

Emerging from the MIST:
A Connector Tool for Supporting

Programming by Non-programmers

Saurabh Bhatia, Tripp Lilley, D. Scott McCrickard
Center for HCI and Department of Computer

Science
Virginia Tech

2202 Kraft Drive
Blacksburg VA 24060

{saurabhb,tlilley,mccricks}@vt.edu

Paul Kienzle
NIST Center for Neutron Research

National Institute of Standards and Technology
100 Bureau Drive, MS 8562

Gaithersburg MD 20899
pkienzle@nist.gov

ABSTRACT
Software development is an iterative process. As user re-
quirements emerge software applications must be extended
to support the new requirements. Typically, a programmer
will add new code to an existing code base of an applica-
tion to provide a new functionality. Previous research has
shown that such extensions are easier when application
logic is clearly separated from the user interface logic. As-
suming that a programmer is already familiar with the ex-
isting code base, the task of writing the new code can be
considered to be split into two sub-tasks: writing code for
the application logic; that is, the actual functionality of the
application; and writing code for the user interface that will
expose the functionality to the end user.
The goal of this research is to reduce the effort required to
create a user interface once the application logic has been
created, toward supporting scientists with minimal pro-
gramming knowledge to be able to create and modify pro-
grams. Using a Model View Controller based architecture,
various model components which contain the application
logic can be built and extended. The process of creating
and extending the views (user interfaces) on these model
components is simplified through the use of our Malleable
Interactive Software Toolkit (MIST), a tool set an infra-
structure intended to simplify the design and extension of
dynamically reconfigurable interfaces.
This paper focuses on one tool in the MIST suite, a connec-
tor tool that enables the programmer to evolve the user
interface as the application logic evolves by connecting
related pieces of code together; either through simple drag-
and-drop interactions or through the authoring of Python
code. The connector tool exemplifies the types of tools in
the MIST suite, which we expect will encourage collabora-
tive development of applications by allowing users to inte-
grate various components and minimizing the cost of de-
veloping new user interfaces for the combined components.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Management
Keywords: User Interface Design and Management

INTRODUCTION
Software is an evolving concept. Applications go through
stages of iterative development in which new functionality
is continually added to meet the evolving needs of users. A
software product may never be considered complete as it
needs regular updates whether in the form of adding new
features, fixing existing bugs in the code or just plain mak-
ing the code more efficient. The traditional approach to
development generally involves a customer or a user who
has specific requirements from the software and a develop-
er who is capable of programming that software for the
customer. Generally there are many people who constitute
these two categories and work as a team to achieve a work-
ing product.
The constant need for evolving software systems has made
it necessary for the end users to perform certain simplistic
programming which is often referred to as end-user pro-
gramming. End-users with little or no software develop-
ment background have a need to customize or extend an
existing application. The benefit of end-user programming
is most visible for domain specific applications that target a
vertical domain like financial analysis or analyzing scien-
tific data. In this case the end-users are also domain experts
who intricately aware of the tacit requirements that their
application should meet. Expensive development costs can
be avoided by allowing these domain experts to customize
and extend their own applications. The lack of suitable
tools and infrastructure to support this need for end-user
programming is a persistent problem in the software devel-
opment and interaction design communities. The distinct
requirements of diverse groups of users further complicates
the issue and makes satisfying all of these needs with a
flexible tool a difficult task.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

By taking advantage of the unique juxtaposition of a col-
lection of dormant research, contemporary ideas, and a
burgeoning body of stable, widespread standards for in-
formation exchange we seek to produce an environment in
which the initial creation, and long-term mainten-
ance/modification of interactive software carries with it
significantly less cognitive overhead than does the present,
conventional practice.
This work focuses on development tools that are specifical-
ly designed for creating and managing scientific applica-
tions. Scientific applications have certain unique features
that make them different from other software application
domains. Firstly, scientific applications require thorough
understanding of the underlying scientific concepts. This
means that the scientists who want to use the software are
also intimately involved in the development. More often
than not, due to budget restrictions, it is the scientists who
develop majority of application. While these scientists are
experts in their domain they aren’t professional program-
mers and perceive the software development endeavor as
an unnecessary hurdle. A scientist programmer would pre-
fer to use an existing code base from an application that
was previously written and try to modify it, rather than try
and write an entire application from scratch.
Majority of the scientific software involves applications
like controlling experimental equipment, capturing data
from an experimental setup and analyzing the experimental
data. The software application is not just driving the scien-
tific experiment but it is an integral part of the experiment.
The experimental parameters could change or the scientists
may need to run a different kind of analysis on the data
thus requiring changes to be made in the software. Due to
the discovery based process inherent to science any scien-
tific software application tends to require constant tinkering
around with the application logic or algorithms that drive
it. Thus scientific applications constantly evolve in an un-
structured manner.
Our area of study is to allow end users with little or no
programming experience—the scientists who need the ap-
plications—to be able to develop and modify applications
themselves, by leveraging and reusing the prior work. We
want to let research scientists focus on the scientific com-
putations (e.g., data reduction, filtering, etc.,) and not on
programming user interfaces. Scientists can make better
use of their time when they are able to dynamically cus-
tomize their software working environment in response to
their evolving data analysis needs. To that end, we are in-
vestigating tools, techniques, and paradigms which will
make constructing user interfaces more accessible to scien-
tists, and, at the same time, make those user interfaces
themselves more open to customization.
The process of extending any existing piece of software
can be broken down into two steps: first, understand the
existing code and next, write the new code that will extend
the application. It is important to understand how the appli-
cation works, as it currently exists in code, in order to fig-

