7 research outputs found

    Learning language through pictures

    Full text link
    We propose Imaginet, a model of learning visually grounded representations of language from coupled textual and visual input. The model consists of two Gated Recurrent Unit networks with shared word embeddings, and uses a multi-task objective by receiving a textual description of a scene and trying to concurrently predict its visual representation and the next word in the sentence. Mimicking an important aspect of human language learning, it acquires meaning representations for individual words from descriptions of visual scenes. Moreover, it learns to effectively use sequential structure in semantic interpretation of multi-word phrases.Comment: To appear at ACL 201

    Learning High-Level Planning from Text

    Get PDF
    Comprehending action preconditions and effects is an essential step in modeling the dynamics of the world. In this paper, we express the semantics of precondition relations extracted from text in terms of planning operations. The challenge of modeling this connection is to ground language at the level of relations. This type of grounding enables us to create high-level plans based on language abstractions. Our model jointly learns to predict precondition relations from text and to perform high-level planning guided by those relations. We implement this idea in the reinforcement learning framework using feedback automatically obtained from plan execution attempts. When applied to a complex virtual world and text describing that world, our relation extraction technique performs on par with a supervised baseline, yielding an F-measure of 66% compared to the baseline’s 65%. Additionally, we show that a high-level planner utilizing these extracted relations significantly outperforms a strong, text unaware baseline – successfully completing 80% of planning tasks as compared to 69% for the baseline.National Science Foundation (U.S.) (CAREER Grant IIS-0448168)United States. Defense Advanced Research Projects Agency. Machine Reading Program (FA8750-09-C-0172, PO#4910018860)Battelle Memorial Institute (PO#300662

    Learning to win by reading manuals in a Monte-Carlo framework

    Get PDF
    This paper presents a novel approach for leveraging automatically extracted textual knowledge to improve the performance of control applications such as games. Our ultimate goal is to enrich a stochastic player with high-level guidance expressed in text. Our model jointly learns to identify text that is relevant to a given game state in addition to learning game strategies guided by the selected text. Our method operates in the Monte-Carlo search framework, and learns both text analysis and game strategies based only on environment feedback. We apply our approach to the complex strategy game Civilization II using the official game manual as the text guide. Our results show that a linguistically-informed game-playing agent significantly outperforms its language-unaware counterpart, yielding a 27% absolute improvement and winning over 78% of games when playing against the built-in AI of Civilization II.National Science Foundation (U.S.) (CAREER grant IIS-0448168)National Science Foundation (U.S.) (CAREER grant IIS-0835652)United States. Defense Advanced Research Projects Agency (DARPA Machine Reading Program (FA8750-09- C-0172))Microsoft Research (New Faculty Fellowship

    Learning to Speak and Act in a Fantasy Text Adventure Game

    Get PDF
    We introduce a large scale crowdsourced text adventure game as a research platform for studying grounded dialogue. In it, agents can perceive, emote, and act whilst conducting dialogue with other agents. Models and humans can both act as characters within the game. We describe the results of training state-of-the-art generative and retrieval models in this setting. We show that in addition to using past dialogue, these models are able to effectively use the state of the underlying world to condition their predictions. In particular, we show that grounding on the details of the local environment, including location descriptions, and the objects (and their affordances) and characters (and their previous actions) present within it allows better predictions of agent behavior and dialogue. We analyze the ingredients necessary for successful grounding in this setting, and how each of these factors relate to agents that can talk and act successfully

