3,955 research outputs found
Building Programmable Wireless Networks: An Architectural Survey
In recent times, there have been a lot of efforts for improving the ossified
Internet architecture in a bid to sustain unstinted growth and innovation. A
major reason for the perceived architectural ossification is the lack of
ability to program the network as a system. This situation has resulted partly
from historical decisions in the original Internet design which emphasized
decentralized network operations through co-located data and control planes on
each network device. The situation for wireless networks is no different
resulting in a lot of complexity and a plethora of largely incompatible
wireless technologies. The emergence of "programmable wireless networks", that
allow greater flexibility, ease of management and configurability, is a step in
the right direction to overcome the aforementioned shortcomings of the wireless
networks. In this paper, we provide a broad overview of the architectures
proposed in literature for building programmable wireless networks focusing
primarily on three popular techniques, i.e., software defined networks,
cognitive radio networks, and virtualized networks. This survey is a
self-contained tutorial on these techniques and its applications. We also
discuss the opportunities and challenges in building next-generation
programmable wireless networks and identify open research issues and future
research directions.Comment: 19 page
Inverse Optimal Planning for Air Traffic Control
We envision a system that concisely describes the rules of air traffic
control, assists human operators and supports dense autonomous air traffic
around commercial airports. We develop a method to learn the rules of air
traffic control from real data as a cost function via maximum entropy inverse
reinforcement learning. This cost function is used as a penalty for a
search-based motion planning method that discretizes both the control and the
state space. We illustrate the methodology by showing that our approach can
learn to imitate the airport arrival routes and separation rules of dense
commercial air traffic. The resulting trajectories are shown to be safe,
feasible, and efficient
Emerging from the MIST: A Connector Tool for Supporting Programming by Non-programmers
Software development is an iterative process. As user re-quirements emerge software applications must be extended to support the new requirements. Typically, a programmer will add new code to an existing code base of an application to provide a new functionality. Previous research has shown that such extensions are easier when application logic is clearly separated from the user interface logic. Assuming that a programmer is already familiar with the existing code base, the task of writing the new code can be considered to be split into two sub-tasks: writing code for the application logic; that is, the actual functionality of the application; and writing code for the user interface that will expose the functionality to the end user. 
The goal of this research is to reduce the effort required to create a user interface once the application logic has been created, toward supporting scientists with minimal pro-gramming knowledge to be able to create and modify pro-grams. Using a Model View Controller based architecture, various model components which contain the application logic can be built and extended. The process of creating and extending the views (user interfaces) on these model components is simplified through the use of our Malleable Interactive Software Toolkit (MIST), a tool set an infrastructure intended to simplify the design and extension of dynamically reconfigurable interfaces. 
This paper focuses on one tool in the MIST suite, a connec-tor tool that enables the programmer to evolve the user interface as the application logic evolves by connecting related pieces of code together; either through simple drag-and-drop interactions or through the authoring of Python code. The connector tool exemplifies the types of tools in the MIST suite, which we expect will encourage collabora-tive development of applications by allowing users to inte-grate various components and minimizing the cost of de-veloping new user interfaces for the combined compo-nents
Hikester - the event management application
Today social networks and services are one of the most important part of our
everyday life. Most of the daily activities, such as communicating with
friends, reading news or dating is usually done using social networks. However,
there are activities for which social networks do not yet provide adequate
support. This paper focuses on event management and introduces "Hikester". The
main objective of this service is to provide users with the possibility to
create any event they desire and to invite other users. "Hikester" supports the
creation and management of events like attendance of football matches, quest
rooms, shared train rides or visit of museums in foreign countries. Here we
discuss the project architecture as well as the detailed implementation of the
system components: the recommender system, the spam recognition service and the
parameters optimizer
Bidirectional optimization of the melting spinning process
This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities
- …