ure out how to extend it. Depending on the level of pro-
gramming expertise, different individuals use different me-
thods to understand how an existing application works. A
professional developer can directly look at the code and
gain complete understanding of the application logic. A
novice developer may use software visualization tools to
gain program understanding (e.g., (Cole, 1989; Stasko,
Brown, & Price, 1997; Diehl, 2007)). An end-user builds a
mental model of how the application works simply by inte-
racting with the applications interface and as such has no
idea about how the application really works in terms of
code.
Our target is in building a Malleable Interactive Software
Toolkit (MIST), a tool set and infrastructure to simplify the
design and construction of dynamically-reconfigurable
(malleable) interactive software (Bhatia et al., 2006a; Bha-
tia et al., 2006b). Malleable software offers the end-user
powerful tools to reshape their interactive environment on
the fly. Our goal is to make the construction of such soft-
ware straightforward, and to make reconfiguration of the
resulting systems approachable and manageable to a user
whose specialty is not in programming but in some other
branch of science.
This research effort was designed to integrate with ongoing
efforts such as the DANSE (distributed data analysis for
neutron scattering experiments) project, which seeks to
support scientific research in the neutron scattering field
(DANSE, 2009). We believe that these efforts complement
those of the DANSE project, and concentrate more on
techniques for constructing GUIs which satisfy in-
put/output needs common to scientific programming.
In so doing, we first draw on a diverse body of existing
research on alternative approaches to user interface and
interactive software construction, including declarative UI
languages, constraint-based programming and UI manage-
ment. We present a model view controller based architec-
ture that provides a foundation for our ideas, and we
present a controller tool that enables end users to create
connections between two or more existing applications and
create new logical constructs thus enabling them to pro-
gram new functionality.

RELATED WORK
Myers and his colleagues have created the various tools to
simplify end user programming. Peridot was one of the
initial tools that tried to leverage the power of direct mani-
pulation and programming by example (Myers, 1993). The
Garnet project built upon this work to further explore di-
rect-manipulation user interfaces (Vander Zanden et al.,
2001). Garnet provided users with a graphical user inter-
face which would enable them to program by simply de-
monstrating example behaviors on objects. Using the direct
manipulation and programming by example techniques
allowed users to create graphical interfaces without writing
any code. Gamut was perhaps the most powerful tool that

could infer complex behaviors from examples specified by
the user (McDaniel & Myers, 1998).
Myers describes the problems that arise out of mixing ap-
plication logic with user interface code; a problem he refers
to as call-back spaghetti (Myers, 1991). This seminal paper
proposes the idea of separating code that contains the ap-
plication logic from the code that describes and controls the
user interface. Myers identifies three major problems with
call-back spaghetti: Application code gets tied in with an
widget toolkit which makes it difficult to port it, incorpo-
rating changes and maintaining the user interface becomes
difficult and simple modifications like changing the lan-
guage used in the user interface requires changing the ap-
plication code itself. Myers goes on to identify the tasks
supported by call-backs which force users to mix applica-
tion logic with user interface code.
The four categories of tasks identified in (Myers, 1991)
include: preparing the data for applications which involves
changing values that an interface widget returns into values
that application code expects, error checking which vali-
dates the input data before passing it on to the application,
preparing data to be shown to the user which involves set-
ting default values etc. and internal control which defines
the connections between user interface components. The
paper proposes a system called Gilt which uses filter ex-
pressions to minimize the amount of code that needs to be
written and in turn avoids the problems of call-back spag-
hetti. To illustrate the capabilities of the Gilt system the
paper describes various examples where Gilt is used to
perform the four categories of tasks which were previously
identified. The paper concludes with a vision for a future
which involves multiple user interface creation and man-
agement tools which would work together as an ecosystem
to ease the development overhead that is associated with
creating graphical user interfaces. This decisive work lays
the basis for the separation of concerns between the user
interface logic and the application logic; an idea that has
gained momentum in the last decade.
In recent years declarative user interfaces have been gain-
ing popularity. Declarative user interfaces examine tech-
niques for separation of user interface logic from the appli-
cation logic. User interface concerns can be written decla-
ratively as a set of constraints. The constraints are satisfied
at runtime usually by a renderer that is also responsible for
rendering the declared UI model into an actual UI. Tech-
nologies like Mozilla’s XML-based User Interface Lan-
guage (XUL), Microsoft’s Extensible Application Markup
Language (XAML), and Harmonia’s User Interface Mar-
kup Language (UIML) are exploring the concept of declar-
ative user interfaces. By allowing high level UI specifica-
tion, declarative user interfaces are able to separate and
isolate the UI code from application code. Declarative UIs
show great promise of avoiding the problems of callback
spaghetti.
Chin and his colleagues propose the use of domain specific
visual approaches to represent scientific models in a com-