    Eine agentenbasierte Architektur für Programmierung mit gesprochener Sprache

    Get PDF
    Sprachgesteuerte Computersysteme werden heutzutage von Millionen von Nutzern verwendet; Chatbots, virtuelle Assistenten, wie Siri oder Google Assistant, und Smarthomes sind längst fester Bestandteil des Alltags vieler Menschen. Zwar erscheinen derartige Systeme inzwischen intelligent; tatsächlich reagieren sie aber nur auf einzelne Befehle, die zudem bestimmte Formulierungen erfordern. Die Nutzer sind außerdem auf vorgefertigte Funktionalitäten beschränkt; neue Befehle können nur von Entwicklern einprogrammiert und vom Hersteller zur Verfügung gestellt werden. In Zukunft werden Nutzer erwarten, intelligente Systeme nach ihren Bedürfnissen anzupassen, das heißt programmieren zu können. Das in dieser Arbeit beschriebene System ProNat ermöglicht Endnutzer-Programmierung mit gesprochener Sprache. Es befähigt Laien dazu, einfache Programme für unterschiedliche Zielsysteme zu beschreiben und deren Funktionalität zu erweitern. ProNat basiert auf PARSE, einer eigens entworfenen agentenbasierten Architektur für tiefes Sprachverständnis. Das System ermöglicht die Verwendung alltäglicher Sprache zur Beschreibung von Handlungsanweisungen. Diese werden von ProNat als Programm für ein Zielsystem interpretiert, das eine Anwendungsschnittstelle zur Endnutzer-Programmierung anbietet. Bisherige Ansätze zur Programmierung mit natürlicher Sprache ermöglichen nur die Erzeugung kurzer Programme anhand textueller Beschreibungen. Da die meisten Systeme monolithisch entworfen wurden, können sie zudem nur mit großem Aufwand adaptiert werden und sind überwiegend auf die Anwendung einer Technik (z. B. maschinelles Lernen) sowie auf eine Anwendungsdomäne festgelegt (z. B. Tabellenkalkulation). Ansätze, die gesprochene Sprache verarbeiten, können hingegen bisher nur einzelne Befehle erfassen. Um die Restriktionen bisheriger Ansätze aufzuheben, wird eine neuartige Architektur entworfen. Die Kernkomponenten der Architektur PARSE bilden unabhängige Agenten, die je einen bestimmten Aspekt der natürlichen Sprache analysieren. Die Kapselung in unabhängige Agenten ermöglicht es, je Teilaspekt zum Verständnis der Sprache eine andere Technik zu verwenden. Die Agenten werden nebenläufig ausgeführt. Dadurch können sie von Analyseergebnissen anderer Agenten profitieren; unterschiedliche Sprachanalysen können sich so gegenseitig unterstützen. Beispielsweise hilft es, sprachliche Referenzen wie Anaphern aufzulösen, um den Kontext des Gesagten zu verstehen; manche Referenzen können wiederum nur mithilfe des Kontextes aufgelöst werden. Ihr Analyseergebnisse hinterlegen die Agenten in einer geteilten Datenstruktur, einem Graphen. Die Architektur stellt sicher, dass keine Wettlaufsituationen eintreten und nur gültige Änderungen am Graphen durchgeführt werden. Die Agenten werden so lange wiederholt ausgeführt, bis keine oder nur noch zyklische Änderungen eintreten. Neben den Agenten gibt PARSE die Verwendung von Fließbändern zur Vor- und Nachverarbeitung vor. Zudem können externe Ressourcen, wie Wissensdatenbanken oder Kontextmodellierungen, angeschlossen werden. Das System ProNat entsteht, indem konkrete Agenten und Fließbandstufen für die Rahmenarchitektur PARSE bereitgestellt werden. Zusätzlich werden Informationen über die Anwendungsdomäne (das heißt die Anwendungsschnittstelle des Zielsystems und gegebenenfalls eine Modellierung der Systemumgebung) in Form von Ontologien als externe Ressource angebunden. Eine gesprochene Äußerung wird von ProNat vorverarbeitet, indem zunächst das Audiosignal in eine textuelle Wortsequenz überführt wird. Anschließend erfolgt eine grundlegende syntaktische Analyse, bevor ein initialer Graph als Analysegrundlage für die Agenten erzeugt wird. Die Interpretation des Gesagten als Programm obliegt den Agenten. Es wurden sechzehn Agenten entwickelt, die sich in drei Kategorien unterteilen lassen: Erstens, Agenten, die allgemeine Sprachverständnis-Analysen durchführen, wie die Disambiguierung von Wortbedeutungen, die Auflösung von sprachlichen Referenzen oder die Erkennung