715 research outputs found

    Linear and nonlinear arx model for intelligent pneumatic actuator systems

    Get PDF
    System modeling in describing the dynamic behavior of the system is very important and can be considered as a challenging problem in control systems engineering. This article presents the linear and nonlinear approaches using AutoRegressive with Exogenous Input (ARX) model structure for the modeling of position control of an Intelligent Pneumatic Actuator (IPA) system. The input and output data of the system were obtained from real-time experiment conducted while the linear and nonlinear mathematical models of the system were obtained using system identification (SI) technique. Best fit and Akaike’s criteria were used to validate the models. The results based on simulation reveals that nonlinear ARX (NARX) had the best performance for the modeling of position control of IPA system. The results show that nonlinear modeling is an effective way of analyzing and describing the dynamic behavior and characteristics of IPA system. This approach is also expected to be able to be applied to other systems. A future study exploring the execution of other model structures in demonstrating the position control of IPA system would be exceptionally intriguing

    Model Identification And Controller Design For An Electro-Pneumatic Actuator System With Dead Zone Compensation

    Get PDF
    Pneumatic actuator system is inexpensive, high power to weight ratio, cleanliness and ease of maintenance make it’s a choice compared to hydraulic actuator and electromagnetic actuator. Nonetheless, the steady state error of the system is high due to the dead zone of the valve. In this paper, an Auto-Regressive with External Input (ARX) model structure is chosen to represent the pneumatic actuator system. The recursive least square method is used to estimate the model parameters. The pole-assignment controller is then developed for position tracking. To cater the problem of high in steady state error, the dead zone compensation is added to the system. The dead zone controller was designed based on the inverse dead zone model and the dead zone compensation designed based on the desired error. The proposed method is then experimentally with varies load and compares with Nonlinear PID controller. The result shows that the proposed controller reduced the overshoot and steady state error of the pneumatic actuator system to no overshoot and 0.025mm respectively. Index terms: System identification, recursive least square, ARX, dead zone compensator, pneumatic actuato

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    Diseño de un controlador de seguimiento para un sistema SISO de servoposicionamiento neumático

    Get PDF
    Pneumatic systems have many advantages, such as simplicity, reliability, low-cost, long life, etc. making them attractive for rapid development and widespread application, but the complexity of the airflow through the valve port and the friction between the cylinder and piston make it difficult to establish an exact mathematical model and control the pneumatic system with high precision. Experiments were conducted with a 25 mm bore rod-less pneumatic cylinder and a 5/3 way proportional control valve. In this contribution, I propose a nonlinear robust tracking control strategy to solve the tracking problem of the servo pneumatic positioning system. The approach is novel in the sense that it takes into account the nonlinearities inherent to pneumatic servo positioning systems and considers position, velocity and pressure difference in the chambers of the pneumatic cylinder as feedback states. The suggested control strategy is implemented in simulation and on the real system. Experimental results from an implementation on a test ring show a high position tracking control performance.Los sistemas neumáticos tienen varias ventajas que permitieron su rápido desarrollo y uso generalizado, tales como: simplicidad, confiabilidad, bajo costo, larga vida etc. Sin embargo, la complejidad del flujo de aire a través de los orificios de la válvula y la naturaleza de la fuerza de fricción entre las paredes del cilindro y el pistón, dificultan la obtención de modelos matemáticos exactos y el control de los sistemas neumáticos con alta precisión. Experimentos fueron llevados a cabo con un cilindro sin vástago de 25 mm de diámetro y una válvula de control proporcional de 5 puertos -3 vías. En este artículo, proponemos una estrategia de control de posicionamiento robusta para solucionar el problema de un sistema de servo posicionamiento neumático. El enfoque es novedoso en el sentido de que tiene en cuenta las no linealidades inherentes a los sistemas de servo posicionamiento neumático y considera posición, velocidad y diferencia de presiones en las cámaras del cilindro neumático como estados de retroalimentación.  La estrategia de control propuesta es implementada en simulación y sobre el sistema real. Los resultados experimentales de la implementación de la estrategia en el sistema de servo-posicionamiento  neumático muestran un alto desempeño en el control de seguimiento de posición

    Positioning Control of an Antagonistic Pneumatic Muscle Actuated System using Feedforward Compensation with Cascaded Control Scheme

    Get PDF
    This paper presents a feedforward compensation with cascaded control scheme (FFC) for the positioning control of a vertical antagonistic based pneumatic muscle actuated (PMA) system. Owing to the inherent nonlinearities and time varying parameters exhibited by PMA, conventional fixed controllers unable to demonstrate high positioning performance. Hence, the feedforward compensation with cascaded control scheme is proposed whereby the scheme includes a PID controller coupled with nonlinear control elements. The proposed scheme has a simple control structure in addition to its straightforward design procedures. Though there are nonlinear control elements involved, these elements are derived from the open loop system responses that does not requires any accurate known parameters. Performance of the FFC scheme are then evaluated experimentally and compared to a PID controller with feedforward compensation (FF-PID) in point-to-point motion of different step heights. Overall, the experimental results show that the effectiveness of the proposed FFC scheme in reducing the steady state error to zero in comparison to FF-PID controller for all cases of step heights examined

    Intelligent position control for intelligent Pneumatic actuator with ball-beam (IPABB) system

    Get PDF
    A pneumatic actuator system is considered extremely nonlinear, making accurate position control of this actuator difficult to obtain. In this article, a novel cascade fractional-order PID (CFOPID) controller for the intelligent pneumatic actuator (IPA) positioning system utilizing particle swarm optimization (PSO) is presented. The pneumatic system was modeled using the system identification (SI) technique. To demonstrate the effectiveness of the CFOPID controller, a comparison to the FOPID controller is performed based on the rise, settling, and peak times, peak overshoot, and integral of square error (ISE). From the results obtained, the proposed CFOPID controller provides superior control over the FOPID controller. For the application of the position controller, the proposed system incorporates an intelligent pneumatic actuated ball and beam (IPABB) system. The mathematical model of the system was developed and validated through a simulation utilizing a PID (outer loop) and CFOPID controller (inner loop). The suggested controller’s accuracy and robustness have been studied by a comparative examination of the results obtained utilizing the proposed and other prior controllers on the same system. The results indicate that the intelligent pneumatic actuator, when coupled with a CFOPID controller, is capable of controlling the positioning of the ball and beam system
    corecore