putational form which in essence work as user interfaces
for the scientific applications (Chin et al., 2006). Existing
user interfaces for scientific applications focus on the com-
putational aspects of the application, like data organization
and manipulation, rather than the underlying scientific
theory. While working with these scientific applications,
scientists have to interact with the same WIMP (Windows,
Icons, Mouse-Pointer) based interface that most common
applications use. Due to this, the domain specific scientific
knowledge that is hidden in the program code behind the
user interface remains inaccessible to the end user scien-
tists. Graphs and diagrams are useful in conceptualizing
scientific concepts, processes and theories. This paper
promotes the use of such visual metaphors for the creation
of conceptual models which can be linked with application
logic to act as a user interface into the scientific work.
The Chin paper describes three specific tools for capturing
scientific models: Regional Climate Modeling Problem-
Solving Environment (RCM-PSE), Visual Modeling Envi-
ronment for Biology (VMEB) and Scenario and Know-
ledge Framework for Analytical Modeling (SKFAM). Re-
gional climate modelers can use RCM-PSE to draw scien-
tific workflow graphs. RCM-PSE helps manage and semi-
automate computational experiments by providing mechan-
isms for capturing, applying and exploring procedural
knowledge. VMEB allows biologists to use 2D drawing
tools to graphically construct concepts, hypotheses and
theories. Using VMEB biologists can use and apply the
biological concepts directly, without having to abstract
them in terms of the computing domain. SKFAM allows
intelligence analysts to create graph-based scenarios of
various intelligence cases. These graphical scenarios can
also be computationally compared to derive domain specif-
ic meaning to the analysis. These tools allow scientists to
develop their own user interfaces to computational compo-
nents while focusing on the conceptual scientific model.
This paper claims that the creation of such tools will enable
the scientists to take the lead in designing rich and intuitive
scientific interfaces.
Wolfgang and his colleagues (2006) introduce the system
of user interface façades which allow users to adapt, recon-
figure and re-combine existing graphical interfaces. The
authors state that the complexity of user interfaces keeps
increasing as features are added to the underlying applica-
tions. As a typical user is only interested in a small subset
of the functionalities provided by an application, exposing
all the features in s complex user interface does not make
sense. Instead the user interface should be adapted to fit the
user’s requirements. Façades also allows users to adapt the
interaction with the user interface by changing the widgets
on the interface along with their mappings to pointer inte-
raction without having to change any code in the underly-
ing application. The paper provides in-depth details of how
the façades system was implemented and provides various
examples that showcase façades capabilities.
Demeure and his colleagues (2006) describe three repre-
sentations of software user interfaces that are produced in