von Gesprächsthemen. Zweitens, Agenten, die das Gesagte auf programmatische Strukturen, wie Anwendungsschnittstellenaufrufe oder Kontrollstrukturen, untersuchen; hierzu zählt auch ein Agent, der aus verbalisierten Lehrsequenzen Methodendefinitionen synthetisiert. Da die Agenten unabhängig voneinander agieren, kann zur Lösung der jeweiligen Problemstellung eine beliebige Technik eingesetzt werden. Die Agenten zur Erkennung von Kontrollstrukturen verwenden beispielsweise Heuristiken, die auf syntaktischen Strukturen basieren, um ihre Analysen durchzuführen. Andere Agenten, wie die Agenten zur Disambiguierung von Wortbedeutungen oder zur Bestimmung der Gesprächsthemen, verwenden Wikipedia, Wordnet oder ähnliche Quellen und inferieren anhand dieser Informationen. Zuletzt verwenden einige Agenten, wie beispielsweise der Agent zur Erkennung von Lehrsequenzen, maschinelles Lernen. Die Interpretation einer gesprochenen Äußerung erfolgt dementsprechend mittels einer Kombination von sowohl regel- als auch statistik- und wissensbasierten Techniken. Dank der strikten Trennung der Agenten können diese einzeln (und zumeist unabhängig voneinander) evaluiert werden. Hierzu wurden parallel zur Entwicklung der Agenten fortwährend mithilfe von Nutzerstudien realistische Eingabebeispiele gesammelt. Für jeden Agenten kann somit überprüft werden, ob er einen zufriedenstellenden Beitrag zur Interpretation des Gesagten beiträgt. Das gemeinschaftliche Analyseergebnis der Agenten wird in der Nachverarbeitung sukzessive in ein konkretes Programm übersetzt: Zunächst wird ein abstrakter Syntaxbaum generiert, der anschließend in Quelltext zur Steuerung eines Zielsystems überführt wird. Die Fähigkeit des Systems ProNat, aus gesprochenen Äußerungen Quelltext zu generieren, wurde anhand von drei unabhängigen Untersuchungen evaluiert. Als Datengrundlage dienen alle in den Nutzerstudien gesammelten natürlichsprachlichen Beschreibungen. Zunächst wurden für eine Online-Studie UML-Aktivitätsdiagramme aus gesprochenen Äußerungen generiert und 120 Probanden zur Bewertung vorgelegt: Der überwiegende Teil der Aktivitätsdiagramme (69%) wurde von der Mehrheit der Probanden als vollständig korrekt eingestuft, ein vielversprechendes Ergebnis, da die gesprochenen Äußerungen die Synthese von bis zu 24 Anweisungen (bzw. Aktivitäten) sowie Kontrollstrukturen erfordern. In einer zweiten Untersuchung wurde Java-Quelltext, bestehend aus Aufrufen einer Anwendungsschnittstelle zur Steuerung eines humanoiden Roboters, synthetisiert und mit einer Musterlösung verglichen: ProNat konnte Aufrufe meist korrekt erzeugen (F1: 0,746); auch die Synthese von Kontrollstrukturen gelingt in 71% der Fälle korrekt. Zuletzt wurde untersucht, wie gut ProNat anhand von natürlichsprachlichen Beschreibungen neue Funktionen erlernen kann: Verbalisierte Lehrsequenzen werden mit einer Genauigkeit von 85% in Äußerungen erkannt. Aus diesen leitet ProNat Methodendefinitionen ab; dabei gelingt es in über 90% der Fälle, einen sprechenden Methodennamen zu erzeugen. Auch der Aufruf der neu erlernten Funktion (durch natürlichsprachliche Anweisungen) gelingt mit einer Genauigkeit von 85%. Zusammengenommen zeigen die Untersuchungen, dass ProNat grundsätzlich in der Lage ist, Programme aus gesprochenen Äußerungen zu synthetisieren; außerdem können neue Funktionen anhand natürlichsprachlicher Beschreibungen erlernt werden

    Intentional context in situated natural language learning

    No full text
    Natural language interfaces designed for situationally embedded domains (e.g. cars, videogames) must incorporate knowledge about the users ’ context to address the many ambiguities of situated language use. We introduce a model of situated language acquisition that operates in two phases. First, intentional context is represented and inferred from user actions using probabilistic context free grammars. Then, utterances are mapped onto this representation in a noisy channel framework. The acquisition model is trained on unconstrained speech collected from subjects playing an interactive game, and tested on an understanding task.
    corecore