1,186 research outputs found

    Smart element aware gate controller for intelligent wheeled robot navigation

    Get PDF
    The directing of a wheeled robot in an unknown moving environment with physical barriers is a difficult proposition. In particular, having an optimal or near-optimal path that avoids obstacles is a major challenge. In this paper, a modified neuro-controller mechanism is proposed for controlling the movement of an indoor mobile robot. The proposed mechanism is based on the design of a modified Elman neural network (MENN) with an effective element aware gate (MEEG) as the neuro-controller. This controller is updated to overcome the rigid and dynamic barriers in the indoor area. The proposed controller is implemented with a mobile robot known as Khepera IV in a practical manner. The practical results demonstrate that the proposed mechanism is very efficient in terms of providing shortest distance to reach the goal with maximum velocity as compared with the MENN. Specifically, the MEEG is better than MENN in minimizing the error rate by 58.33%

    Review of Intelligent Control Systems with Robotics

    Get PDF
    Interactive between human and robot assumes a significant job in improving the productivity of the instrument in mechanical technology. Numerous intricate undertakings are cultivated continuously via self-sufficient versatile robots. Current automated control frameworks have upset the creation business, making them very adaptable and simple to utilize. This paper examines current and up and coming sorts of control frameworks and their execution in mechanical technology, and the job of AI in apply autonomy. It additionally expects to reveal insight into the different issues around the control frameworks and the various approaches to fix them. It additionally proposes the basics of apply autonomy control frameworks and various kinds of mechanical technology control frameworks. Each kind of control framework has its upsides and downsides which are talked about in this paper. Another kind of robot control framework that upgrades and difficulties the pursuit stage is man-made brainpower. A portion of the speculations utilized in man-made reasoning, for example, Artificial Intelligence (AI) such as fuzzy logic, neural network and genetic algorithm, are itemized in this paper. At long last, a portion of the joint efforts between mechanical autonomy, people, and innovation were referenced. Human coordinated effort, for example, Kinect signal acknowledgment utilized in games and versatile upper-arm-based robots utilized in the clinical field for individuals with inabilities. Later on, it is normal that the significance of different sensors will build, accordingly expanding the knowledge and activity of the robot in a modern domai

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields

    Design and Control of Lower Limb Assistive Exoskeleton for Hemiplegia Mobility

    Get PDF

    Human-robot interaction using a behavioural control strategy

    Get PDF
    PhD ThesisA topical and important aspect of robotics research is in the area of human-robot interaction (HRI), which addresses the issue of cooperation between a human and a robot to allow tasks to be shared in a safe and reliable manner. This thesis focuses on the design and development of an appropriate set of behaviour strategies for human-robot interactive control by first understanding how an equivalent human-human interaction (HHI) can be used to establish a framework for a robotic behaviour-based approach. To achieve the above goal, two preliminary HHI experimental investigations were initiated in this study. The first of which was designed to evaluate the human dynamic response using a one degree-of-freedom (DOF) HHI rectilinear test where the handler passes a compliant object to the receiver along a constrained horizontal path. The human dynamic response while executing the HHI rectilinear task has been investigated using a Box-Behnken design of experiments [Box and Hunter, 1957] and was based on the McRuer crossover model [McRuer et al. 1995]. To mimic a real-world human-human object handover task where the handler is able to pass an object to the receiver in a 3D workspace, a second more substantive one DOF HHI baton handover task has been developed. The HHI object handover tests were designed to understand the dynamic behavioural characteristics of the human participants, in which the handler was required to dexterously pass an object to the receiver in a timely and natural manner. The profiles of interactive forces between the handler and receiver were measured as a function of time, and how they are modulated whilst performing the tasks, was evaluated. Three key parameters were used to identify the physical characteristics of the human participants, including: peak interactive force (fmax), transfer time (Ttrf), and work done (W). These variables were subsequently used to design and develop an appropriate set of force and velocity control strategies for a six DOF Stäubli robot manipulator arm (TX60) working in a human-robot interactive environment. The optimal design of the software and hardware controller implementation for the robot system has been successfully established in keeping with a behaviour-based approach. External force control based on proportional plus integral (PI) and fuzzy logic control (FLC) algorithms were adopted to control the robot end effector velocity and interactive force in real-time. ii The results of interactive experiments with human-to-robot and robot-to-human handover tasks allowed a comparison of the PI and FLC control strategies. It can be concluded that the quantitative measurement of the performance of robot velocity and force control can be considered acceptable for human-robot interaction. These can provide effective performance during the robot-human object handover tasks, where the robot was able to successfully pass the object from/to the human in a safe, reliable and timely manner. However, after careful analysis with regard to human-robot handover test results, the FLC scheme was shown to be superior to PI control by actively compensating for the dynamics in the non-linear system and demonstrated better overall performance and stability. The FLC also shows superior performance in terms of improved sensitivity to small error changes compared to PI control, which is an advantage in establishing effective robot force control. The results of survey responses from the participants were in agreement with the parallel test outcomes, demonstrating significant satisfaction with the overall performance of the human-robot interactive system, as measured by an average rating of 4.06 on a five point scale. In brief, this research has contributed the foundations for long-term research, particularly in the development of an interactive real-time robot-force control system, which enables the robot manipulator arm to cooperate with a human to facilitate the dextrous transfer of objects in a safe and speedy manner.Thai government and Prince of Songkla University (PSU