the process of software development: a conceptual repre-
sentation which corresponds to the model or logic that is
being used by the software, an internal representation
which is the code that formulates the software and an ex-
ternal representation which is the user interface of the
software that is seen by end-users. The ubiquitous nature of
computing has led to new requirements which demand that
a system be adapted to a context of use at run-time. This
requirement, which has been termed as plasticity, imposes
that the knowledge available during design time also be
available to the end-users so that they are able to adapt the
system to the current context while preserving the usability
of the system. The paper goes on to introduce the concept
of a Comet and a related toolset called the Comet Inspec-
tor. A Comet consists of a control, a logical abstraction and
a logical presentation. A Comet encapsulates alternate logi-
cal presentations within itself for different contexts of use.
The Comet presentation can be selected automatically or by
the end-user thus providing a polymorphic ability to the
Comet. Comet Inspector is the tool that allows users to
simultaneously view the three representations of the User
Interface.
Fujima et. al. propose a system called C3W (Clip, Connect
and Clone for the Web) which enables users to create new
web based applications by combining elements from exist-
ing applications (Fujima et al., 2004). The system is built
specifically for HTML based interfaces which provide a
form based interface for requesting user input and provide
the appropriate output once a user submits the form. The
author’s describe three problem scenarios which motivated
the creation of this system. First, it is difficult for users to
locate the input/output elements that interest them inside a
webpage if these elements are embedded along with other
information. Second, users often have a need to link the
results from one form as an input to another. Examples of
this include trying to find movies that are currently playing,
choosing a movie and then finding out which cinema it is
playing in. Finally, users may want to simultaneously com-
pare the results of multiple queries. The C3W system pro-
vides integrated support for addressing these issues by in-
troducing the three new interactions of clipping, connecting
and cloning.
Systems like C3W, Façades and Comet have been built to
solve contemporary problems that exist in the creation and
use of user interfaces today. The concepts of plasticity and
adaptability of user interfaces lay the groundwork required
for the concept of malleability proposed in this work. A
Malleable User Interface also allows for changes in the
underlying application code which is not supported in plas-
tic or adaptable interfaces.

MODEL VIEW CONTROLLER
The Traits UI package from Enthought is a GUI toolkit that
implements a Model-View-Controller based architecture
and provides features of user interface plasticity while al-

lowing for easy customization and adaptability of the inter-
face. The Traits defined by the toolkit are wrappers around
regular data types like integers and float and have extra
metadata associated with them. The metadata is used to
create default graphical interfaces to the Traits and to de-
fine the interaction behavior. The Traits UI toolkit intros-
pects a model and automatically creates a UI which can
then be customized by the user (see Figure 1).

Figure 1: The Traits Model (M) is used to generate
a automatic User Interface (V) which can then be
customized by the user (V')

The automatic UI generation and the accompanying custo-
mization allow users to adapt and customize their UIs
while maintaining a live link with the underlying model.
Scenarios of using multiple models to create composite
interfaces like those supported by C3W are also possible
using the Traits UI toolkit. However, the Traits toolkit does
not maintain the link between the model and view if the
underlying model changes. As shown in (Figure 2) if M0 is
the initial model definition then users can use the default
view V0 to create their customized views of V0’. If the
Model M0 is extended to M1 then a new default view V1 is
created and the user may now customize this view to get to
V1`. There is no direct path to go from V0’ to V1’ and all
the customizations done by the user in going from V0 to
V0’ are lost.

Figure 2: Customizing User Interfaces (Views) using
the Traits model

There is a need to provide a path to go from V0’ to V1’
such that the user customizations in V0’ are not lost. Given
that application logic has changed, the goal is to reduce the
effort required by the end user to incorporate those changes
in the UI. The Model View Controller based architecture

class NanoVelcro (HasTraits):
 length = Float(1.0)
 height = Float(1.0)
 distance = Float(1.0)
 angle = Range(0, 360)

simplified the process of building and extending various
model components which contain the application logic.
The process of creating and extending the views (user in-
terfaces) on these model components can be simplified by
using a visualization that will enable comparison of a mod-
el component and its corresponding view. Visualization
can enable the user to identify parts of the model compo-
nent that are not present in the view and conversely also
help identify user interface components that do not exist in
the model. By interacting with the visualization the user
can modify the view to account for the changes in the mod-
el, thus enabling users to evolve the user interface as the
application logic evolves. The visualization can also en-
courage collaborative development of applications by al-
lowing users to integrate various components and minimiz-
ing the cost of developing new user interfaces from the
combined components

Version Control for Models and Views
Version control visualizations rely upon version control
systems to provide them with effective data. The version
control systems are essentially built on the concept of a
delta. Whenever a file is modified to create a new version,
instead of storing the entire contents of the new file and the
old file, the version control systems only store the changes
that have occurred between the two versions. This not only
saves disk space but allows the user to go back and forth
across various versions of the file. This same idea of the
delta (Δ) can also be applied to the Traits model to define
changes that occur across different models.

Figure 1: Comparing the changes in model to an ex-
isting view

As shown in Figure 1, ΔM is the set of all changes that
have occurred between the two Model versions. If this del-
ta is compared with V0’ it will be possible to examine the
changes (ΔV’) that are needed in V0’ in order to complete
the transformation to V1’
The key to creating an effective visualization is to under-
stand the data it is meant to represent. In this case we need
to visualize the changes that have occurred in the model
(ΔM) and compare them to an existing view (V0’) (see Fig-
ure 1). Since our visualization is focused on models based
on the Traits UI framework, it is very easy to enumerate
through the changes that can occur when a model is
changed. Table 1 summarizes the types of changes that can
occur in a model and the corresponding actions that might
be needed to link the view with the new model.

