6 research outputs found

    Computational intelligence based complex adaptive system-of-systems architecture evolution strategy

    Get PDF
    The dynamic planning for a system-of-systems (SoS) is a challenging endeavor. Large scale organizations and operations constantly face challenges to incorporate new systems and upgrade existing systems over a period of time under threats, constrained budget and uncertainty. It is therefore necessary for the program managers to be able to look at the future scenarios and critically assess the impact of technology and stakeholder changes. Managers and engineers are always looking for options that signify affordable acquisition selections and lessen the cycle time for early acquisition and new technology addition. This research helps in analyzing sequential decisions in an evolving SoS architecture based on the wave model through three key features namely; meta-architecture generation, architecture assessment and architecture implementation. Meta-architectures are generated using evolutionary algorithms and assessed using type II fuzzy nets. The approach can accommodate diverse stakeholder views and convert them to key performance parameters (KPP) and use them for architecture assessment. On the other hand, it is not possible to implement such architecture without persuading the systems to participate into the meta-architecture. To address this issue a negotiation model is proposed which helps the SoS manger to adapt his strategy based on system owners behavior. This work helps in capturing the varied differences in the resources required by systems to prepare for participation. The viewpoints of multiple stakeholders are aggregated to assess the overall mission effectiveness of the overarching objective. An SAR SoS example problem illustrates application of the method. Also a dynamic programing approach can be used for generating meta-architectures based on the wave model. --Abstract, page iii

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    A Novel Placement Algorithm for the Controllers Of the Virtual Networks (COVN) in SD-WAN with Multiple VNs

    Get PDF
    The escalation of communication demands and the emergence of new telecommunication concepts such as 5G cellular system and smart cities requires the consolidation of a flexible and manageable backbone network. These requirements motivated the researcher to come up with a new placement algorithm for the Controller of Virtual Network (COVN). This is because SDN and network virtualisation techniques (NFV and NV), are integrated to produce multiple virtual networks running on a single SD-WAN infrastructure, which serves the new backbone. One of the significant challenges of SD-WAN is determining the number and the locations of its controllers to optimise the network latency and reliability. This problem is fairly investigated and solved by several controller placement algorithms where the focus is only on physical controllers. The advent of the sliced SD-WAN produces a new challenge, which necessitates the SDWAN controllers (physical controller/hosted server) to run multiple instances of controllers (virtual controllers). Every virtual network is managed by its virtual controllers. This calls for an algorithm to determine the number and the positions of physical and virtual controllers of the multiple virtual SD-WANs. According to the literature review and to the best of the author knowledge, this problem is neither examined nor yet solved. To address this issue, the researcher designed a novel COVN placement algorithm to compute the controller placement of the physical controllers, then calculate the controller placement of every virtual SD-WAN independently, taking into consideration the controller placement of other virtual SD-WANs. COVN placement does not partition the SD-WAN when placing the physical controllers, unlike all previous placement algorithms. Instead, it identifies the nodes of the optimal reliability and latency to all switches of the network. Then, it partitions every VN separately to create its independent controller placement. COVN placement optimises the reliability and the latency according to the desired weights. It also maintains the load balancing and the optimal resources utilisation. Moreover, it supports the recovering of the controller failure. This novel algorithm is intensively evaluated using the produced COVN simulator and the developed Mininet emulator. The results indicate that COVN placement achieves the required optimisations mentioned above. Also, the implementations disclose that COVN placement can compute the controller placement for a large network ( 754 switches) in very small computation time (49.53 s). In addition, COVN placement is compared to POCO algorithm. The outcome reveals that COVN placement provides better reliability in about 30.76% and a bit higher latency in about 1.38%. Further, it surpasses POCO by constructing the balanced clusters according to the switch loads and offering the more efficient placement to recover controller-failure

    Protecting the power grid: strategies against distributed controller compromise

    Get PDF
    The electric power grid is a complex, interconnected cyber-physical system comprised of collaborating elements for monitoring and control. Distributed controllers play a prominent role in deploying this cohesive execution and are ubiquitous in the grid. As global information is shared and acted upon, faster response to system changes is achieved. However, failure or malfunction of a few or even one distributed controller in the entire system can cause cascading, detrimental effects. In the worst case, widespread blackouts can result, as exemplified by several historic cases. Furthermore, if controllers are maliciously compromised by an adversary, they can be manipulated to drive the power system to an unsafe state. Due to the shift from proprietary control protocols to popular, accessible network protocols and other modernization factors, the power system is extremely vulnerable to cyber attacks. Cyber attacks against the grid have increased significantly in recent years and can cause severe, physical consequences. Attack vectors for distributed controllers range from execution of malicious commands that can cause sensitive equipment damage to forced system topology changes creating instability. These vulnerabilities and risks need to be fully understood, and greater technical capabilities are necessary to create resilient and dynamic defenses. Proactive strategies must be developed to protect the power grid from distributed controller compromise or failure. This research investigates the role distributed controllers play in the grid and how their loss or compromise impacts the system. Specifically, an analytic method based on controllability analysis is derived using clustering and factorization techniques on controller sensitivities. In this manner, insight into the control support groups and sets of critical, essential, and redundant controllers for distributed controllers in the power system is achieved. Subsequently, we introduce proactive strategies that utilize these roles and grouping results for responding to controller compromise using the remaining set. These actions can be taken immediately to reduce system stress and mitigate compromise consequences as the compromise itself is investigated and eliminated by appropriate security mechanisms. These strategies are demonstrated with several compromise scenarios, and an overall framework is presented. Additionally, the controller role and group insights are applied to aid in developing an analytic corrective control selection for fast and automated remedial action scheme (RAS) design. Techniques to aid the verification of control commands and the detection of abnormal control action behavior are also presented. In particular, an augmented DC power flow algorithm using real-time measurements is developed that obtains both faster speed and higher accuracy than existing linear methods. For detecting abnormal behavior, a generator control action classification framework is presented that leverages known power system behaviors to enhance the use of data mining tools. Finally, the importance of incorporating power system knowledge into machine learning applications is emphasized with a study that improves power system neural network construction using modal analysis. This dissertation details these methodologies and their roles in realizing a more cohesive and resilient power system in the increasingly cyber-physical world

    The Data Science Design Manual

    Get PDF
    corecore