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Robust navigation control and headland turning optimization of agricultural vehicles

    Get PDF
    Autonomous agricultural robots have experienced rapid development during the last decade. They are capable of automating numerous field operations such as data collection, spraying, weeding, and harvesting. Because of the increasing demand of field work load and the diminishing labor force on the contrary, it is expected that more and more autonomous agricultural robots will be utilized in future farming systems. The development of a four-wheel-steering (4WS) and four-wheel-driving (4WD) robotic vehicle, AgRover, was carried out at Agricultural Automation and Robotics Lab at Iowa State University. As a 4WS/4WD robotic vehicle, AgRover was able to work under four steering modes, including crabbing, front steering, rear steering, and coordinated steering. These steering modes provided extraordinary flexibilities to cope with off-road path tracking and turning situations. AgRover could be manually controlled by a remote joystick to perform activities under individual PID controller of each motor. Socket based software, written in Visual C#, was developed at both AgRover side and remote PC side to manage bi-directional data communication. Safety redundancy was also considered and implemented during the software development. One of the prominent challenges in automated navigation control for off-road vehicles is to overcome the inaccuracy of vehicle modeling and the complexity of soil-tire interactions. Further, the robotic vehicle is a multiple-input and multiple-output (MIMO) high-dimensional nonlinear system, which is hard to be controlled or incorporated by conventional linearization methods. To this end, a robust nonlinear navigation controller was developed based on the Sliding Mode Control (SMC) theory and AgRover was used as the test platform to validate the controller performance. Based on the theoretical framework of such robust controller development, a series of field experiments on robust trajectory tracking control were carried out and promising results were achieved. Another vitally important component in automated agricultural field equipment navigation is automatic headland turning. Until now automated headland turning still remains as a challenging task for most auto-steer agricultural vehicles. This is particularly true after planting where precise alignment between crop row and tractor or tractor-implement is critical when equipment entering the next path. Given the motion constraints originated from nonholonomic agricultural vehicles and allowable headland turning space, to realize automated headland turning, an optimized headland turning trajectory planner is highly desirable. In this dissertation research, an optimization scheme was developed to incorporate vehicle system models, a minimum turning-time objective, and a set of associated motion constraints through a direct collocation nonlinear programming (DCNLP) optimization approach. The optimization algorithms were implemented using Matlab scripts and TOMLAB/SNOPT tool boxes. Various case studies including tractor and tractor-trailer combinations under different headland constraints were conducted. To validate the soundness of the developed optimization algorithm, the planner generated turning trajectory was compared with the hand-calculated trajectory when analytical approach was possible. The overall trajectory planning results clearly demonstrated the great potential of utilizing DCNLP methods for headland turning trajectory optimization for a tractor with or without towed implements

    Hybrid intelligent machine systems : design, modeling and control

    Get PDF
    To further improve performances of machine systems, mechatronics offers some opportunities. Traditionally, mechatronics deals with how to integrate mechanics and electronics without a systematic approach. This thesis generalizes the concept of mechatronics into a new concept called hybrid intelligent machine system. A hybrid intelligent machine system is a system where two or more elements combine to play at least one of the roles such as sensor, actuator, or control mechanism, and contribute to the system behaviour. The common feature with the hybrid intelligent machine system is thus the presence of two or more entities responsible for the system behaviour with each having its different strength complementary to the others. The hybrid intelligent machine system is further viewed from the system’s structure, behaviour, function, and principle, which has led to the distinction of (1) the hybrid actuation system, (2) the hybrid motion system (mechanism), and (3) the hybrid control system. This thesis describes a comprehensive study on three hybrid intelligent machine systems. In the case of the hybrid actuation system, the study has developed a control method for the “true” hybrid actuation configuration in which the constant velocity motor is not “mimicked” by the servomotor which is treated in literature. In the case of the hybrid motion system, the study has resulted in a novel mechanism structure based on the compliant mechanism which allows the micro- and macro-motions to be integrated within a common framework. It should be noted that the existing designs in literature all take a serial structure for micro- and macro-motions. In the case of hybrid control system, a novel family of control laws is developed, which is primarily based on the iterative learning of the previous driving torque (as a feedforward part) and various feedback control laws. This new family of control laws is rooted in the computer-torque-control (CTC) law with an off-line learned torque in replacement of an analytically formulated torque in the forward part of the CTC law. This thesis also presents the verification of these novel developments by both simulation and experiments. Simulation studies are presented for the hybrid actuation system and the hybrid motion system while experimental studies are carried out for the hybrid control system

    Visual Servoing

    Get PDF
    The goal of this book is to introduce the visional application by excellent researchers in the world currently and offer the knowledge that can also be applied to another field widely. This book collects the main studies about machine vision currently in the world, and has a powerful persuasion in the applications employed in the machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field. For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and researcher, they can study and learn the chapters, and then employ another application method
    corecore