Changes to Model
(ΔM)

Possible changes to View

Add Trait to Model Add to View
 No Change in View

Remove Trait from Model Remove from View
 No Change

Change Trait definition Add to View
 Remove from View
 Change View representation
 No Change

Table 1: Effects of a change in the model on the
view

A typical extension of the model will involve a series of
such changes. For example, going from M0 to M1 could
involve Removing Trait_B and Trait_C while Adding
Trait_D and changing the definition for Trait_A. Thus us-
ing these basic actions we can describe any change (ΔM)
that may have occurred in going from one version of the
model to the next.

THE CONNECTOR TOOL
The Connector tool enables end users to create connections
between two or more existing applications and create new
logical constructs thus enabling them to program new func-
tionality, often with simple drag and drop mechanisms. The
Connector tool is inspired by the UNIX pipe metaphor
which transfers the output of one application as input to
another. The Connector tool enables you to create connec-
tions by selecting traits as they exist inside a running appli-
cation and connecting them to a trait inside another appli-
cation. As the original trait changes value the new value is
automatically piped to the receiving trait. The Connector
tool is designed to work within the Envisage plug-in
framework and works closely with existing tools present in
the Enthought Developer Tool Suite.
Envisage is a python package being developed around a
plug-in framework motivated by the plug-in architectures
present in environments like Eclipse and Netbeans (Chilv-
ers, 2005). Envisage provides a set of standard plug-ins
that provide the critical infrastructure required for window
management, creating menus and toolbars and other GUI
development related tasks. The standard set of plug-ins
provides the foundation for creating rich interactive appli-
cations.
Users can convert any existing traits based python program
into an Envisage plug-in by creating a plug-in definition
module. A plug-in definition module defines an interface to
the plug-in implementation – the actual python class that
implements the application. Multiple plug-ins can be com-
bined to work together and create complex extensible ap-
plications. For the purposes of this tool we are mainly con-
cerned with the Workbench plug-in which is responsible
for the envisage applications user interface. The Envisage
framework is still being developed, further details on its

current development status and future plans can be found
on the Envisage wiki.

Screenshot 2: An Envisage application consisting of
two plug-ins- MIST Experiment and MIST Camera

Envsage’s Workbench plug-in provides the framework
required to create the user interface for an Envisage appli-
cation. Any plug-in that has a user interface component
must contribute an extension to the workbench plug-in.
The workbench plug-in aggregates all its plug-in exten-
sions and creates a single user interface for the envisage
application.

Screenshot 2: Multiple plug-ins contribute to the UI
for this Envisage application. Each tabbed panel is
a plug-in of its own.

To create the user interface the workbench plug-in internal-
ly uses the DockWindow sub-package from the Pyface
package (enthought.pyface). The Pyface package provides
easy access to GUI toolkits like wxWidgets while adhering
to the Model-View-Controller design pattern. The Dock-
Window is a simplified interface provided by Pyface which
allows users to quickly create user interface windows. The
DockWindow combines a user interface window and a

layout manager and provides splitter bars, tabs and drag
handles which allow users to rearrange its contents.
DockWindows also have the capability to dynamically add
new features and functionality to the core DockWindow
functionality. This capability to extend the core architecture
is called DockWindowFeature. Of particular interest to this
work are the Connect and DockControl features which
enable some of the core connectivity scenarios imple-
mented by the connector tool.
Every DockWindow has a DockSizer object to control the
window layout. The DockSizer in turn encapsulates Dock-
Controls which display the user interface for the actual
python object. The DockControl feature is a way to access
an applications DockControl object. Any trait that has the
metadata dock_control = True gets associated with the cur-
rent application’s DockControl. All python objects asso-
ciated with the current application can be accessed through
such traits.
The Connector tool we describe in this section builds from
the concept of the connect feature. The Connect feature
enables users to connect traits that belong to different py-
thon application objects. The value of the trait in one ap-
plication is copied over to the connected trait belonging to
another application. Users can thus create their own data
flows across multiple applications. In order to make traits
inside an application connectable the trait should have an
associated connect metadata. The connect metadata can
have the values {to|from|both}. A to value indicates that
data may be copied from an application trait to this trait. A
from value indicates that data may be copied from this trait
to any other trait. The both value indicates that data may be
copied from and to this trait. Using these values program-
mers can define how they want various applications to
connect with each other. Besides specifying the direction of
the connection the connect metadata allows for one option-
al argument. The optional argument can either be a name or
a logical type for the connection trait. The name argument
accepts a string that can be used to describe the connection
trait. If the name is provided it is displayed to an end user
trying to make connections. The type argument works just
like the name but additionally requires that any other trait
that wants to connect with this trait also have the same
string inside its type argument.
The connection feature does allow end user to create cus-
tomized data flows across applications but it lacks certain
important functionality. Firstly, the connect feature requires
that the programmer include the connect metadata in the
traits while programming the python code. Only the traits
which have the connect metadata are displayed to the end
user for making connections. Secondly, the connections
provide no way performing any filtering or processing be-
fore the data is copied over to the connected trait. Lastly
there is no easy way of switching between multiple connec-
tion configurations. Every connection has to be created or
broken individually. We try to overcome these shortcom-
ings while adding powerful new features with the Connec-
tor tool.

