or data centers. A crucial concept in establishing cloud services is that of network virtualization: the physical infrastructure is logically partitioned in separate virtual networks. To guarantee end-to-end resilience for cloud services in such a set-up, we need to simultaneously route the services and map the virtual network, in such a way that an alternate routing in case of physical resource failures is always available. Note that combined control of the network and data center resources is exploited, and the anycast routing concept applies: we can choose the data center to provide server resources requested by the customer to optimize resource usage and/or resiliency. This paper investigates the design of scalable optimization models to perform the virtual network mapping resiliently. We compare various resilience options, and analyze their compromise between bandwidth requirements and resiliency quality

    Insights in the cost of continuous broadband Internet on trains for multi-service deployments by multiple actors with resource sharing

    Get PDF
    The economic viability of broadband Internet services on trains has always been proved difficult, mainly due to a high investment cost and low willingness to pay by train passengers, but also due to unused opportunities such as non-passenger services (e.g. train performance monitoring, crew services) and optimization of the resources consumed to offer Internet services. Evaluating opportunities to improve the return on investment is therefore essential towards profitability of the business case. By efficiently sharing resources amongst services, costs can be pooled over several services in order to reduce the investment cost per service. Current techno-economic evaluation models are hard to apply to cost allocation in a multi-service deployment with multiple actors and resource sharing. We therefore propose a new evaluation model and apply it to a deployment of Internet services on trains. We start with a detailed analysis of the technical architecture required to provide Internet access on trains. For each component, we investigate the impact by the different services on resource consumption. The proposed techno-economic evaluation model is then applied in order to calculate the total cost and allocate the used and unused resources to the appropriate services. In a final step, we calculate the business case for each stakeholder involved in the offering of these services. This paper details the proposed model and reports on our findings for a multi-service deployment by multiple actors. Results show important benefits for the case that considers the application of resource sharing in a multi-service, multi-actor scenario and the proposed model produces insights in the contributors to the cost per service and the unused amount of a resource. In addition, ex-ante insights in the cost flows per involved actor are obtained and the model can easily be extended to include revenue flows to evaluate the profitability per actor. As a consequence, the proposed model should be considered to support and stimulate upcoming multi-actor investment decisions for Internet-based multi-service offerings on-board trains with resource sharing

    Joint dimensioning of server and network infrastructure for resilient optical grids/clouds

    Get PDF
    We address the dimensioning of infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We design the resulting grid/cloud to be resilient against network link or server failures. To this end, we exploit relocation: Under failure conditions, a grid job or cloud virtual machine may be served at an alternate destination (i.e., different from the one under failure-free conditions). We thus consider grid/cloud requests to have a known origin, but assume a degree of freedom as to where they end up being served, which is the case for grid applications of the bag-of-tasks (BoT) type or hosted virtual machines in the cloud case. We present a generic methodology based on integer linear programming (ILP) that: 1) chooses a given number of sites in a given network topology where to install server infrastructure; and 2) determines the amount of both network and server capacity to cater for both the failure-free scenario and failures of links or nodes. For the latter, we consider either failure-independent (FID) or failure-dependent (FD) recovery. Case studies on European-scale networks show that relocation allows considerable reduction of the total amount of network and server resources, especially in sparse topologies and for higher numbers of server sites. Adopting a failure-dependent backup routing strategy does lead to lower resource dimensions, but only when we adopt relocation (especially for a high number of server sites): Without exploiting relocation, potential savings of FD versus FID are not meaningful

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Anycast end-to-end resilience for cloud services over virtual optical networks

    Get PDF
    Optical networks are crucial to support increasingly demanding cloud services. Delivering the requested quality of service is key to successfully provisioning end-to-end services in clouds. Therefore, as for traditional optical network services, it is of utter importance to guarantee that clouds are resilient to any failure of either network infrastructure or data centers. A crucial concept in establishing cloud services is that of network virtualization: the physical infrastructure is logically partitioned in separate virtual networks. Also, combined control of the network and data center (IT) resources is exploited. To guarantee end-to-end resilience for cloud services in such a set-up, we need to simultaneously route the services and map the virtual network, while ensuring that an alternate routing is always available. Note that the anycast routing concept applies: assigning server resources requested by the customer to a particular (physical) data center can be done transparently. This paper investigates the design of scalable optimization models to perform the virtual network mapping resiliently (for single bidirectional link failures), thus supporting resilient anycast cloud virtual networks. We compare two resilience approaches: PIP-resilience maps each virtual link to two alternate physical routes, VNO-resilience provides alternate paths in the virtual topology (while enforcing physical link disjointness)