The first problem the Connector tool addresses is to allow
end users create connections using any trait present in a
running application. To enable this, the Connector tool
works together with the Application Monitor, part of the
Enthought Developer Tool Suite.
The Enthought Developer Tool suite provides various En-
visage plug-ins intended for use by developers creating and
debugging Envisage based applications. The developer
plug-ins heavily use the DockWindow features present in
Pyface. The Application Monitor plug-in displays all the
traits that are present in a Python object that is contained by
the Envisage application. To be displayed in the Applica-
tion Monitor the Python object should be associated with a
View or Editor that can be displayed inside the Envisage
Workbench Window.

Screenshot 3: The Application Monitor plug-in

By displaying all the traits belonging to a python object the
Application Monitor effectively enables users to peer into a
running application and interact with individual traits in-
side the application. The default Application Monitor simp-
ly displays all the trait names and their current value. This
default version was adapted to make it better suited for
creating connections with the Connector tool.

Screenshot 4: Filtering options in the modified Ap-
plication Monitor

A filtering option was added to the Application Monitor to
filter the type of traits displayed. By selecting the “show
connectable traits” option the Application Monitor will
only display traits that have the connect metadata. This
filtering will display the exact same list as that displayed by
the Connect feature. The motivation behind implementing
this filtering was to reduce the number of traits that were
visible to the user and thus reducing the time spent in look-
ing for the right one. The filtering option does replicate
some of the functionality of the Connection feature. How-
ever, it does so while providing the rich connectivity op-
tions made available through the Connector tool.
The Connector tool provides a central interface for creating
and managing multiple connections between various appli-
cations. The tools interface consists of an inbox and an
outbox. Users can drag any trait that belongs to a live ob-
ject from the application monitor and drop it into the inbox
or outbox. These boxes act as metaphors for collecting all
the traits used to create the connections. The inbox contains
the traits that function as the source of the connection and
the outbox holds all traits that act as the destination. To
create a simple connection a user must first drop the trait
that is supposed to be the source of the data into the inbox.
Similarly the destination trait is dropped into the outbox.
To create the connection the user can click on the outbox
trait and select the appropriate inbox trait from a drop
down list. Alternatively the user can drag and drop the in-
box trait onto the outbox trait. Once a connection is made
the inbox trait appears as the child of the outbox trait in the
outbox tree hierarchy. When a trait is added to the inbox,
the connector tool adds a trait change handler to the origi-
nal trait which is called whenever the trait changes value.
This handler performs the function of synchronizing the
data across various connections.
To change a connection the user can simply drop another
trait from the inbox onto the outbox trait. Alternatively the
user can also choose another trait from the “Connect to”
drop down. Traits can be deleted from both the boxes by
right clicking on them and selecting delete. A warning is
displayed if a user tries to delete an inbox trait that is part
of an existing connection.

USING THE CONNECTOR TOOL
The Connector Tool provides a programming interface that
should be accessible to non-programmers through simple
drag-and-drop actions, yet with sufficient power so that a
user can learn to extend functionality to support more com-
plex actions. This section provides both a simple and com-
plex example.
The simplest form of a connection is when the value of one
input trait is copied over to the value of an output trait. We
present the combination of two sample application plug-ins
to illustrate this simple connection. One application will
gives you the area of a circle given its radius while another
application gives you the circumference of a circle given its

radius. The goal is to connect the radius trait of both appli-
cations so that it changes together and a user gets both the
area and circumference of the circle by simply changing
one value. In the end, both applications should be working
together as one.
The area calculator has a slider to select the radius. The
circumference calculator has a text box where the user can
enter the radius. The two behave independently of each
other and the goal is to connect the two together. The ap-
plication monitor shows both plug-ins and their corres-
ponding traits. The radius trait of the area calculator needs
to be connected to the radius trait of the circumference cal-
culator.
A user can drag the radius of the area calculator from the
application monitor and drop it onto the Inbox of the con-
nector tool. The radius trait will now act as an input source
and every time its value changes the connector tool will
update the values of all other traits that are connected to it.
The radius trait of the circumference calculator should re-
ceive the value of the radius trait from the area calculator.
In other words the radius trait of the circumference calcula-
tor is the output of the connection. To specify this output
the radius trait of the circumference calculator is dragged
from the application monitor and dropped into the outbox
of the connector tool. Now that the input and output traits
needed for the connection are specified in the connection
tool users’ can create an connection by dragging the input
radius trait from the inbox and dropping it over the output
radius trait in the outbox. A connection has now been
made and whenever the slider on the area calculator is used
to change the value of the radius the value of the radius
trait in the circumference calculator will also change giving
the area and circumference of the radius specified by the
slider.
One issue still exists though; if you change the value of the
radius in the textbox of the circumference calculator the
circumference calculator updates the circumference to re-
flect the new value but the area calculator does not update
the area. This occurs because we have only created a one-
way connection between the radius of the area calculator to
the radius of the circumference calculator. Any changes in
the radius of the circumference calculator are not being
transferred back to the area calculator. To enable a two
connection between both applications another connection
must be created with the radius trait of the circumference
calculator acting as an input and the radius trait of the area
calculator acting as the output. Once both connections are
created you can change the value of the radius in either
place and the area and circumference values will be up-
dated accordingly to reflect the new value of the radius.
Besides simple drag drop creation of connections the Con-
nector also allows advanced users to create complex con-
nections. Users familiar with programming in python can
write a python script inside the evaluate field associated
with an outbox trait. The evaluate field acts like a mini
shell which executes the script written inside it using Py-

thon’s exec command. The script is executed whenever any
trait present in the inbox changes its value. The script ex-
ecutes inside its own namespace but any item currently in
the inbox can be referenced by the script. The inbox items
can be referenced by using their IDs as displayed in the
inbox (e.g. the radius trait belonging to the area calculator
plug-in is referred to using AreaCalculator.radius). The
keyword ‘this’ is used to refer to the outbox trait associated
with the script. Thus the evaluate script enables the crea-
tion of complex connections wherein the data from one or
more input traits can be collected and processed before
being pushed out to an output trait.
Complex connections can be very useful in scenarios
where the unit of a particular field needs to be changed
before it can be used for another calculation:

Example Evaluate Script
if 'tmp' not in dir():
 tmp =0
tmp = tmp + 1
this = "%s Image %s\n" % \
 (Camera.status[:-1],tmp)

The evaluate script also enables creating connections that
loop back to the same trait. This means that data from an
input trait can be processed and pushed back to the same
trait. The connector tool also allows persisting variables
across the script executions: the local namespace is pre-
served across script initializations so that you can define
variables in the script that hold their value as long as the
envisage session is active.

CONCLUSIONS AND FUTURE DIRECTIONS
Constructing software is easier than it has been in the past,
as is constructing a graphical user interface. However,
constructing extensible, maintainable software—software
that is robust and interactive—is still a very difficult task.
This paper describes our steps toward a Malleable Interac-
tive Software Toolkit (MIST), a tool set and infrastructure
to simplify the design and construction of dynamically-
reconfigurable (malleable) interactive software. Malleable
software offers the end-user powerful tools to reshape their
interactive environment on the fly. Our goal is to make the
construction of such software straightforward, and to make
reconfiguration of the resulting systems approachable and
manageable to a user whose specialty is not in program-
ming but in some other branch of science.
This paper presents a diverse body of existing research on
alternative approaches to user interface and interactive
software construction, including declarative UI languages,
constraint-based programming and UI management. We
describe a model view controller based architecture that
provides a foundation for our ideas, and we present a Con-
troller tool that enables end users to create connections
between two or more existing applications and create new
logical constructs thus enabling them to program new func-
tionality.

Our expectation is that there should be extreme decoupling
among artifacts, where one can express as much as possible
in terms of declarative bindings (e.g., RDF/XML, Nota-
tion-3, UIML, XAML, or something similar). In so doing,
interaction is creation of state change, and constraint en-
forcement is response to state change (also leading to fur-
ther state change). By building on the Traits and Traits UI
best practices, we expect that it should be possible to create
direct-manipulation tools to generate output that is easy to
understand and easy to maintain.

ACKNOWLEDGEMENTS
Thanks to members of the Cal Tech DANSE researchers
for their input on this work, in particular Michael Aivazis.
Thanks also to the researchers at NIST who provided valu-
able input and coordinated visits, including Przemek Klo-
sowski and Wenwu Chen. And thanks to the Virginia Tech
researchers who were involved in early discussions of this
work, including Chris North, Dennis Neale, and Brian
Sciacchitano.