    Design and optimization of optical grids and clouds

    Get PDF

    Pilvipohjaisen radioliityntäverkon kustannusten mallintaminen

    Get PDF
    The rapid growth of mobile data traffic is challenging the current way of building and operating the current radio access network. Cloud-based radio access network is researched as a solution to provide the required capacity for rapidly growing traffic demand in more economical manner. Scope of this thesis is to evaluate the costs of different existing and future radio access network architectures depending on the given network and traffic scenario. This is done by creating a cost model based on expert interviews to solve the most economical solution for the given network in terms of total cost of ownership. The results show that the cloud-based radio access network’s cost benefits are dependent on the expected traffic growth. In the low traffic growth scenario, the cost benefits of cloud-based radio access network are questionable, but in the high traffic growth scenario clear cost benefits are achieved.Mobiilidataliikenteen nopea kasvu haastaa nykyisen tavan rakentaa ja hallinnoida tämän hetkisiä radioliityntäverkkoja. Pilvipohjaista radioliityntäverkkoa tutkitaan ratkaisuksi tarjota tarvittavaa verkkokapasiteettia entistä taloudellisemmin. Tämän opinnäytetyön tarkoituksena on arvioida nykyisten ja pilvipohjaisten radioliityntäverkkoarkkitehtuurien kustannuksia riippuen verkon rakenteesta ja liikenteestä. Tämä toteutetaan luomalla kustannusmalli, joka perustuu asiantuntijoiden haastatteluihin. Mallin avulla on mahdollista vertailla annetun verkon eri arkkitehtuurien kokonaiskustannuksia ja selvittää taloudellisin radioliityntäverkkoarkkitehtuuri verkolle. Mallinnuksen tulokset osoittavat, että pilvipohjaisen radioliityntäverkon taloudelliset hyödyt ovat riippuvaisia dataliikenteen kasvusta verkossa. Vähäisellä data-liikenteen kasvulla pilvipohjaisen radioliityntäverkon kustannusedut ovat kyseenalaiset, mutta suurella dataliikenteen kasvulla saadaan selviä säästöjä verrattuna nykyisiin arkkitehtuureihin

    On the feasibility of collaborative green data center ecosystems

    Get PDF
    The increasing awareness of the impact of the IT sector on the environment, together with economic factors, have fueled many research efforts to reduce the energy expenditure of data centers. Recent work proposes to achieve additional energy savings by exploiting, in concert with customers, service workloads and to reduce data centers’ carbon footprints by adopting demand-response mechanisms between data centers and their energy providers. In this paper, we debate about the incentives that customers and data centers can have to adopt such measures and propose a new service type and pricing scheme that is economically attractive and technically realizable. Simulation results based on real measurements confirm that our scheme can achieve additional energy savings while preserving service performance and the interests of data centers and customers.Peer ReviewedPostprint (author's final draft

    Proactive model to determine information technologies supporting expansion of air cargo network

    Get PDF
    Shippers and recipients expect transportation companies to provide more than just the movement of a package between points; certain information must be available to them as well, to enable forecasts and plans within the supply chain. The transportation companies also need the information flow that undergirds a transportation grid, to support ad-hoc routing and strategic structural re-alignment of business processes. This research delineates the information needs for an expanding air cargo network, then develops a new model of the information technologies needed to support expansion into a new country. The captured information will be used by shippers, recipients, and the transportation provider to better guide business decisions. This model will provide a method for transportation companies to balance the tradeoffs between the operating efficiencies, capital expenditures, and customer expectations of their IT systems. The output of the model is a list of technologies – optimized by cost – which meet the specific needs of internal and external customers when expanding air cargo networks into a new country
    corecore