REFERENCES
Bhatia, S., McCrickard, D. S., Lilley, T., North, C., and

Kienzle, P. (2006). Scientists in the MIST: Simplifying
Interface Design for End Users. Poster paper in Pro-
ceedings of the World Conference on Educational Mul-
timedia/Hypermedia and Educational Telecommunica-
tions (ED-MEDIA '06), Orlando FL, June 2006, pp.
653-657.

Bhatia, S., McCrickard, D. S., Lilley, T., North, C., and
Kienzle, P. (2006). Scientists in the MIST: Simplifying
Interface Design for End Users. Technical Report TR-
06-13, Computer Science, Virginia Tech, 2006.

Chilvers, M. (2005). Envisage—An Extensible Applica-
tion Framework. In Proceedings of PyCon 2005,
Washington DC, March 2005.

Chin, G. Stephan, E.G., Gracio, D.K., Kuchar, O.A., Whit-
ney, P.D., and Schuchardt, K.L. Developing Concept-
Based User Interfaces for Scientific Computing. Com-
puter 39 (2006) pp. 26-34.

Cole, W. G. Understanding Bayesian Reasoning Via
Graphical Displays. In Proceedings of CHI'89 Human
Factors in Computing Systems (April 30–May 4, Aus-
tin, TX), ACM/SIGCHI, NY, 1989, pp. 381–386.

DANSE: Distributed Data Analysis for Neutron Scattering
Experiments. Available at
http://wiki.cacr.caltech.edu/danse/index.php/Main_Page
Accessed June 23, 2009.

Demeure, A., Calvary, G., Coutaz, J., and Vanderdonckt, J.
The Comets Inspector: Manipulating Multiple User In-
terface Representations Simultaneously. In Proceed-
ings of the 6th International Conference on Computer-

Aided Design of User Interfaces (CADUI’2006), Sprin-
ger-Verlag, Bucharest, 2006, pp. 167-174.

Diehl, S. (2007). Software Visualization - Visualizing the
Structure, Behavoiur, and Evolution of Software. Sprin-
ger, 2007.

Fujima, J. Lunzer, A., Hornb, K., and Tanaka, Y. Clip,
connect, clone: combining application elements to build
custom interfaces for information access. In Proceed-
ings of the 17th annual ACM symposium on User inter-
face software and technology (UIST 2004), ACM Press,
Santa Fe, NM, USA, 2004, pp. 175-184.

Gary, M.R. (1972). Optimal binary identification proce-
dures. SIAM J. Appl. Math. 23, 2 (Feb. 1972), 173–
186.

Garey, M.R. and Johnson, D.S. (1979). Computers and
Intractability: A Guide to the Theory of NP- Complete-
ness. Freeman, San Francisco, CA, 1979.

Maloney, J.H., Smith, R.B. (1995). Directness and liveness
in the morphic user interface construction environment.
In Proceedings of the 8th Annual ACM Symposium on
User interface Software and Technology (UIST 1995),
Pittsburgh, Pennsylvania, United States. ACM Press,
New York, NY, pp. 21-28.

McDaniel, R. and Myers, B. (1998). Building applications
using only demonstration. In Proceedings of the Inter-
national Conference on Intelligent User Interfaces (IUI
1998), January 1998, San Francisco CA, pp. 109-116.

Myers, B. (1991). Separating application code from tool-
kits: eliminating the spaghetti of call-backs. In Pro-
ceedings of the 4th annual ACM symposium on User in-
terface software and technology (UIST 1991), ACM
Press, Hilton Head, South Carolina, United States,
1991, pp. 211-220.

Myers, B. (1993). Peridot: Creating User Interfaces by
Demonstration. In Watch What I Do: Programming by
Demonstration. A. Cypher et al., eds. Cambridge MA:
The MIT Press, pp. 125-153.

Stasko, J. T., Brown, M. H., & Price, B. A. (1997). Soft-
ware Visualization: MIT Press.

Vander Zanden. B.T., Halterman. R., Myers, B. A., McDa-
niel R., Miller. R., Szekely. P., Giuse. D.A., Kosbie. D.
(2001). Lessons learned about one-way, dataflow con-
straints in the Garnet and Amulet graphical toolkits.
ACM Transactions on Programming Languages and
Systems 23 (6), pp. 776-796.

Wolfgang, S., Olivier, C., Dusty, P., and Nicolas, R.
(2006). User interface façades: towards fully adaptable
user interfaces. In Proceedings of the 19th annual
ACM Symposium on User Interface Software and Tech-
nology (UIST 2006), ACM Press, Montreux, Switzer-
land, 2006, pp. 309-318.

